
Aloha,
Dear Reid and David,

Thank you for your submission to ICSE 2011. The program committee
met on November 12-13, 2010, to consider the submissions to the Research
Paper track. We are pleased to inform you that your paper,

"Identifying Program, Test, and Environmental Changes That Affect Behaviour"

has been accepted for presentation in the technical program and
for publication in the conference proceedings. The competition
was strong: only 62 of the 441 submissions were accepted, giving
an acceptance rate of 14%.

We enclose a set of reviews of your paper. In your preparation of
the final paper, please make sure to incorporate the comments
of the reviewers.

VERY IMPORTANT INFORMATION:

1. Fairly soon, you will receive an author kit from the ICSE 2011
Publications Chair.

2. The final camera-ready paper is due on Friday, February 11, 2011.
This deadline is firm --- if you miss the deadline, your paper will
not appear in the proceedings.

3. You will find information about the format of the camera-ready
version of your paper on the ICSE 2011 conference website. The
format specifications are the same as were required for your initial
paper submission (ICSE 2011 Format and Submission Guidelines).
Your paper must not exceed 10 pages.

From: "Harald Gall and Nenad Medvidovic" <icse2011-papers-
chairs@borbala.com>

Subject: ICSE 2011 Paper Notification [210]
Date: 17 November, 2010 4:02:43 PM EST

To: rtholmes@cs.washington.edu, notkin@cs.washington.edu
Cc: icse2011-papers-chairs@borbala.com, icse2011-papers-

webadmin@borbala.com
Reply-To: icse2011-papers-chairs@borbala.com

4. As mentioned in the call for papers, your paper submission and
acceptance implies that one of the paper's authors must attend and
present the paper at the conference, which will be held May 21-28
in Waikiki, Honolulu, Hawaii.
Early in the Spring, closer to the conference, we will post instructions
on the web site to help you prepare for that presentation.
Failure to attend the meeting to present the paper will result in the
removal of your paper from the proceedings; more specifically it will not
appear in the IEEE or ACM Digital Libraries.

We want to congratulate you on the acceptance of your paper, which is
part of a strong and exciting conference program we are assembling for
ICSE 2011. We look forward to seeing you at the conference.

Sincerely,

Nenad Medvidovic and Harald Gall
Program Committee Co-Chairs
ICSE 2011

=--==--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=

First reviewer's review:

Summary of the submission <<<

The paper discusses code changes and the static and dynamic divergences caused
by them. The paper does this by exploring how static code changes should relate
to dynamic code changes. The authors then form some basic assumptions that some
kinds of divergences might be harmful (i.e., a change may have had undesired
consequences) whereas other kinds of changes appear as desired. A simple
example is an added functionality (method call) which adds to the static
structure and should also add to the dynamic structure.

Evaluation <<<

I think the authors are onto a nice idea but is it useful? I strongly concur
with the authors that commonalities and differences between static and dynamic
structures could reveal problems. However, it seems that at no point the
detected problems were validated. Thus, the question I have is whether the
problems detected by the approach are a) true problems and b) important
problems. There should be some measure (perhaps precision/recall) that shows
that the approach is indeed able to identify the problematic kinds of changes.

What the evaluation showed was that the user would not be overwhelmed by the
proposed approach. That is the areas perceived to be problematic are few and
far apart. This is good and useful. But were these few places identified truly
problematic? I cannot tell.
Why was the study on three open source systems limited to 10 commits only? You
could have chosen a much larger number as everything appears to be automated.
Even if I presume that the approach is able to identify certain problematic
areas then how serious are these problems. What kinds of problems can the
approach not detect? I am thinking of code changes that do not change the
underlying call graphs but rather the pattern of interaction: e.g., method A
used to call method B when X and Y happened, now it is only calling B when Y
happens - it seems to me that you are dealing with call graphs instead of call
trees which could not deal with such subtleties. But are these subtleties
really important?...
I am also unsure as to what we are to learn from the industrial study in 4.2.
The patterns appear similar to the open source studies. I see no conclusions
there except for informal statements made by the developer. For example, "Oh,
that's interesting, we have..." is about the observation that S+ points out
additions to the code that apparently where never tested (hence no D+).
However, this is a rather weak benefit. Now, it is indeed important to know
failure to test (don't get me wrong here) but wouldn't a simple branch coverage
technique for testing not take care of this?
Minor: missing V2D label in figure 1

Points in favour or against <<<

+ nice idea
- not clear whether results are useful

=--==--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*

Second reviewer's review:

Summary of the submission <<<

This paper provides a new perspective on how a developer can perceive code
changes. It does
so by simple comparing the static and dynamic call graphs on the old and new
code base,
and across them. As a result the analysis can identify inconsistencies (e.g.
static calls
lacking the corresponding dynamic call, or a dynamic call that was not preceded
by a

static call). The proposed approach is assessed by analyzing partitions sizes
and potential
uses on 27 versions of open source system, and performing an informal and more
qualitative
study in industry.

Evaluation <<<

I found the ideas of the paper quite interesting, especially the
partition/categorization
emerging from the analysis of differences between static and dynamic call
graphs across versions.
Developers often struggle in understanding the impact of changes because of all
the moving parts involved in a system and this relatively inexpensive approach
could provide some answers, highlighting particular kinds of situations in an
integrated way.

As I read the paper though, I kept thinking that many techniques exist to
detect the issues found by the approach. For example, simple checking the
change in call-coverage metrics would reveal the same as the "s+d" partition.
Another example, changes in the environment could be used to check whether old
and new components behaves alike (from the industrial study) is really just
regression testing.
In some parts I was also unsure whether some partitions would really capture
what is intended. For example, a simple change in the initial value of a
variable may affect a predicate that determines whether a call is made or not.
This change would not be reflected in the static call graph but would change
the dynamic one, ending up in the sd+ partition which makes me question whether
the granularity at the call level is enough.
The assessment did not help with these two issues that much. It did not convey
how much is lost due to the lack of precision, nor was it very convincing in
showing how the approach differs from simply using static or dynamic approaches
along (the subsection on this only reports that the partition is smaller with
the current approach, but that is just because part of the data goes into
another partition).
In spite of the size of the assessment effort, in the end the paper fails to
strongly convince about the uniqueness and added value of having this type
of change partition.

Still, in the end I feel the ideas are interesting enough and there is a value
in establishing a framework to classify changes quickly enough to give
developers timely feedback, which is why my evaluation is on the positive side.

Points in favour or against <<<

+ interesting framework to classify changes to support developers
- value of having change partition framework fizzles out as the paper goes on

=--==--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*

Third reviewer's review:

Summary of the submission <<<

Describes an approach that combines static and dynamic analysis to
classify changes in caller-callee pairs to a system resulting from a
code change. Five categories of caller-callee changes are described,
of which 3 are of particular interest to the developer. The approach
and an implementation are described, as are two studies. One examines
10 versions each of three open source systems, determining how many
pairs end up in each category and analyzing some interesting changes
qualitatively. The other involved comparing nightly builds of an
industrial product, and interviewing the product manager. In all
cases, the number of interesting pairs is manageable, allowing
developers to focus on them and check whether they really indicate
problems or not.

Evaluation <<<

A really excellent idea that has great deal of practical value. I can
see this sort of analysis becoming standard with builds, as some other
forms of analysis are.

The second paragraph of the intro is rather vague. It would be good to
have an example here.

The paper seems to consider the "consistent" category of even more
interest to the developer than "not executed". This surprises
me. Wouldn't the developer consider the "consistent" ones as expected,
and not be inclined to examine them? A bit of discussion would be
good, especially if this point of view is wrong.

The text about Fig. 2 mentions a "key clash", but there is no
indication of keys in the code - which also makes the cache example
look odd; it looks like the cache is just remembering all the integers
returned, in a way that is useless. Of course, it still demonstrates

the point being made.

Figure 3, esp. 3(a), is hard to impossible to read when printed in black and
white.

Points in favour or against <<<

+ A really excellent idea that has great deal of practical value. I can
 see this sort of analysis becoming standard with builds, as some other
forms of analysis are.
+ Retrospective evaluation showing that the number of interesting
 dependencies is small
+ Industrial case study
+ Readable

=--==--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*=--=*

