Material and some slide content from:

- Software Architecture: Foundations, Theory, and Practice
- Krzysztof Czarnecki

Security as a Architectural Concern, Chrome Arch, and NFP Measurement Reid Holmes

NFP: Security

Security: "The protection afforded a system to preserve its integrity, availability, and confidentiality if its resources."

Confidentiality

Preserving the confidentiality of information means preventing unauthorized parties from accessing the information or perhaps even being aware of the existence of the information.

Integrity

Maintaining the integrity of information means that only authorized parties can manipulate the information and do so only in authorized ways.

Availability

 Resources are available if they are accessible by authorized parties on all appropriate occasions.

Security arch. principles

- Least privilege:
 - Give each component only the privileges it requires.
- Fail-safe defaults
 - Deny access if explicit permission is absent.
- Economy of mechanism
 - Adopt simple security mechanisms.
- Open design
 - Secrecy != security.

Security arch. principles

- Separation of privilege
 - Introduce multiple parties to avoid exploitation of privileges.
- Least common mechanism
 - Limit critical resource sharing to only a few mechanisms.
- Psychological acceptability
 - Make security mechanisms usable.
- Defence in depth
 - Have multiple layers of countermeasures.

Security Process

- Damage potential: how bad would the damage be?
- Reproducibility: how easy it is to repeat?
- Exploitability: how easy it is to do?
- Affected users: how many users can be affected?
- Discoverability: how easy it is to discover potential threats?

Chrome

- Online content is insecure and can compromise:
 - Confidentiality: Leak user data
 - Integrity: Read/write arbitrary data on disk
 - Availability: Crash host application and/or OS

Chrome relies on least privilege, separation of privilege, and defence in depth to securely parse and render insecure content.

Chrome architecture

Browser Kernel (trusted)

OS-Level Sandbox

OS/Runtime Exploit Barriers

JavaScript Sandbox

Web Content (untrusted)

IPC Channel

2 REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

OAuth 2.0

- It is tempting to treat NFPs abstractly
- Thinking about NFPs concretely means thinking about how they might be measured
- If you do not do this, it is hard to validate whether a design / arch decision supports or inhibits an NFP
- e.g.,
 - Reliability:

- It is tempting to treat NFPs abstractly
- Thinking about NFPs concretely means thinking about how they might be measured
- If you do not do this, it is hard to validate whether a design / arch decision supports or inhibits an NFP
- e.g.,
 - Reliability:
 - X bugs / KLOC
 - Coverage
 - Mutation Kill Score
 - MTBF

- Robustness
- Performance
- Usability
- Portability

- Robustness
 - Time to restart after failure
 - % of transactions that will cause failure
- Performance
 - Transactions / second
 - Response time (latency)
 - max cpu usage (so background tasks can run)
- Usability
 - Training time (ease of learning)
 - Walkthroughs / user scenarios (task efficiency)
 - Ease of remembering
 - Objective satisfaction
 - Understandability (opaqueness)
- Portability
 - # target systems
 - % code that is platform-specific
 - # of platform-specific checks in normal execution

- Complexity
- Security
 - Availability
 - Integrity & Confidentiality
- Scalability

- Complexity
 - Max LOC / function
 - Cyclomatic complexity
 - Maximum order of modules in dependency graph
- Security
 - Availability
 - % of time system is available to legitimate users
 - Longest duration of compromise
 - Integrity & Confidentiality
 - Penetration / fuzz testing / intentional misuse
- Scalability
 - Connections per second
 - Max # of simultaneous connections
 - Max delay to spin up new app server if saturated

- Testability
 - Controllability
 - Observability
 - Repeatability

- Testability
 - Controllability
 - time required to roll back
 - programmatic support for deployment
 - Observability
 - internal state must be externally visible (interceptors / loggers)
 - Repeatability
 - automated access required for efficient testing
 - (may contradict with security constraints)

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

