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SOLID Design Principles

Reid Holmes




Source: [Gamma et all, "Design Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995]

e Program an Interface not an Implementation
e Favor Composition Versus Inheritance
e Find what varies and encapsulate it

Source: [R. Martin, "Agile Software Development, Principles, Patterns, and Practices”, Prentice-Hall, 2002 |

Dependency-Inversion Principle
Liskov Substitution Principle
Open-Closed Principle
Interface-Segregation Principle
Reuse/Release Equivalency Principle
Common Closure Principle

Common Reuse Principle

Acyclic Dependencies Principle
Stable Dependencies Principle
Stable Abstraction Principle

Source: [Larman, "Applying UML and Patterns : An Introduction to Object-Oriented Analysis and Design and Iterative Development”, Prentice-Hall, 20

Design principles are codified in the GRASP Pattern

GRASP (Pattern of General Principles in Assigning Responsabilities)

Assign a responsibility to the information expert

Assign a responsability so that coupling remains low

Assign a responsability so that cohesion remains high

Assign responsabilities using polymorphic operations

Assign a highly cohesive set of responsabilities to an artifipclass that does not ripreser’pr ything in the problem domain (when you want to |

Don't talk to strangers (Law of Demeter) rag matlc rog ra m mer

+ A~

Source: [Parnas, "On the Criteria To Bp==lyad in Decomposing Syp==ipginto M Gu!esgcmnwrwn ication of AGM,, 1972 | .
iminate Effects Between Unrelated Things —

o design.components that are:

Source: [Hunt, Thomas, "The Pragmatic Programmer: From J0L AddisoN

DRY - Don't Repeat yourself Se/f—conta/ned,

Make it easy to reuse
Design for Orthogonality

Eliminate effects between unrelated things /n dep en dent

Program close to the problem domain J

Minimize Coupling between Modules ; '

Design Using Services and have a Slng/e, We//_def/ned purpose
Always Design for Concurrency

Abstractions Live Longer than details

Source: [Lieberherr,Holland, "Assuring Good Style for Object-Oriented Programs”, IEEE Software, September 1989

e Law of Demeter
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SOLID (single Responsibility)

Cla_sses should do Ol'l€
th|ng and do it Well.




SOLID (Single Responsibility)

Or check:

A description that
describes a class In terms
of alternatives Is not one
class, but a set of classes.
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SOLID (Single Responsibility)

“A ClassRoom is Ia
location where students
attend tutorials or labs.”
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SOLID (Single Responsibility)

Things we can do to Yaks:

(from the midterm)

Compose
View
Peek
Vote

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING



Ul

<GetYakList, PeekYakList,

<YakList> ComposeYak, VoteYak>

Server

YakList
YakPeek
j \<Vote, Get>
A)w
<L|stOfYaks>\ /' /
<Post> <Location>
Event
N\
CreateYak o) BUS \ GPS

<Get GetlLoc, Post,

Vote, Location>
<ListOfYaks> \ )"
Client

_ (Implicit invocation
ClientMarshaller arch style (event bus))
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SOLID (Single Responsibility)

» Strategy (small, targeted, algorithms)

» Command (invokers should be oblivious to actions)
» Visitor (accomplish specific tasks)

» State (centralize 3rd party complexity)
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SOLID (Open/Close)

Classes should be open to

extension and closed
o modification.




SOLID (Open/Close)

which d€SIgn
patterns support the

open/close principle”?

(These patterns are a subset of those patterns that
help with encapsulating what varies. E.g., the
‘extension’ part is often expected to change.)
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SOLID (Open/Close)

» Observer (extend set of observers)
» w/0 changing subject behaviour

» Strategy (extend algorithm suite)
» w/0 changing context or other algorithms

» State (specialize runtime behaviour)
» w/0 changing context or other behaviours

» Command (extend command suite)
» w/o changing invoker

» Visitor (extend model analysis)
» w/0 changing data structure, traversal code, other visitors

» Decorator (extend object through composition)
» w/o changing base classes

» Composite (extend component)
» w/0 changing clients / composites using any component
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SOLID (Open/Close)

» How does the LLVM architecture in the midterm
support Open/Close?

C C X86 X86
source—| front | back F—machine
code end / end code
Haskell Haskell PowerPC PowerPC
source — front ——IR— Optimizer —IR— back ——machine
code end end code
Fortran  |Fortran ARM ARM
source —| front | back F—machine
code end end code
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SOLID (Open/Close)

» Whenever your code is making behavioural
changes based on internal flags or instanceof you
are likely violating Open/Close. E.g.,

public interface IBillingService {
Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
if (creditCard instanceof VisaCard) {

}uélse if (creditCard instanceof MasterCard) ({

-
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SOLID (Liskov substitution)

Most deSig 1
patterns break down
If LSP Is violated.

(Most design patterns are enabled through a layer
of abstraction, typically provided through
inheritance. When subtypes violate LSP
inconsistencies can occur at runtime.)
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SOLID (Interface segregation)
Clientcsjshould not be forced to

| epend on
Interfaces

they do not use.

(Depending on irrelevant interfaces causes
needless coupling. This causes classes to change
even when interfaces they do not care about are
modified.)
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FastFoodinterface

sellBurger()
_______ >| sellFries()
sellNuggets()
sellCoffee()
sellTeal()

JAN

FastFoodApp

FastFoodimpl

sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()
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RestaurantApp

«use some»
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FastFoodinterface

sellBurger()

>| sellFries()

sellNuggets()
sellCoffee()
sellTeal()

JAN

FastFoodimpl

sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()




FastFoodinterface
RestaurantA sellBurger() FastFoodA
il N > sellFries() < - ———- PR
«Use some» Se”NuggetS() «use»
sellCoffee()
sellTea()
/\ /\
Restaurantimpl FastFoodimpl

sellBurger() sellBurger()
sellFries() sellFries()
sellNuggets() sellNuggets()
sellCoffee() sellCoffee()
sellTea() sellTea()
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RestaurantApp FastFoodApp
\\ // \\
\ // \\
<<US\é>\> «dse» «USex
\ ,/ AN
A | N\
HotDrinkiInterface FastFoodinterface
sellCoffee() sellBurger()
sellTea() sellFries()
A sellNuggets()
/\
HotDrinkimpl FastFoodimpl
sellCoffee() sellBurger()
sellTea() sellFries()
sellNuggets()

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING



SOLID (Interface segregation)

«interface»
Interface
+doThis()
CoreFunctionality OptionalWrapper
-wrappee @
+doThis() +doThis() ~  [~""ctmmeeooe wrappee.doThis () ;
AN
OptionalOne OptionalTwo OptionalThree
+doThis() +doThis() +doThis() [~~~
The Decorator Pattern enables thin e e
high-level interfaces that can be St onit Functionality
augmented through composition of

concrete Decorators.
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SOLID (Dependency inversion)

Depend on

abstractions not
Implementations.

(High-level modules should not depend on low-
level modules; instead, they should depend on
abstractions.)




SOLID (Dependency inversion)

» From this: In the original version, reusing
Package A Package B ObjectA requires reusing ObjectB. In
the second, reusing A only requires an
- by ObleceB implementation of InterfaceA.
To this:
Package A Package B

Object B

References

Instantiating instances of InterfaceA
still ‘leaks’ details about concrete
Implementations; this is what
Dependency Injection aims to solve.
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SOLID (Dependency inversion)

Package A Package B

Object B

» Many design patterns look just like
this (from the client’s perspective).

Car <<interface>>

brakeBehavior : IBrakeBehavior| - - - |BrakeBehavior For example, in th|S Strategy example,
Car only depends on IBrakeBehavior.
A A
BrakeWithABS Brake
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GPSReactNativeView

GPSController setDetails()

«yse» S ’1OWWaypOInt()
showMapPoint()
showProfilePoint()
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IGPSView

GPSController setDetails()

«yuyse» - S ’IOWWaypOIn’[()
showMapPoint()
showProfilePoint()

N\

setView()

GPSReactNativeView

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()
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IGPSView

GPSController SetDeta"s()
______ _> .
. «USe» showWaypoint
setView() o S 1owMaE>/ 30int(())
showProfilePoint()
/\ /\
GPSReactNativeView GPSTestView
setDetails() setDetails()
showWaypoint() showWaypoint()
showMapPoint() showMapPoint()
showProfilePoint() showProfilePoint()
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IGPSView
GPSController setDetails()
showWaypoint()
setView() -~ Zsen | showMapPoint()
createWaypoint() |<-_ showProfilePoint()
startTracking() [~ ~<_ = tcreateWaypoint()
" ~~startTracking()

/\ N\

GPSReactNativeView GPSTestView
Concre.te classes
setDetails() should implement | setDetails()

_ ull interface and _
showWaypoint() may contain more | ShowWaypoint()
showMapPoint() methzﬁivtv*;]a” are | showMapPoint()
showProfilePoint() | showProfilePoint()

REID HOLMES - CPSC 410: AD\VANCED SOFTWARE ENGINEERING



IGPSController

This now gives you more flexibility for testing:

createWaypoint() IGPSView e e sl
StartTraCklng() < C-se;:\c/ievz(v)l;I o
SetVIeW() T~ =~ 4 SetDetalIS() ] Since you have full control of which view
4 «use» S f']owwaypouqt() or controller is used.
S ’]OWMap PO”’TI:() You could &.1|SO reusg thg vi.ew w/o the
. . controller, just reusing its interface
showProfilePoint() Commater mplmenanon "
o d i '
GPSController = createWaypomt()
|~ ~ «use» startTracking()
createWaypoint() setController()
startTracking() ?
setView() ZE
GPSReactNativeView GPSTestView
Concrete classes
setDetails() snouldmpemeTt | setDetails()

. ull interface and ,
showWaypoint() may contain more | ShowWaypoint()
showMapPoint() methods than are | showMapPoint()
showProfilePoint() shown. showProfilePoint()
setController() setController()
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