Some content from Elisa Baniassad

SOLID Design Principles

Reid Holmes

Source: [Gamma et all, "Design Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995]

e Program an Interface not an Implementation
e Favor Composition Versus Inheritance
e Find what varies and encapsulate it

Source: [R. Martin, "Agile Software Development, Principles, Patterns, and Practices”, Prentice-Hall, 2002 |

Dependency-Inversion Principle
Liskov Substitution Principle
Open-Closed Principle
Interface-Segregation Principle
Reuse/Release Equivalency Principle
Common Closure Principle

Common Reuse Principle

Acyclic Dependencies Principle
Stable Dependencies Principle
Stable Abstraction Principle

Source: [Larman, "Applying UML and Patterns : An Introduction to Object-Oriented Analysis and Design and Iterative Development”, Prentice-Hall, 20

Design principles are codified in the GRASP Pattern

GRASP (Pattern of General Principles in Assigning Responsabilities)

Assign a responsibility to the information expert

Assign a responsability so that coupling remains low

Assign a responsability so that cohesion remains high

Assign responsabilities using polymorphic operations

Assign a highly cohesive set of responsabilities to an artifipclass that does not ripreser’pr ything in the problem domain (when you want to |

Don't talk to strangers (Law of Demeter) rag matlc rog ra m mer

+ A~

Source: [Parnas, "On the Criteria To Bp==lyad in Decomposing Syp==ipginto M Gu!esgcmnwrwn ication of AGM,, 1972 | .
iminate Effects Between Unrelated Things —

o design.components that are:

Source: [Hunt, Thomas, "The Pragmatic Programmer: From J0L AddisoN

DRY - Don't Repeat yourself Se/f—conta/ned,

Make it easy to reuse
Design for Orthogonality

Eliminate effects between unrelated things /n dep en dent

Program close to the problem domain J

Minimize Coupling between Modules ; '

Design Using Services and have a Slng/e, We//_def/ned purpose
Always Design for Concurrency

Abstractions Live Longer than details

Source: [Lieberherr,Holland, "Assuring Good Style for Object-Oriented Programs”, IEEE Software, September 1989

e Law of Demeter

Chrtiveranrs TDavwwerrmamd “Ardk AfF lImiv Deanmararmmmina™ AdAicenm Waclaywy 2NN 321

SOL D

[eVIew

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (single Responsibility)

Cla_sses should do Ol'l€
th|ng and do it Well.

SOLID (Single Responsibility)

Or check:

A description that
describes a class In terms
of alternatives Is not one
class, but a set of classes.

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Single Responsibility)

“A ClassRoom is Ia
location where students
attend tutorials or labs.”

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Single Responsibility)

Things we can do to Yaks:

(from the midterm)

Compose
View
Peek
Vote

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

Ul

<GetYakList, PeekYakList,

<YakList> ComposeYak, VoteYak>

Server

YakList
YakPeek
j \<Vote, Get>
A)w
<L|stOfYaks>\ /' /
<Post> <Location>
Event
N\
CreateYak o) BUS \ GPS

<Get GetlLoc, Post,

Vote, Location>
<ListOfYaks> \)"
Client

_ (Implicit invocation
ClientMarshaller arch style (event bus))

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Single Responsibility)

» Strategy (small, targeted, algorithms)

» Command (invokers should be oblivious to actions)
» Visitor (accomplish specific tasks)

» State (centralize 3rd party complexity)

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Open/Close)

Classes should be open to

extension and closed
o modification.

SOLID (Open/Close)

which d€SIgn
patterns support the

open/close principle”?

(These patterns are a subset of those patterns that
help with encapsulating what varies. E.g., the
‘extension’ part is often expected to change.)

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Open/Close)

» Observer (extend set of observers)
» w/0 changing subject behaviour

» Strategy (extend algorithm suite)
» w/0 changing context or other algorithms

» State (specialize runtime behaviour)
» w/0 changing context or other behaviours

» Command (extend command suite)
» w/o changing invoker

» Visitor (extend model analysis)
» w/0 changing data structure, traversal code, other visitors

» Decorator (extend object through composition)
» w/o changing base classes

» Composite (extend component)
» w/0 changing clients / composites using any component

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Open/Close)

» How does the LLVM architecture in the midterm
support Open/Close?

C C X86 X86
source—| front | back F—machine
code end / end code
Haskell Haskell PowerPC PowerPC
source — front ——IR— Optimizer —IR— back ——machine
code end end code
Fortran |Fortran ARM ARM
source —| front | back F—machine
code end end code

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Open/Close)

» Whenever your code is making behavioural
changes based on internal flags or instanceof you
are likely violating Open/Close. E.g.,

public interface IBillingService {
Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
if (creditCard instanceof VisaCard) {

}uélse if (creditCard instanceof MasterCard) ({

-

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Liskov substitution)

Most deSig 1
patterns break down
If LSP Is violated.

(Most design patterns are enabled through a layer
of abstraction, typically provided through
inheritance. When subtypes violate LSP
inconsistencies can occur at runtime.)

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Interface segregation)
Clientcsjshould not be forced to

| epend on
Interfaces

they do not use.

(Depending on irrelevant interfaces causes
needless coupling. This causes classes to change
even when interfaces they do not care about are
modified.)

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

FastFoodinterface

sellBurger()
_______ >| sellFries()
sellNuggets()
sellCoffee()
sellTeal()

JAN

FastFoodApp

FastFoodimpl

sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

RestaurantApp

«use some»

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

FastFoodinterface

sellBurger()

>| sellFries()

sellNuggets()
sellCoffee()
sellTeal()

JAN

FastFoodimpl

sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

FastFoodinterface
RestaurantA sellBurger() FastFoodA
il N > sellFries() < - ———- PR
«Use some» Se”NuggetS() «use»
sellCoffee()
sellTea()
/\ /\
Restaurantimpl FastFoodimpl

sellBurger() sellBurger()
sellFries() sellFries()
sellNuggets() sellNuggets()
sellCoffee() sellCoffee()
sellTea() sellTea()

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

RestaurantApp FastFoodApp
\\ // \\
\ // \\
<<US\é>\> «dse» «USex
\ ,/ AN
A | N\
HotDrinkiInterface FastFoodinterface
sellCoffee() sellBurger()
sellTea() sellFries()
A sellNuggets()
/\
HotDrinkimpl FastFoodimpl
sellCoffee() sellBurger()
sellTea() sellFries()
sellNuggets()

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Interface segregation)

«interface»
Interface
+doThis()
CoreFunctionality OptionalWrapper
-wrappee @
+doThis() +doThis() ~ [~""ctmmeeooe wrappee.doThis () ;
AN
OptionalOne OptionalTwo OptionalThree
+doThis() +doThis() +doThis() [~~~
The Decorator Pattern enables thin e e
high-level interfaces that can be St onit Functionality
augmented through composition of

concrete Decorators.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Dependency inversion)

Depend on

abstractions not
Implementations.

(High-level modules should not depend on low-
level modules; instead, they should depend on
abstractions.)

SOLID (Dependency inversion)

» From this: In the original version, reusing
Package A Package B ObjectA requires reusing ObjectB. In
the second, reusing A only requires an
- by ObleceB implementation of InterfaceA.
To this:
Package A Package B

Object B

References

Instantiating instances of InterfaceA
still ‘leaks’ details about concrete
Implementations; this is what
Dependency Injection aims to solve.

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

SOLID (Dependency inversion)

Package A Package B

Object B

» Many design patterns look just like
this (from the client’s perspective).

Car <<interface>>

brakeBehavior : IBrakeBehavior| - - - |BrakeBehavior For example, in th|S Strategy example,
Car only depends on IBrakeBehavior.
A A
BrakeWithABS Brake

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

GPSReactNativeView

GPSController setDetails()

«yse» S ’1OWWaypOInt()
showMapPoint()
showProfilePoint()

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

IGPSView

GPSController setDetails()

«yuyse» - S ’IOWWaypOIn’[()
showMapPoint()
showProfilePoint()

N\

setView()

GPSReactNativeView

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

REID HOLMES - CPSC 410: ADVANCED SOF 'WARE ENGINEERING

IGPSView

GPSController SetDeta"s()
______ _> .
. «USe» showWaypoint
setView() o S 1owMaE>/ 30int(())
showProfilePoint()
/\ /\
GPSReactNativeView GPSTestView
setDetails() setDetails()
showWaypoint() showWaypoint()
showMapPoint() showMapPoint()
showProfilePoint() showProfilePoint()

REID HOLMES - CPSC 410: AD\VANCED SOFTWARE ENGINEERING

IGPSView
GPSController setDetails()
showWaypoint()
setView() -~ Zsen | showMapPoint()
createWaypoint() |<-_ showProfilePoint()
startTracking() [~ ~<_ = tcreateWaypoint()
" ~~startTracking()

/\ N\

GPSReactNativeView GPSTestView
Concre.te classes
setDetails() should implement | setDetails()

_ ull interface and _
showWaypoint() may contain more | ShowWaypoint()
showMapPoint() methzﬁivtv*;]a” are | showMapPoint()
showProfilePoint() | showProfilePoint()

REID HOLMES - CPSC 410: AD\VANCED SOFTWARE ENGINEERING

IGPSController

This now gives you more flexibility for testing:

createWaypoint() IGPSView e e sl
StartTraCklng() < C-se;:\c/ievz(v)l;I o
SetVIeW() T~ =~ 4 SetDetalIS()] Since you have full control of which view
4 «use» S f']owwaypouqt() or controller is used.
S ’]OWMap PO”’TI:() You could &.1|SO reusg thg vi.ew w/o the
. . controller, just reusing its interface
showProfilePoint() Commater mplmenanon "
o d i '
GPSController = createWaypomt()
|~ ~ «use» startTracking()
createWaypoint() setController()
startTracking() ?
setView() ZE
GPSReactNativeView GPSTestView
Concrete classes
setDetails() snouldmpemeTt | setDetails()

. ull interface and ,
showWaypoint() may contain more | ShowWaypoint()
showMapPoint() methods than are | showMapPoint()
showProfilePoint() shown. showProfilePoint()
setController() setController()

REID HOLMES - CPSC 410: ADVANCED SOF 'WARE ENGINEERING

