
DevOps Deployment
Reid Holmes https://commons.wikimedia.org/wiki/File:Continous_Delivery_by_Jez_Humble_and_David_Farley.jpg

Chris Parnin: https://github.com/CSC-DevOps/Course
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Deploying Code
Lowering the risk of change 
through tools and culture.

CHUCK ROSSI

HTTPS://VIMEO.COM/56362484

While tooling automates 
deploying changes, ultimately 
this is a human process.
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Incrementalism
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Facebook example
‣ New release branch every Tuesday.

‣ Revs are cherry-picked to prod as needed.

https://vimeo.com/56362484

XXX MORE ON FEATURE FLAGS HERE


https://vimeo.com/56362484
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Low-Risk Release Principles
1. Favour incremental changes

http://www.informit.com/articles/article.aspx?p=1833567
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Green/Blue Deploy
‣ Two production environments.

‣ Mechanism for completing deploy on full stack.

‣ Router then manages user migration to new bits.

‣ Supports rapid rollback.

http://martinfowler.com/delivery.html
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Canary Releases
‣ Quickly signal bad builds to halt rollouts.
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Low-Risk Release Principles
1. Favour incremental changes

2. Decouple deploying from releasing

http://www.informit.com/articles/article.aspx?p=1833567
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Dark Launch
‣ Release changes without their user-facing 

elements.

‣ Can simultaneously direct traffic through previous 

and dark-launched code for load testing.

‣ Feature flags can enable/disable dark code.

‣ Shortens release branch duration.

‣ Improves disaster recovery.
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Feature Flags
‣ Gatekeeper can direct specific subsets of traffic to 

newly-launched code to gather data/feedback.

http://swreflections.blogspot.ca/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html
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Low-Risk Release Principles
1. Favour incremental changes

2. Decouple deploying from releasing

3. Focus on reducing batch size

http://www.informit.com/articles/article.aspx?p=1833567
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High Release Cadence
‣ Deploys new features to users quickly.

‣ Enables responsive defect resolution.

‣ Smaller delta == smaller faults.

‣ Releasing loses ‘dark art’ status.

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change
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https://codeascraft.com/2010/05/20/quantum-of-deployment/

https://codeascraft.com/2010/05/20/quantum-of-deployment/
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Low-Risk Release Principles
1. Favour incremental changes

2. Decouple deploying from releasing

3. Focus on reducing batch size

4. Optimize for resilience

http://www.informit.com/articles/article.aspx?p=1833567
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Have a Plan B
‣ No. Really.

‣ Culture is fundamental to identifying, fixing, and 

recovering from large distributed faults.

‣ Do you know you there’s a problem?

‣ Can you figure out what it is?

‣ Can you find out who should fix it?

‣ Fix it. (we’re good at this)

‣ Do we know how to deploy it?

‣ Can we validate the problem is fixed?
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http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

http://techblog.netflix.com/2011/07/netflix-simian-army.html

‣ Fail often, tolerate failure.

‣ Learn with scale, not models.

‣ Netflix Simian Army:

‣ Latency

‣ Conformity

‣ Doctor

‣ Janitor

‣ Security

‣ i9n, l18n

Testing plan B

http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
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Admin Stuff - D2 Rubric
Architecture (/5): 
1) Is there a component diagram? Can the architecture of the system be understood from it?

2) Have architectural styles been applied?

3) Have architectural decisions been justified at all?

4) Are external and phone-based services included on diagram / in description.

5) Is an explanation of how NFPs are supported and are measurable included?


Design (/7): 
1) Is a rationalization given for the chosen design?

2) Is there a description of the class organization? (even tying back to arch components is fine here).

3) Are key patterns / abstractions / data structures documented?

4) Is there a mapping of the architectural components to the design components?

5) Is the ‘class’ diagram clear, capture physical location of classes, and external elements?

6) Is there a description of how coupling was minimized?

7) Is a future point of evolution provided?
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Admin Stuff - Testing
Testing is the most fundamental 

approach for measuring software quality.

Testing is not easy.

Testing is not optional.

You control your architecture and can 
refactor your system as needed to 

effectively test its internals.


