Chris Parnin: https://github.com/CSC-DevOps/Course
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Deploying Code

Lowering the risk of change

through tools and culture.
CHUCK ROSS|

While tooling automates
deploying changes, ultimately
this Is a human process.
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INncrementalism

1
Abstraction layer ' Abstraction layer '

APPLICATION

Load balancer
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Facebook example

» New release branch every Tuesday.

» Revs are cherry-picked to prod as needed.

now
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a branch being cut M| merges

commit selected for cherry-pick

commit (developer)

[C] commit (release engineer)

(release engineer) originally
made by a developer

https://vimeo.com /56362484 ==
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L ow-Risk Release Principles

1. Favour incremental changes
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Green/Blue Deploy

» Two production environments.

» Mechanism for completing deploy on full stack.

» Router then manages user migration to new bits.

. b
» Supports rapid rollback. v o DB

http://martinfowler.com/delivery.html
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Canary Releases

» Quickly signal bad builds to halt rollouts.
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L ow-Risk Release Principles

1. Favour incremental changes

2. Decouple deploying from releasing
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Dark Launch

» Release changes without their user-facing
elements.

» Can simultaneously direct traffic through previous
and dark-launched code for load testing.

» Feature flags can enable/disable dark code.
» Shortens release branch duration.

» Improves disaster recovery.

UBC
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http://swreflections.blogspot.ca/2014/08/feature-toggles-are-one-of-worst-kinds.html

_t ‘ http://martinfowler.com/bliki/Feature Toggle.htm|

» Gatekeeper can direct specific subsets of traffic to
newly-launched code to gather data/feedback.

<100gle name = "pelSurvey™>
coge for panding feabure..

<Roggle>

petSurvey mxlrafso|
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L ow-Risk Release Principles

1. Favour incremental changes
2. Decouple deploying from releasing

3. Focus on reducing batch size
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High Release Cadence

» Deploys new features to users quickly.
» Enables responsive defect resolution.
» Smaller delta == smaller faults.

» Releasing loses ‘dark art’ status.
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Add an arbitrary log message:

PROICCT 494 10 hnk 10 Jrs and 854 & commert 1E

o [wed ] ]2010-05-18 22:20.20 | PROCUCTION | sandrews | Prodection Deploy: old 23134, new;
25145 difr

o [wel || 2010-05-18 22:18:00 | PRINCESS | sasdrews | Princess Deploy: okd: 25144, new; 251435 a1

o [wed )] 2010-08-18 22:17:22 | QA | sandrras | kyles bog fix old: | newe 25145 o

o [web]]2010-05-18 22:12:03 | QA | sandrews | pushing again - banned user cache busting old: ,
- Sa S narw: 25144 gt

drincase it in the athar
GOTCoes 18 I Ciolomtor o [web)]2010-05-18 22:08:33 | PRINCESS | sandrews | Princess Degioy: old: 25134, new.
stie o [wed ]]2010-08-10 22:02:38 | QA | sarcruws | A oid: 25134, new: 25144
plad

C
L

o [wed]]12010-05-18 20:56:50 | PRODUCTION | emunns | Production Deploy: old 25134, new:
25134

o [wed]]2090:05-18 20:45:02 | PRODUCTION | cmunns | Production Deploy: old 25134, new:
20134 dir

o [wed]]2090:05+18 20:44:4] | PRODUCTION | abashim | Production Deaploy: old 25030, mew:.
29134 4y

o [wed )] 2010:06-18 20:49:17 | PRINCESS | ahashim | Princess Deploy: 0id: 25030, new: 25134 o1

o [wed | ] 2010-05-10 20:40:35 | QA | ahashim | peanitt Buter Jely tmei! oid: 25000, nerw: 25134 g

o [wed ) ]2010-05-17 16:2328 | PRODUCTION | sandrews | Prodoction Deploy: old 24931, new:

S000 ditr
o [wel )] 2010-05-17 16:12:12 | PRINCESS | saadniws | Princess Depidy: obd: 24051, new: 25030 alf
I o [wed )] 20100617 1602:05 | QA | sandrews | Kssmetics amongst others old: 24951, new: 25030
o

ﬁaoom-» , e < ESen
o [wed)]12010.0514 20:1647 | PRODUCTION | zgamett | Production Deploy: o3 24824, now:

' cant lirks: 20091 ditt
L 3 - L T T T T —_ - - “ e o emsEm- . -.-- .

https://codeascraft.com/2010/05/20/quantum-of-deployment/
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L ow-Risk Release Principles

1. Favour incremental changes

2. Decouple deploying from releasing
3. Focus on reducing batch size
4

. Optimize for resilience
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Have a Plan B

» No. Really.

» Culture is fundamental to identifying, fixing, and
recovering from large distributed faults.

» Do you know you there’s a problem?
» Can you figure out what it is?

» Can you find out who should fix it?

» Fix it. (we're good at this)

» Do we know how to deploy it?

» Can we validate the problem is fixed?
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lesting plan B

» Fail often, tolerate failure.

» Learn with scale, not models.
» Netflix Simian Army:
» Latency

» Conformity

» Doctor

» Janitor b, og=it
 secutty 911\[\11\\,-
» 19n, 118n /“‘“‘\

http://techblog.netflix.com/2011/07/netflix-simian-army.html| [UBC
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html [=3=
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Admin Stuff - D2 Rubric

Architecture (/5):
1) Is there a component diagram? Can the architecture of the system be understood from it?
2) Have architectural styles been applied?

3) Have architectural decisions been justified at all?

4) Are external and phone-based services included on diagram / in description.

5) Is an explanation of how NFPs are supported and are measurable included?

Design (/7):

1) Is a rationalization given for the chosen design?
2) Is there a description of the class organization? (even tying back to arch components is fine here).
3) Are key patterns / abstractions / data structures documented?

4) |Is there a mapping of the architectural components to the design components?

5) Is the ‘class’ diagram clear, capture physical location of classes, and external elements?
6) Is there a description of how coupling was minimized?

7) Is a future point of evolution provided?
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Admin Stuff - Testing

lesting Is the most fundamental
approach for measuring software guality.

lesting Is not easy.

Testing Is not optional,

You control your architecture and can
refactor your system as needed to
effectively test Its Internals.
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