Chris Parnin: https://github.com/CSC-DevOps/Course

A (O%ER L(x)K

(OMMIT STAGE

I (REATING EXELOTABLE
(D}E MUST NORK..
VERIFIES THAT RiE
SYNTAX OF YOOR. SOURCE
LIVE 15 YAUD

o UNIT TEST PASS

[¥1 FULFILL (ERIAN GsALTY
(RITERIA SOCH AS TEST
(OVERAGE AND ORMER
TEAIRIDRY~SPEQHL
METRIZS

LOW STRESS - SMALL
RELEAVES

REDVUNG ERRORS
- (INFIG MaT.

~ VERSUIN (ONTROL

CONTINVOUS DII.IVE.RY =

\ F [STAGE

sUILD
Pt TEST

BY JEL HIMBIE & DAVD FARLEY

oW CASES
EXPLORATORY
TESTING

e —) 2
Y
SHOW STOPPER merer——eeeeeeere——ee—7 A"? ;’ %’)’W

]
1
'
1
1
1
!
'
!
1
I
!
!
1
'
!

A
STAMT M’Puumou IN NeN
ENVIRONMENT

/

) PRALTICE MAKES

}?74}\(""

SEEMS UKE THE AUTHORS CAN'T SIRESS It
ww&ﬂ n‘s everywitene THROVEH oUT

iy

AVTOMATE
ALAST
EVERYTHING

e

ENCOURAGING GREATER (OLABORATION

BETWEEN EVERYONE INVOLVED IN
SOTFWARE DELIVERY IN ORDER

T0 RELEASE VALVABLE
SOFTWARE FASTER

sl

/"’)"/"J" d:"ﬁ <

AND MOME RELIABLY. / 4f /‘"V

99 ,

P e R T L L o et e T T T T L

DevOps Deployment

Nhan Ngo

https://commons.wikimedia.org/wiki/File:Continous_Delivery_by_Jez_Humble_and_David_Farley.jpg
https://github.com/CSC-DevOps/Course

Deploying Code

Lowering the risk of change

through tools and culture.
CHUCK ROSS|

While tooling automates
deploying changes, ultimately
this Is a human process.

UBC
HTTPS://NVIMEO.COM/56362484 X

REID HOLMES - CPSC 410: Advanced Software Engineering

INncrementalism

1
Abstraction layer ' Abstraction layer '

APPLICATION

Load balancer

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Facebook example

» New release branch every Tuesday.

» Revs are cherry-picked to prod as needed.

now
1.10 1.1 1.20

release P, -)
1.1.x 9
branches { - X ® >
C I C XXX MORE ON FEATURE FLAGS HERE

4
f {
& rM M
trunk | | tme
C 3 CIe cr =
C C

a branch being cut M| merges

commit selected for cherry-pick

commit (developer)

[C] commit (release engineer)

(release engineer) originally
made by a developer

https://vimeo.com /56362484 ==

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

https://vimeo.com/56362484

L ow-Risk Release Principles

1. Favour incremental changes

REID HOLMES - CPSC 410: Advanced Software Engineering

Green/Blue Deploy

» Two production environments.

» Mechanism for completing deploy on full stack.

» Router then manages user migration to new bits.

. b
» Supports rapid rollback. v o DB

http://martinfowler.com/delivery.html

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Canary Releases

» Quickly signal bad builds to halt rollouts.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

L ow-Risk Release Principles

1. Favour incremental changes

2. Decouple deploying from releasing

REID HOLMES - CPSC 410: Advanced Software Engineering

Dark Launch

» Release changes without their user-facing
elements.

» Can simultaneously direct traffic through previous
and dark-launched code for load testing.

» Feature flags can enable/disable dark code.
» Shortens release branch duration.

» Improves disaster recovery.

UBC

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING &

http://swreflections.blogspot.ca/2014/08/feature-toggles-are-one-of-worst-kinds.html

_t ‘ http://martinfowler.com/bliki/Feature Toggle.htm|

» Gatekeeper can direct specific subsets of traffic to
newly-launched code to gather data/feedback.

<100gle name = "pelSurvey™>
coge for panding feabure..

<Roggle>

petSurvey mxlrafso|

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

L ow-Risk Release Principles

1. Favour incremental changes
2. Decouple deploying from releasing

3. Focus on reducing batch size

REID HOLMES - CPSC 410: Advanced Software Engineering

High Release Cadence

» Deploys new features to users quickly.
» Enables responsive defect resolution.
» Smaller delta == smaller faults.

» Releasing loses ‘dark art’ status.

/@ //

© 8)
g’ c small amounts of
2 _2 code change
O O deployed
/ T
Time Time

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change | ses==

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING y

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change

— — N -
\ r i) == \ ¥ I
/ F 1 rlr7
£ E B ST AN,

eploy to QA (Trunk) ki Goenits since Iast prod depiay !
& Auta scroll command cutput?

Add an arbitrary log message:

PROICCT 494 10 hnk 10 Jrs and 854 & commert 1E

o [wed]]2010-05-18 22:20.20 | PROCUCTION | sandrews | Prodection Deploy: old 23134, new;
25145 difr

o [wel || 2010-05-18 22:18:00 | PRINCESS | sasdrews | Princess Deploy: okd: 25144, new; 251435 a1

o [wed)] 2010-08-18 22:17:22 | QA | sandrras | kyles bog fix old: | newe 25145 o

o [web]]2010-05-18 22:12:03 | QA | sandrews | pushing again - banned user cache busting old: ,
- Sa S narw: 25144 gt

drincase it in the athar
GOTCoes 18 I Ciolomtor o [web)]2010-05-18 22:08:33 | PRINCESS | sandrews | Princess Degioy: old: 25134, new.
stie o [wed]]2010-08-10 22:02:38 | QA | sarcruws | A oid: 25134, new: 25144
plad

C
L

o [wed]]12010-05-18 20:56:50 | PRODUCTION | emunns | Production Deploy: old 25134, new:
25134

o [wed]]2090:05-18 20:45:02 | PRODUCTION | cmunns | Production Deploy: old 25134, new:
20134 dir

o [wed]]2090:05+18 20:44:4] | PRODUCTION | abashim | Production Deaploy: old 25030, mew:.
29134 4y

o [wed)] 2010:06-18 20:49:17 | PRINCESS | ahashim | Princess Deploy: 0id: 25030, new: 25134 o1

o [wed |] 2010-05-10 20:40:35 | QA | ahashim | peanitt Buter Jely tmei! oid: 25000, nerw: 25134 g

o [wed)]2010-05-17 16:2328 | PRODUCTION | sandrews | Prodoction Deploy: old 24931, new:

S000 ditr
o [wel)] 2010-05-17 16:12:12 | PRINCESS | saadniws | Princess Depidy: obd: 24051, new: 25030 alf
I o [wed)] 20100617 1602:05 | QA | sandrews | Kssmetics amongst others old: 24951, new: 25030
o

ﬁaoom-» , e < ESen
o [wed)]12010.0514 20:1647 | PRODUCTION | zgamett | Production Deploy: o3 24824, now:

' cant lirks: 20091 ditt
L 3 - L T T T T —_ - - “ e o emsEm- . -.-- .

https://codeascraft.com/2010/05/20/quantum-of-deployment/

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

https://codeascraft.com/2010/05/20/quantum-of-deployment/

L ow-Risk Release Principles

1. Favour incremental changes

2. Decouple deploying from releasing
3. Focus on reducing batch size
4

. Optimize for resilience

REID HOLMES - CPSC 410: Advanced Software Engineering

Have a Plan B

» No. Really.

» Culture is fundamental to identifying, fixing, and
recovering from large distributed faults.

» Do you know you there’s a problem?
» Can you figure out what it is?

» Can you find out who should fix it?

» Fix it. (we're good at this)

» Do we know how to deploy it?

» Can we validate the problem is fixed?

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING

lesting plan B

» Fail often, tolerate failure.

» Learn with scale, not models.
» Netflix Simian Army:
» Latency

» Conformity

» Doctor

» Janitor b, og=it
 secutty 911\[\11\\,-
» 19n, 118n /“‘“‘\

http://techblog.netflix.com/2011/07/netflix-simian-army.html| [UBC
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html [=3=

REID HOLMES - CPSC 410: ADVANCED SOF'WARE ENGINEERING &

http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html

Admin Stuff - D2 Rubric

Architecture (/5):
1) Is there a component diagram? Can the architecture of the system be understood from it?
2) Have architectural styles been applied?

3) Have architectural decisions been justified at all?

4) Are external and phone-based services included on diagram / in description.

5) Is an explanation of how NFPs are supported and are measurable included?

Design (/7):

1) Is a rationalization given for the chosen design?
2) Is there a description of the class organization? (even tying back to arch components is fine here).
3) Are key patterns / abstractions / data structures documented?

4) |Is there a mapping of the architectural components to the design components?

5) Is the ‘class’ diagram clear, capture physical location of classes, and external elements?
6) Is there a description of how coupling was minimized?

7) Is a future point of evolution provided?

REID HOLMES - CPSC 410: Advanced Software Engineering

Admin Stuff - Testing

lesting Is the most fundamental
approach for measuring software guality.

lesting Is not easy.

Testing Is not optional,

You control your architecture and can
refactor your system as needed to
effectively test Its Internals.

REID HOLMES - CPSC 410: Advanced Software Engineering

