
DevOps Deployment
Reid Holmes https://commons.wikimedia.org/wiki/File:Continous_Delivery_by_Jez_Humble_and_David_Farley.jpg

Chris Parnin: https://github.com/CSC-DevOps/Course

https://commons.wikimedia.org/wiki/File:Continous_Delivery_by_Jez_Humble_and_David_Farley.jpg
https://github.com/CSC-DevOps/Course


REID HOLMES - CPSC 410: Advanced Software Engineering

Deploying Code
Lowering the risk of change 
through tools and culture.

CHUCK ROSSI

HTTPS://VIMEO.COM/56362484

While tooling automates 
deploying changes, ultimately 
this is a human process.



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Incrementalism



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Facebook example
‣ New release branch every Tuesday.

‣ Revs are cherry-picked to prod as needed.

https://vimeo.com/56362484

XXX MORE ON FEATURE FLAGS HERE


https://vimeo.com/56362484


REID HOLMES - CPSC 410: Advanced Software Engineering

Low-Risk Release Principles
1. Favour incremental changes

http://www.informit.com/articles/article.aspx?p=1833567



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Green/Blue Deploy
‣ Two production environments.

‣ Mechanism for completing deploy on full stack.

‣ Router then manages user migration to new bits.

‣ Supports rapid rollback.

http://martinfowler.com/delivery.html



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Canary Releases
‣ Quickly signal bad builds to halt rollouts.



REID HOLMES - CPSC 410: Advanced Software Engineering

Low-Risk Release Principles
1. Favour incremental changes

2. Decouple deploying from releasing

http://www.informit.com/articles/article.aspx?p=1833567



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Dark Launch
‣ Release changes without their user-facing 

elements.

‣ Can simultaneously direct traffic through previous 

and dark-launched code for load testing.

‣ Feature flags can enable/disable dark code.

‣ Shortens release branch duration.

‣ Improves disaster recovery.



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Feature Flags
‣ Gatekeeper can direct specific subsets of traffic to 

newly-launched code to gather data/feedback.

http://swreflections.blogspot.ca/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html



REID HOLMES - CPSC 410: Advanced Software Engineering

Low-Risk Release Principles
1. Favour incremental changes

2. Decouple deploying from releasing

3. Focus on reducing batch size

http://www.informit.com/articles/article.aspx?p=1833567



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

High Release Cadence
‣ Deploys new features to users quickly.

‣ Enables responsive defect resolution.

‣ Smaller delta == smaller faults.

‣ Releasing loses ‘dark art’ status.

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change

http://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change


REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING
https://codeascraft.com/2010/05/20/quantum-of-deployment/

https://codeascraft.com/2010/05/20/quantum-of-deployment/


REID HOLMES - CPSC 410: Advanced Software Engineering

Low-Risk Release Principles
1. Favour incremental changes

2. Decouple deploying from releasing

3. Focus on reducing batch size

4. Optimize for resilience

http://www.informit.com/articles/article.aspx?p=1833567



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Have a Plan B
‣ No. Really.

‣ Culture is fundamental to identifying, fixing, and 

recovering from large distributed faults.

‣ Do you know you there’s a problem?

‣ Can you figure out what it is?

‣ Can you find out who should fix it?

‣ Fix it. (we’re good at this)

‣ Do we know how to deploy it?

‣ Can we validate the problem is fixed?



REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

http://techblog.netflix.com/2011/07/netflix-simian-army.html

‣ Fail often, tolerate failure.

‣ Learn with scale, not models.

‣ Netflix Simian Army:

‣ Latency

‣ Conformity

‣ Doctor

‣ Janitor

‣ Security

‣ i9n, l18n

Testing plan B

http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html


REID HOLMES - CPSC 410: Advanced Software Engineering

Admin Stuff - D2 Rubric
Architecture (/5): 
1) Is there a component diagram? Can the architecture of the system be understood from it?

2) Have architectural styles been applied?

3) Have architectural decisions been justified at all?

4) Are external and phone-based services included on diagram / in description.

5) Is an explanation of how NFPs are supported and are measurable included?


Design (/7): 
1) Is a rationalization given for the chosen design?

2) Is there a description of the class organization? (even tying back to arch components is fine here).

3) Are key patterns / abstractions / data structures documented?

4) Is there a mapping of the architectural components to the design components?

5) Is the ‘class’ diagram clear, capture physical location of classes, and external elements?

6) Is there a description of how coupling was minimized?

7) Is a future point of evolution provided?




REID HOLMES - CPSC 410: Advanced Software Engineering

Admin Stuff - Testing
Testing is the most fundamental 

approach for measuring software quality.

Testing is not easy.

Testing is not optional.

You control your architecture and can 
refactor your system as needed to 

effectively test its internals.


