
The Influence of Non-technical Factors
on Code Review

Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey
David R. Cheriton School of Computer Science

University of Waterloo, Canada
{obaysal, okononen, rtholmes, migod}@uwaterloo.ca

Abstract—When submitting a patch, the primary concerns of
individual developers are “How can I maximize the chances
of my patch being approved, and minimize the time it takes
for this to happen?” In principle, code review is a transparent
process that aims to assess qualities of the patch by their
technical merits and in a timely manner; however, in practice
the execution of this process can be affected by a variety of
factors, some of which are external to the technical content of
the patch itself. In this paper, we describe an empirical study
of the code review process for WebKit, a large, open source
project; we replicate the impact of previously studied factors
— such as patch size, priority, and component and extend
these studies by investigating organizational (the company) and
personal dimensions (reviewer load and activity, patch writer
experience) on code review response time and outcome. Our
approach uses a reverse engineered model of the patch submission
process and extracts key information from the issue tracking
and code review systems. Our findings suggest that these non-
technical factors can significantly impact code review outcomes.

Index Terms—Code review, non-technical factors, personal and
organizational aspects, WebKit, open source software

I. INTRODUCTION

Many software development projects employ code review as
an essential part of their development process. Code review
aims to improve the quality of source code changes made
by developers (as patches) before they are committed to the
project’s version control repository. In principle, code review
is a transparent process that aims to evaluate the quality
of patches objectively and in a timely manner; however, in
practice the execution of this process can be affected by many
different factors, both of technical and non-technical origin.

Existing research has found that organizational structure can
influence software quality. Nagappan et al. demonstrated that
organizational metrics (number of developers working on a
component, organizational distance between developers, orga-
nizational code ownership, etc.) are better predictors of defect-
proneness than traditional metrics such as churn, complexity,
coverage, dependencies, and pre-release bug measures [1].
These findings provide support for Conway’s law [2], which
states that a software system’s design will resemble the struc-
ture of the organization that develops it.

In this paper we have performed an empirical study to
gain insight into the different factors that can influence how
long a patch takes to get reviewed and a patch’s likelihood
of being accepted. These factors include personal and orga-
nizational relationships, patch size, component, bug priority,

reviewer/submitter experience, and reviewer load.
From a developer’s point of view they are primarily inter-

ested in getting their patch accepted as quickly as possible.
As such, our research questions in this paper are:

RQ1: What factors can influence how long it takes for a patch
to be reviewed?
Previous studies have found that smaller patches are more
likely to receive faster responses [3]–[5]. We replicate
these results and extend the analysis to a number of other
potential factors.

RQ2: What factors influence the outcome of the review process?
Most studies conclude that small patches are more suc-
cessful in landing to the project’s codebase [3], [4]. A
recent study showed that developer experience, patch
maturity and prior subsystem churn play a major role
in patch acceptance [5]. We further extend these results
with additional data that considers various social factors.

In this paper we study the community contributions and
industrial collaboration on the WebKit open source project.
WebKit is a web browser engine that powers the Apple’s Safari
and iOS browsers, Google’s Chrome and Android browsers,
and host of other third-party browsers. WebKit is an interesting
project as many of the organizations who collaborate on the
project also have competing business interests.

The rest of the paper is organized as follows. We first dis-
cuss some background about the WebKit project and its code
review process in Section II; this is followed in Section III
by a description of the methodology we used in the empirical
study. Section IV presents the results of this study, Section V
provides interpretation of the results and addresses threats to
validity, and Section VI discusses some related work. Finally,
Section VII provides a summary of the results and discusses
possible future work.

II. BACKGROUND

WebKit is an HTML layout engine that renders web pages
and executes embedded JavaScript code. The WebKit project
was started in 2001 as a fork of KHTML. Currently, developers
from more than 30 companies actively contribute to this
project; Google and Apple are the two primary contributors,
submitting 50% and 20% of patches respectively. Individu-
als from Adobe, BlackBerry, Digia, Igalia, Intel, Motorolla,
Nokia, Samsung, and other companies also contribute patches
to the project.

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

122

!"
#$%&'%(

)*+%,

!"#"$%"&'$$"(%"&

-+),

)*+,-."&

-+.,

/01&"& 2-,"3*%!"4*+,-."& '+01&31"&

%/+$, '+(, $-+%,))+%,)+*, *+',

!"#$%&

.%+/,
-+),

-+0,

Fig. 1. WebKit’s patch lifecycle.

The WebKit project employs an explicit code review process
for evaluating submitted patches; in particular, a WebKit
reviewer must approve a patch before it can land in the
project’s version control repository. The list of official WebKit
reviewers is maintained through a system of voting to ensure
that only highly-experienced candidates are eligible to review
patches. A reviewer will either accept a patch by marking it
review+ or ask for further revisions from the patch owner by
annotating the patch with review-. The review process for a
particular submission may include multiple iterations between
the reviewer and the patch writer before the patch is accepted
(lands) in the version control repository.

Since WebKit is an industrial project, we were interested to
see whether its code review process is similar to the process
adopted by other open source projects. To do so, we extracted
the WebKit’s patch lifecycle (shown in Figure 1) and compared
it with the previously studied patch lifecycle of Mozilla
Firefox [6] (shown in Figure 2). The lifecycle demonstrates
some interesting transitions that patches go through over their
lifecycle that might not otherwise be obvious. For instance,
a large proportion of accepted patches are still resubmitted
by authors for further revision. We can also see that rejected
patches are usually resubmitted, easing concerns that rejecting
a borderline patch could cause it to be abandoned.

While patch lifecycle states between WebKit and Firefox re-
main the same, WebKit has fewer state transitions because the
WebKit project does not employ a ‘super review’ policy. Also,
the self edges on the accepted and rejected states are absent
in WebKit because while Mozilla patches are often reviewed
by two people, WebKit patches receive only individual re-
views. Finally, a new edge is introduced between Submitted
and Resubmitted; WebKit developers frequently ‘obsolete’
their own patches and submit updates before they receive any
reviews at all. Comparing of the two patch lifecycles suggests
that the WebKit and Firefox code review processes are similar
in practice.

In this paper we considered the top five organizations con-
tributing patches to the WebKit repository. Figure 3 provides

r? !" sr?
#$%$&

'()*)$+,)
sr–*)-./,

!"#"$%"&'$$"(%"&

'0)*)1/,)
sr+*)-.2,

)*+,-."&

r+*)-.%,
sr+)*)-,

r–)*)$.3,
sr–*)-,

'()!" sr–
-.$,

'0)!" sr+
%.2,

3$, /-, $3, /.4, -.3,

/01&"& 2-,"3*%!"4*+,-."& '+01&31"&

!"#$%&

Fig. 2. Mozilla Firefox’s patch lifecycle.

an overview of the participation of these organizations on the
project with respect to the percentage of the total patches they
submit and the percentage of the patches they review. It is clear
that two companies play a more active role than others; Google
dominates in terms of patches written (60% of total project’s
patches) and patches reviewed (performing 57% of all reviews)
while Apple submits 20% of the patches and performs 36%
of the reviews.

III. METHODOLOGY

In order to investigate our research questions we first
extracted the WebKit code review data from Bugzilla, pre-
processed it, identified the factors that may affect review
delays and outcomes, and performed our analysis.

A. Data Extraction

Every patch contributed to the WebKit project is submitted
as an attachment to the project’s issue repository1; we ex-
tracted this data by scraping Bugzilla for all patches submitted
between April 12, 2011 and December 12, 2012. We defined
the same time interval as the one determined in our previous
study on Firefox [6] to be able to compare code review
processes of two projects. The data we retrieved consists of
17,459 bugs, 34,749 patches, 763 email addresses, and 58,400
review-related flags. We tracked a variety of information about
issues such as name of the person who reported the issue, the
date the issue was submitted, its priority and severity, as well
as a list of patches submitted for the issue. For each patch
we saved information regarding its owner, submission date,
whether a patch is obsolete or not, all review-related flags
along with the files affected by the patch. For each patch we
also recorded the number of lines added and removed along
with the number of chunks for each changed file.

All fields in the database, except those related to affected
files, were extracted directly from the issue tracker. To create
the list of affected files we needed to download and parse
the individual patches. Each patch file contains one or more

1https://bugs.WebKit.org/

123

diff statements representing changed files. In our analysis
we ignored diff statements for binary content, e.g., images,
and focused on textual diffs only. From each statement we
extracted the name of changed file, number of lines marked
added and removed, and number of code chunks. Here a code
chunk is a block of code that represents a local modification
to a file as it defined by the diff statement. We recorded
total number of lines added and lines removed per file in total
and not separately for each code chunk. We did not try to
derive the number of changed lines from the information about
added/removed ones.

Almost every patch in our database affects a file called
ChangeLog (our analysis found 91 different ChangeLog
files in the data set). Each ChangeLog file contains descrip-
tion of changes performed by the developer for a patch and is
prepared by the patch submitter. Although patch files contain
diff statements for ChangeLog files and we parsed them,
we eliminated this information when we computed the size of
the patch later in our study.

There are three possible flags that can be applied to patches
related to code review: review? for a review request,
review+ for a review accept, and review- for a review
reject. For each flag change we also extracted date and time
it was made as well as an email address of the person who
added the flag.

As the issue tracker uses email addresses to identify people,
our initial data set contained many individuals without names
or affiliations. Luckily, the WebKit team maintains a file called
contributors.json2 that maps various developer email
addresses to individual people. We parsed this file and updated
our data, reducing the number of people in our database to 747.

We next determined developers’ organizational affiliations.
First we parsed the “WebKit Team” wiki webpage3 and
updated organizational information in our data. We then in-
ferred missing developers’ affiliations from the domain name
of their email addresses, e.g., those who have an email at
“apple.com” were considered individuals affiliated with Apple.
In cases where there was no information about organization
available, we performed a manual search on the web. For
those individuals where we could not determine an affiliated
company, we set company field to ‘unknown’; this accounted
for 18% of all developers and 6% of the patches in our data
set.

B. Data Pre-Processing

In our analysis we wanted to focus as much as possible on
the key code review issues within the WebKit project. To that
end we performed three pre-processing steps on the raw data:

1) We focused only on the patches that change files within
the WebCore part of the version control repository. Since
WebKit is cross-platform software, it contains a large
amount of platform-specific source code. The main parts
of WebKit that are not platform-specific are in WebCore;

2http://trac.WebKit.org/browser/trunk/Tools/Scripts/WebKitpy/common/
config/contributors.json

3http://trac.WebKit.org/wiki/WebKit%20Team

0%

25%

50%

75%

100%

Patches Reviews
Contributions

P
er

ce
nt

ag
e

of
 c

on
tri

bu
tio

ns

org

Apple

BlackBerry

Google

Igalia

Intel

Others

20%

36%

60%

57%

15%

2%

2%

3%

2%

1%

Fig. 3. Overview of the participation of top five organizations in WebKit.

these include features to parse and render HTML and
CSS, manipulate the DOM, and parse JavaScript. While
this code is actively developed, it is often only devel-
oped and reviewed by a single organization (e.g., the
Chromium code is only modified by Google developers
while the RIM code is only modified by the Blackberry
developers). Therefore we looked only at the patches
that change non-platform-specific files within WebCore;
this reduced the total number of patches considered
from 34,749 to 17,170. We also eliminated those patches
that had not been reviewed, i.e., patches that had only
review? flag. This filter further narrowed the input to
11,066 patches.

2) To account for patches that were ‘forgotten’, we re-
moved slowest 5% of WebCore reviews. Some patches
in WebCore are clear outliers in terms of review time; for
example, the slowest review took 333 days whereas the
median review was only 1.27 hour (≈76.4 minutes). This
filter excluded any patch that took more than 120 hours
(≈5 days) and removed 553 patches. 10,513 patches
remained after this filter was applied.

3) To account for inactive reviewers we removed the least
productive reviewers. Some reviewers performed a small
number of reviews of WebCore patches. This might
be because the reviewer focused on reviewing non-
WebCore patches or became a reviewer quite recently.
Ordering the reviewers by the number of reviews they
performed we excluded those developers performed only
5% of the total reviews. This resulted in 103 reviewers
being excluded; the 51 reviewers that remained each
reviewed 31 patches or more.

124

TABLE I
OVERVIEW OF THE FACTORS AND DIMENSIONS USED.

Independent Factor Dimension Description
Patch Size patch number of LOC added and removed
Component patch top-level module in /WebKit/Source/WebCore/
Priority bug assigned urgency of resolving a bug
Organization organizational organization submitting or reviewing a patch
Review Queue personal number of pending review requests
Reviewer Activity personal number of completed reviews
Patch Writer Experience personal number of submitted patches

The final dataset4 consists of 10,012 patches was obtained
by taking the intersection of the three sets of patches described
above.

C. Determining Independent Factors
Previous research has suggested a number of factors that

can influence review response time and outcome [3]–[5].
Table I describes the factors (independent variables) that were
considered in our study and tested to see if they have an impact
on the dependent variables (time, outcome, and positivity).
We grouped the factors into four dimensions: patch, bug,
organizational, and personal.

In order to define the component a patch modifies, we
initially planned to consider the classification of components
from the WebKit’s bug repository, where each bug is assigned
to a specific component. After discussing the WebKit source
tree structure with some WebKit developers, we decided to
focus only on WebCore patches (as described in the filter
above) and identified the modified components from the
patches directly rather than use the issue tracker component
flag which were often incorrect.

WebKit does not employ any formal patch assignment
process. In order to determine review queues of individual
reviewers at any given time, we had to reverse engineer patch
assignment and answer the following questions:

• When did the review process start? We determined
the date when a request for a review was made (i.e.,
review? flag was added to the patch). This date was
referred as “review start date”. While there might be some
delay in the actual time a reviewer started working on the
patch, we have no practical means of tracking this.

• Who performed code review of a patch? The reviewer of a
patch is defined as the person who marked the patch with
either review+ or review-. Having this we added the
assignee to each review request.

We computed a reviewers queue by considering the reviews
they eventually completed and walking backwards considering
the date the patch was submitted for review and counting the
queue length as the number of patches that were ‘in flight’ for
that developer.

D. Data Analysis
Our empirical analysis used a statistical approach to evaluate

the degree of the impact of the independent factors on the

4Extracted data is stored in a database and made available online
https://cs.uwaterloo.ca/∼obaysal/webkit data.sqlite

dependent variables. First, we tested our data for normality
by applying Kolmogorov-Smirnov tests [7]. For all samples,
the p-value was lower than 0.05 showing that the data is not
normally distributed. We also graphically examined how well
our data fits the normal distribution using Q-Q plots. Since the
data is not normally distributed, we applied non-parametric
statistical tests: Kruskal-Wallis analysis of variance [8] for
testing whether the samples come from the same distribu-
tion, followed by a post-hoc non-parametric Mann-Whitney
U (MWW) test [9] for conducting pairwise comparisons.

All our reported results including Figures and Tables are
statistically significant with the level of significance defined
as p-value ≤ 0.05.

IV. THE CASE STUDY RESULTS

Ultimately, we investigated the impact of seven different
factors on the code review process both in terms of response
time and review outcome (positivity); this is summarized in
Table II.

TABLE II
STATISTICALLY SIGNIFICANT EFFECT OF FACTORS ON RESPONSE TIME

AND POSITIVITY.

Independent Factor Time Positivity

Patch Size X NA
Priority X X
Component X ×
Organization X X
Review Queue X X
Reviewer Activity X ×
Patch Writer Experience X X

A. Patch Size

The size of the patch under review is perhaps the most
natural starting point for any analysis, as it is intuitive that
larger patches would be more difficult to review, and hence
require more time; indeed, previous studies have found that
smaller patches are more likely to be accepted and accepted
more quickly [3]. We examined whether the same holds for the
WebKit patches based on the sum of lines added and removed
as a metric of size taken from the patches.

In order to determine the relationship between patch size
and the review time, we performed Spearman correlation — a
non-parametric test. The results showed that the review time
was weakly correlated to the patch size, r=0.09 for accepted
patches and r=0.05 for rejected patches, suggesting that patch

125

A B C D

5
10

15
20

25

N
um

be
r o

f p
at

ch
 re

vi
si

on
s

Fig. 4. Number of revisions for each size group.

size and response time are only weakly related, regardless of
the review outcome.

With a large dataset, outliers have the potential to skew the
mean value of the data set; therefore, we decided to apply two
different outlier detection techniques — Pierce’s criterion and
Chauvenet’s criterion. However, we found that removal of the
outliers did not improve the results.

Next we split the patches according to their size into four
equal groups: A, B, C, and D where each group represents
a quarter of the population being sampled. Group A refers
to the smallest patches (0–25%) with the average size of 4
lines, group B denoting small-to-medium size changes (25–
50%) on average having 17 lines of code, group C consists of
the medium-to-large changes (50–75%) with the mean of 54
LOC, and group D represents largest patches (75–100%) with
the average size of 432 lines. A Kruskal-Wallis test revealed
a significant effect of the patch size group on acceptance time
(χ2(3)=55.3, p-value <0.01). Acceptance time for group A
(the median time is 39 minutes, the mean is 440 minutes) is
statistically different compared to the time for groups B (with
the median of 46 minutes and the mean of 531 minutes), C
(the median of 48 minutes and the mean of 542 minutes) and
D (the median is 64 minutes, the mean time is 545 minutes).

In terms of review outcome, we calculated the posi-
tivity values for each group A–D, where we define pos-
itivity as positivity =

∑
review+ / (

∑
review-

+
∑
review+). The median values of positivity for groups

A–D are 0.84, 0.82, 0.79, 0.74 respectively. Positivity did
decrease between the quartiles, matching the intuition that
reviewers found more faults with larger patches, although this
result was not significant.

However, review time for a single patch is only part of the
story; we also wanted to see whether smaller patches undergo
fewer rounds of re-submission. That is, we wanted to consider
how many times a developer had to resubmit their patch for
additional review. We calculated the number of patch revisions
for each bug, as well as the size of the largest patch. Figure

4 illustrates the medians of the patch revisions for each size
group, the median of the revisions for group A and B is 1, for
group C is 2, and for D is 3. The results show that patch size
has a statistically significant, strong impact on the rounds of
revisions. Smaller patches undergo fewer rounds of revisions,
while larger changes have more re-work done before they
successfully land into the project’s version control repository.

B. Priority

A bug priority is assigned to each issue filed with the
WebKit project. This field is created to help developers define
the order in which bugs must be fixed5. There are 5 different
priorities currently in the WebKit ranging from the most
important (P1) to the least important (P5). We were surprised
when we computed the distribution of patches among priority
levels: P1 – 2.5%, P2 – 96.3%, P3 – 0.9%, P4 and P5 –
0.1% each. Looking at these numbers one might speculate
that the priority field is not used as intended. Previous work
of Herraiz et al. also found that developers use at most three
levels of priority and the use of priority/severity fields is incon-
sistent [10]. The default value for priority is P2, which might
also explain why the vast majority of patches have this value
assigned. Also, in our discussion with WebKit developers we
found that some organizations maintain internal trackers that
link to the main WebKit bug list; while the WebKit version
has the default priority value, the internal tracker maintains
the organization’s view on the relative priority. In our analysis
we discarded priorities P4 and P5 because they did not have
enough patches.

A Kruskal-Wallis test demonstrated a significant effect of
priority on time (χ2(2)=12.70, p-value <0.01). A post-hoc test
using Mann-Whitney tests with Bonferroni correction showed
the significant differences between P1 and P3 (with median
time being 68 and 226 minutes respectively, p-value <0.05)
and between P2 and P3 (with median time being 62 and
226 minutes respectively, p-value <0.01). While patches with
priority P2 receive faster response that the ones with P1, the
difference is not statistically significant.

To analyze positivity we considered each review by a
developer at a given priority and computed their acceptance
ratio. To reduce noise (e.g., the data from reviewers who only
reviewed one patch at a level and hence had a positivity of 0
or 1), we discarded those reviewers who reviewed 4 patches or
fewer for a given priority. We found a statistically significant
correlation between priority levels and positivity (χ2(2)=10.5,
p-value <0.01). The difference of the review outcome for
patches of P1 (median value is being 1.0) compared to the
ones of P2 (median is 0.83) is statistically significant (p-
value <0.01), indicating that patches of higher priority are
more likely to land to the project’s codebase. Even though
reviewers are more positive for patches that are higher priority,
we caution about the interpretation of these results because the
vast majority of patches are P2.

5https://bugs.webkit.org/page.cgi?id=fields.html

126

C. Component
WebCore represents the layout, rendering, and DOM library

for HTML, CSS, and SVG. WebCore consists of several
primary components:

• bindings — houses the language-specific bindings for
JavaScript and for Objective-C;

• bridge — bridge is about the bridging to the WebKit
framework;

• css — the CSS back end;
• dom — the DOM library;
• editing — the editing infrastructure;
• html — the HTML DOM;
• inspector — web inspector;
• page — contains code for the top-level page and frames;
• platform — contains platform-specific code, e.g., mac,

chromium, android; thus, as mentioned earlier, excluded
from our analysis;

• rendering — the heart of the rendering engine.
While it is natural assume that some components are

more complex than others, we wanted to find out whether
contributions to certain components are more successful
or reviewed in a timely fashion. To answer this, we se-
lected the components that undergo the most active devel-
opment: inspector (1,813 patches), rendering (1,801
patches), html (1,654 patches), dom (1,401 patches), page
(1,356 patches), bindings (1,277 patches), and css (1,088
patches). The difference in the response time between compo-
nents was statistically significant (χ2(6)=29.9, p-value <0.01),
in particular the rendering component takes longer to
review (the median time is 101 minutes) compared to
bindings (72 minutes), inspector (58 minutes), and
page (58 minutes). The difference in reviewing time of
patches submitted to the page and dom components was also
significant with the medians being 58 minutes vs. 91 minutes
respectively.

Although the positivity values vary among components
and range between 0.73–0.84, we found no relation between
positivity and the component factor. From the developer’s
perspective, we can tell that it is more difficult for developers
to land a patch to page (the value of positivity is 0.73), while
patches to inspector are more likely to be successful (the
value of positivity is 0.84).

D. Review Queue Length
Our previous qualitative study of Mozilla’s process man-

agement practices found that developers often try to determine
current work loads of reviewers prior making a decision about
who is the right person to request a review from [11]. Thus,
we investigated the relationship between review queue size and
review response time expecting to find that reviewers having
shorter queues would provide quicker reviews.

We calculated queue sizes for the reviewers at any given
time (the process is described in Section III-C). The resulting
queues ranged from 0 to 11 patches.

Since the average queue was 0.6 patches, we distributed
patches into three groups according to the queue size: shortest

queue length ranging from 0–1 patches (group A), medium
length consisting of 2–3 patches (group B) and longer queues
ranging from 4–11 patches (group C).

We found a significant effect of review queue size on
reviewing time (χ2(2)=15.3, p-value <0.01). The medians of
queue size for group A, B and C are being 0, 2, and 5 patches
respectively. A post-hoc test showed significant differences
between group A and group C (with median time being 63
and 158 minutes respectively, p-value <0.01) and group B and
C (with median time being 90 and 158 minutes respectively,
p-value <0.05).

Studying the impact of the queue size on the reviewer
positivity (with the Kruskal-Wallis effect being χ2(2)=15.8, p-
value <0.01), we found a significant difference between A and
C groups (the median positivity being 0.84 and 1 respectively,
p-value <0.01), as well as B and C groups (with median
positivity being 0.88 and 1.0 respectively, p-value <0.05).

Thus, we found that the length of the review queue influ-
ences both the delay in completing the review as well as the
eventual outcome: the shorter the queue, the more likely the
reviewer is to do a thorough review and respond quickly; and
a longer queue is more likely to result in a delay, but the patch
has a better chance of getting in.

E. Organization

Many companies that participate in the WebKit development
are business competitors. An interesting question is whether
patches are considered on their technical merit alone or if
business interests play any role in the code review process, for
instance by postponing the review of a patch or by rejecting
a patch for a presence of minor flaws. While we analyzed all
possible pairs of organization (36 of them), for the sake of
brevity we discuss only Apple, Google, and ‘the rest’.

Figure 5 represents review time for each pair of organiza-
tions. The first letter in the label encodes a reviewer’s affili-
ation, the second encodes submitter’s affiliation; for example,
A-G represents Apple reviewing a Google patch. Analysis
of the patches that received a positive review showed that
there is a correlation between review time and the organization
affiliated with the patch writer.

To identify where the correlation exists, we performed a
series of pair-wise comparisons. We discovered that there is a
statistically significant difference between how Apple approves
their own patches (A-A) and how Google approves their
own patches (G-G column). Another statistically significant
difference was found between time Apple takes to accept their
own patches and time it takes to accept Google patches (A-G).
However, we found no statistical difference in the opposite
direction — between the time for Google to accept their own
patches compared to patches from Apple (G-A).

The correlation between review time and company was also
found for patches that received a negative review. The pair-
wise comparison showed almost the same results: statistical
difference between Apple-Apple and Apple-Google, and no
statistical difference between Google-Google and Google-
Apple. At the same time the difference between Apple-

127

0

100

200

300

400

A-A G-A X-A A-G G-G X-G A-X G-X X-X

Ti
m

e
(m

in
ut

es
)

0

250

500

750

A-A G-A X-A A-G G-G X-G A-X G-X X-X

Ti
m

e
(m

in
ut

es
)

Fig. 5. Acceptance time (left), rejection time (right). Organization: A=Apple, G=Google, X=Rest.

Apple and Google-Google is no longer present. Based on
these findings, it appears that Apple treats their own patches
differently from external patches, while Google treats external
patches more like their own. Pairs involving ‘the rest’ group
exhibited no statistically significant differences for both review
decisions.

TABLE III
RESPONSE TIME (IN MINUTES) FOR ORGANIZATIONS.

Reviewer → Writer
Accepted Rejected

Median Mean Median Mean
Apple → Apple 25 392 60 482
Apple → Google 73 617 283 964

Google → Google 45 484 102 737
Google → Apple 42 483 80 543

Since statistical tests can report only a presence of statistical
difference, we also report the means and medians of review
time required for each company pair (Table III). According
to the data, Apple is very fast in reviewing its own patches,
but is relatively slow in reviewing Google patches (3–4 times
difference in medians, 1.5–2 times difference in means). At
the same time Google exhibits the opposite behaviour, i.e.,
provides faster response to the patches from Apple than their
own developers. While both means and medians are almost the
same for positive reviews, the median and the mean values of
review time for negative review for Apple patches are 20 and
200 minutes less respectively than for Google own patches.

To compute the positivity of various organizations we
cleansed the data as we did for the priority analysis above; we
removed any reviewer who had reviewed less than 10 patches
to avoid an overabundance of positivities of 0 or 1. The box
plot with this filter applied is shown in Figure 6. Statistical
tests showed that there is a correlation between the outcome of
the review and patch owner’s affiliation (χ2(2)=10.7, p-value
<0.01). From the pair-wise comparison, we found that there is
statistically significant difference between positivity of Apple
reviewers towards their own patches (A-A column) compared

to the patches of both Google (A-G column) and ‘the rest’
(A-X column). The other pair that was statistically different
is positivity of Google reviewers between their own patches
(G-G column) and patches from ‘the rest’ (G-X column).

From the quantitative point of view there are some inter-
esting results. First, the positivity of Apple reviewers towards
their own patches clearly stands out (the median is ≈0.92).
Possible explanations for this include that there is a clear bias
among Apple reviewers, or that Apple patches are of extreme
quality, or that Apple applies some form of internal code
review process. We also observed that both Apple and Google
are more positive about their own patches than ’foreign’
patches; while this could be a systematic bias, Apple and
Google are also the two most experienced committers to
WebKit and this may account for this difference. Finally,
the positivity of Apple reviewers towards Google patches
(the median is ≈0.73) is lower than the positivity of Google
reviewers towards Apple patches (the median is ≈0.79).

F. Reviewer Activity

WebCore has 51 individuals performing code reviews of
95% of patches. The breakdown of the reviewers by organi-
zation is as follows: 22 Apple reviewers, 19 reviewers from
Google, 3 reviewers from BlackBerry, Igalia and Intel are
being represented by one reviewer each, and 5 reviewers
belong to the group “others”. Comparing reviewing efforts,
we noticed that while Apple is predominant in the number of
reviewers, it only reviews 36% of all patches, while Google
developers perform 57% of the total number of reviews. Since
WebKit was originally developed and maintained by Apple, it
is not surprising that Apple remains a key gatekeeper of what
lands to to source code. However, we can see that Google has
become a more active contributor on the project, yet has not
surpassed the number of Apple reviewers.

In order to find out whether reviewers have an impact on
review delay and outcome, for each reviewer we calculated the
number of previously reviewed patches and then discretized

128

A-A A-G A-X G-G G-A G-X X-X X-A X-G

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

P
os
iti
vi
ty

Fig. 6. Positivity values by organization: A=Apple, G=Google, X=Rest.

them according to their reviewing efforts using quartiles.
Applying statistical tests we determined that the difference for
response time for A and B groups of reviewers (i.e., the less
active ones) is statistically significant when compared to C or
D groups (i.e., the more active ones). Since the distribution of
delays is very skewed, we report both the median and mean
values for reviewers’ timeliness (see Table IV). The results
show that the choice of reviewers plays an important role on
reviewing time. More active reviewers provide faster responses
(with median being 57 minutes and mean being 496 minutes)
compared to the individuals who performed fewer code review
(the median for time is 84 minutes and 621 minutes for the
mean).

Considering that reviewers’ work loads appear to affect
their response rate, WebKit contributors may wish to ask the
most active reviewers to assess their patches in order to get a
quick response. With respect to the question whether there are
reviewers who are inclined to be more positive than negative,
we found that there is no correlation between the amount of
reviewed patches on the reviewer positivity: 0.83 for group A,
0.84 for group B, 0.75 for group C, and 0.83 for group D.
This suggests that WebKit reviewers stay true and unbiased in
their role of ensuring the quality of code contributions. This
observation is important since reviewers serve as gatekeepers
protecting the quality of the project’s code base.

TABLE IV
RESPONSE TIME (IN MINUTES) FOR PATCH REVIEWERS AND WRITERS.

Group
Reviewer Writer

Median Mean Median Mean
A 84 621 102 682
B 76 634 76 632
C 46 516 43 491
D 57 496 48 478

G. Patch Writer Experience

The contributions to WebCore during the period studied
came from 496 individuals among which 283 developers filing
95% of patches (submitting 5 patches or more). Considering
our top five organizations, we identified that WebCore patches
were submitted by 50 developers from Apple, 219 individuals
from Google, 20 BlackBerry developers, 16 developers from
Intel, 10 from Igalia and 181 developers come from other
organizations.

Noticing good contributor diversity in the WebCore com-
munity, we wondered if patches from certain developers
have higher chances of being accepted. In order to assess
whether developer experience influence review timeliness and
acceptance, we performed a similar procedure (as described
in IV-F) of calculating the number of submitted changes for
each developer and then discretizing patch owners according
to their contributions.

We achieved similar results in the differences of response
time for A and B groups of submitters (occasional contribu-
tors) is statistically significant compared to more experience
developers in C or D groups. From Table IV we conclude
that more experienced patch writers receive faster responses
(with median in group D being 48 minutes and mean being
478 minutes) compared to those who file fewer patches (the
median for time in group A is 102 minutes and 682 minutes
for the mean).

Investigating the impact of developer experience on positiv-
ity of the outcome, we found correlation between two variables
(χ2(3)=17.93, p-value < 0.01). In particular, statistical differ-
ence was found between group A (least active developers) and
groups C and D (more active developers) with the median
positivity values being 1.0, 0.73 and 0.81 respectively, as
well as group B (less active developers) compared to the
group D (most active ones) with the median positivity being
0.63 and 0.81 respectively. This findings suggest that the
WebKit community has a positive incentive for newcomers
to contribute to the project as first-patch writers (i.e., group A
with the median number of patches submitted = 1) are likely
to get a positive feedback. For the developers of group B
(where contributions range between 3–6 patches) it is more
challenging to get their patches in, while contributing to the
project comes with the improved experience of landing patches
and as a result with more positive outcomes.

Our findings show that developer experience plays a major
role during code review. This supports findings from our
previous work, where we have seen faster response time for
core developers compared to the casual contributors on the
project [6]. This appears to show that active developers are
being rewarded with both faster response and more positive
review outcome for their active involvement in the project.

H. Multiple Linear Regression Model

To estimate the relationships among factors, we built a
multiple linear regression model. Multiple linear regression
(MLR) attempts to model the relationship between two or

129

more explanatory variables and a response variable by fitting
a linear equation to observed data [12].

We tested whether the explanatory variables x1, x2,... xp
(our factors) collectively have an effect on the response
variable y (being review time or outcome), i.e:
H0: β1 = β2 = ... = βp = 0.
The results of the MLR model with respect to time re-

ported the F statistic of 9.096 (p-value <0.01), indicating that
we should reject the null hypothesis that the variables size,
priority, queue, etc. collectively have no effect on time. The
results also showed that the patch writer’s experience (p-value
<0.01) and affiliation (p-value <0.01) variables are significant
controlling for the other variables in the model. While we
rejected the null hypothesis, the R-square statistic (i.e., the
measure of the regression model’s usefulness in predicting
outcomes) is close to 0 (R2=0.01435, R2

adjusted=0.01277),
indicating that the studied factors have no explanatory power.

Estimating the effect of the factors on the review outcome,
we obtained the F statistic of 33.71 (p-value <0.01), and
thus rejected the null hypothesis. The most significant factors
controlling the other variables in the model remain patch
writer’s experience (p-value <0.01) and affiliation (p-value
<0.01), along with the reviewer load (p-value <0.05) and
number of components affected (p-value <0.01). The R-square
statistic (R2=0.0512, R2

adjusted=0.04968) still shows that the
model has low overall predictive power and that the variables
do not account for the the variation in the review outcome in
the WebKit project.

While it is not feasible to account for all possible factors
that might affect the outcome and interval of the code review
process, our findings suggest that among the factors we studied
non-technical (organizational and personal) ones are better
predictors compared to the traditional metrics such as patch
size or component, and bug priority. These findings confirm
previous empirical studies on code review [1], [5].

V. DISCUSSION

A. Other Interpretations

Drawing general conclusions from empirical studies in
software engineering carries risk: any software development
process depends on a potentially large number of relevant
contextual variables, which are often non-obvious to outsiders.
While our results show that certain non-technical factors
have a statistically significant effect on the review time and
outcome of patch submissions, understanding and measuring
the practical significance of the results remains challenging.
Processes and developer behaviour around their contributions
to the WebKit project depend on the organization, its culture,
internal structure, settings, internal development cycles, time
pressures, etc.

Any of these “hidden” factors could potentially influence
patch review delays and outcomes; for example, let us consider
time pressures. It is our understanding that Apple prefers
strict deadlines for shipping hardware, and the supporting
software needs to match the projected delivery dates of the new
hardware. This results in Apple developers prioritizing internal

development goals over external ones, and thus prioritizing
patches that help them meet their short-term objectives.

Organizational and geographical distribution of the devel-
opers may also provide insights into review delays. WebKit
developers at Apple are co-located within the same building
which may account for a better visibility of the patches that
their co-workers are working on; conversely, WebKit devel-
opers at Google tend to be more geographically distributed,
which may result in a poorer awareness of the work of others.

In summary, understanding the reasons behind observable
developer behaviour requires an understanding of the contexts,
processes, organizational and individual factors that can influ-
ence code review and its outcome. Thus, while our results may
be statistically valid, care must be taken in interpreting their
meaning with respect to actual developer behaviour and intent.
We consider that much work remains to be done in studying
how best to interpret empirical software engineering research
within the context of these “hidden” contextual factors.

B. Threats to Validity

Internal validity concerns with the rigour of the study de-
sign. In our study, the threats are related to the data extraction
process, the selection of the factors that influence code review,
and the validity of the results. While we provided details on
the data extraction, data filtering and any heuristics used in the
study, we also validated our findings with the WebKit devel-
opers and reviewers. We contacted individuals from Google,
Apple, BlackBerry, and Intel and received insights into their
internal processes (as discussed in V-A).

Our empirical study is the subject to external validity; we
can not generalize our findings to say that both organizational
and personal factors affect code review in all open source
projects. While we compared WebKit’s code review process
with the one of Mozilla Firefox and found that its patch
lifecycle is similar to open source projects, the fact that
WebKit is being developed by competing organizations makes
it an interesting case yet a rather obvious exception. Hence,
more studies on similar projects are needed.

Statistical conclusion validity refers to the ability to make
an accurate assessment of whether independent and dependent
variables are related and about the strength of that relationship.
In order to determine whether relationships between variables
are statistically significant or not we performed null hypothesis
testing. We also applied appropriate statistical tests (analysis
of variance, post-hoc testing, and Spearman’s correlation).

VI. RELATED WORK

Prior work related to this study can be divided into two
areas: first, on code review in open source software develop-
ment; and second, on the effect of organizational structure on
the effectiveness. We now provide main findings for each area.

Rigby and German [13] presented a first study that inves-
tigated the code review processes in open source projects.
They compared the code review processes of four open source
projects: GCC, Linux, Mozilla, and Apache. They discovered
a number of review patterns and performed a quantitative

130

analysis of the review process of the Apache project. Later
Rigby et al. [4] analyzed 2,603 patches of the Apache open
source system and found that small, independent, complete
patches are more likely to be accepted. They found that 44% of
submitted patches got accepted compared to 46% in our study.
In our study, we differentiate negative and positive reviews
and investigate what factors may affect time to acceptance or
rejection.

Weissgerber et al. [3] performed data mining on email
archives of two open source projects to study patch contribu-
tions. They found that the probability of a patch being accepted
is about 40% and that smaller patches have higher chance of
being accepted than larger ones. They also reported that if
patches are accepted, they are normally accepted quickly (61%
of patches are accepted within three days). Our findings show
that 91% of WebKit patches are accepted within 24 hours
(ignoring slowest 5% of patches from the analysis).

We have previously studied the code review process of the
Mozilla Firefox project, in particular the differences in the
patch lifecycles and time taken for each transition for pre- and
pos-rapid development models [6]. When analysing Firefox
patch acceptance rate, we did not account for the patch size.
In this study we investigated the affect of various factors and
dimensions on the review time and outcome.

Jiang et al. [5] studied the relation of patch characteristics
with the probability of patch acceptance and the time taken
for patches to be integrated into the codebase on the example
of the Linux kernel. They found that patch acceptance is
affected by the developer experience, patch maturity and
priori subsystem churn, while reviewing time is impacted
by submission time, the number of affected subsystems, the
number of suggested reviewers and developer experience.
While their patch characteristics do not line up with the factors
we studied, we agreed on the same finding that developer
experience correlates with the review time. We also found
that for the WebKit project response time is affected by the
reviewer activity, organization, component and patch size.

Most of the related studies on code review perform mining
on project’s commit history and thus are not able to reason
about negative feedback and rejection interval. We extracted
information from the WebKit’s issue tracking and code review
systems providing a more comprehensive view of the code
review process.

While we are not aware of a published work on the WebKit
case study, Bitergia’s blog provides a general analysis of the
WebKit review process, highlighting trends and summaries of
how organizations contribute to the project in terms of both
patch submission and reviewing activity [14].

VII. CONCLUSION

The WebKit community is a complex institution in which
a variety of organizations that compete at a business level
collaborate at a technical level. While it would be ideal for the
contributions of these organizations to be treated equally based
on their technical merit alone, our results provide empirical
evidence that organizational and personal factors influence

review timeliness, as well as the likelihood of a patch being
accepted. Some factors that influenced the time required to
review a patch, such as the size of the patch itself or the
part of the code base being modified, are unsurprising and are
likely related to the technical complexity of a given change.
Other factors did not seem to fit this mould: for example, we
found significant differences in how long a patch took to be
reviewed based on the organizations that wrote and reviewed a
given patch. We found similar effects influencing the chances
of a patch being accepted.

Ultimately, the most influential factors of the code review
process on both review time and patch acceptance are the
organization a patch writer is affiliated with and their level
of participation within the project. The more active role a
developer decides to play, the faster and more likely their
contributions will make it to the code base.

ACKNOWLEDGEMENT

We thank the WebKit developers we talked to for their
insights into the source code hierarchy and the review pro-
cess. We also thank Robert Bowdidge for his feedback and
comments on a previous draft.

REFERENCES

[1] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality: an empirical case study,” in Proc. of the
30th Int. Conference on Software Engeneering, 2008, pp. 521–530.

[2] M. Conway, “How do committees invent?” Datamation, vol. 14, no. 4,
pp. 28–31, 1968.

[3] P. Weissgerber, D. Neu, and S. Diehl, “Small patches get in!” in Proc.
of the 2008 Int. Working Conf. on Mining Soft. Repos., 2008, pp. 67–76.

[4] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proc. of the
30th Int. Conference on Software Engeneering, 2008, pp. 541–550.

[5] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? and
how fast? – case study on the linux kernel,” in Proc. of the 10th IEEE
Working Conf. on Mining Software Repositories, San Francisco, CA,
US, May 2013.

[6] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey, “The secret
life of patches: A firefox case study,” in Proc. of the 19th Working
Conference on Reverse Engineering, 2012, pp. 447–455.

[7] J. Massey, Frank J., “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American Statistical Association, vol. 46, no. 253, pp.
pp. 68–78, 1951.

[8] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American Statistical Association, vol. 47, no.
260, pp. pp. 583–621, 1952.

[9] E. Lehmann and H. D’Abrera, Nonparametrics: statistical methods
based on ranks. Springer, 2006.

[10] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles,
“Towards a simplification of the bug report form in eclipse,” in Proc. of
the 2008 Int. Working Conf. on Mining Soft. Repos., 2008, pp. 145–148.

[11] O. Baysal and R. Holmes, “A Qualitative Study of Mozilla’s Process
Management Practices,” David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, Canada, Tech. Rep. CS-
2012-10, June 2012. [Online]. Available: http://www.cs.uwaterloo.ca/
research/tr/2012/CS-2012-10.pdf

[12] J. Cohen, Applied Multiple Regression - Correlation Analysis for the
Behavioral Sciences, 2003.

[13] P. Rigby and D. German, “A preliminary examination of code review
processes in open source projects,” University of Victoria, Canada, Tech.
Rep. DCS-305-IR, January 2006.

[14] Bitergia, “Reviewers and companies in the webkit project,” http://blog.
bitergia.com/2013/03/01/reviewers-and-companies-in-webkit-project/,
March 2013.

131

