
Exploring Developer Preferences for Visualizing
External Information Within Source Code Editors

Xinhong Liu
Department of Computer Science

University of British Columbia
Vancouver, Canada
xinhliu@cs.ubc.ca

Reid Holmes
Department of Computer Science

University of British Columbia
Vancouver, Canada
rtholmes@cs.ubc.ca

Abstract—
Developers increasingly rely on external tools and services

which causes development information to be scattered across
different information silos. To access this information, developers
need to access different applications, presentation files, and web
services. This paper investigates mechanisms for incorporating
external information sources into Integrated Development Envi-
ronments using visual mechanisms to support common software
development activities. Through a developer survey and a small
experiment we find that developers prefer minimal representa-
tions for incorporating external information sources into their
source code editors, and that they are able to use this information
when performing their development tasks.

Index Terms—Integrated Development Environments, external
information, actionable information, information overload

I. INTRODUCTION

While building software, developers use many sources of
external information (e.g., [1]–[5]). According to a survey
conducted by JetBrains in 20201, in addition to Integrated
Development Environments (IDEs) in which developers write
and modify their code, 85% of developers use source code
collaboration tools, and nearly 50% of developers use issue
trackers, Continuous Integration (Continuous Integration (CI)),
or Continuous Development (Continuous Delivery (CD)) tools.
Other categories of standalone tools, such as static analysis
tools and code review tools, also see significant industrial
usage. Developers choose to use these tools and services
because they each help them accomplish their work tasks,
even if they are not directly integrated with one another or
with their source code editor.

These disparate tools improve the development process, but
impose other overheads on the developer as they work to
integrate the information provided by those tools [6], [7]. This
overhead arises because while these external tools act on the
developer’s source code, they usually execute independently,
including on developers’ computers or remote servers, and
usually store their output separate from the source code
itself [8], [9]. This means to analyze or use the output of these
tools developers need to leave their code editor, navigate to the
tool, and find the information within the tool they need. For
example, to increase test coverage, a developer first needs to

1The State of Developer Ecosystem in 2020
https://www.jetbrains.com/research/devecosystem-2020/

leave their IDE to open a web browser and navigate to the web-
based interface for their coverage tool, which was generated
by their continuous integration service. Second, they must
navigate through the results to find uncovered lines. Third,
they need to open the corresponding source file in their local
IDE for the uncovered lines and finally develop new unit tests
for these lines. While these tasks are not hard, they had to
navigate two disconnected hierarchies (the coverage report on
the server and the source code files in the IDE) and manually
connect them (by the file names the developer was looking at
in each hierarchy) before the developer could complete their
task.

While many tools and services can be hosted locally, engi-
neering teams increasingly rely on cloud-based services [10].
One commonality between most of these kinds of tools is the
source code itself: code acts as an implicit anchor that can be
used to tie the results from an external tool back to the source
code the developer is working on for their task.

Although a number of tools have explored techniques for
linking information back to source code (e.g., Bridge [11],
Hipikat [12], , CodeBook [9]), and others have used inline
source code representations for displaying results in code
editors (e.g., HATARI [13], Whyline [2], PerformanceHat [5]),
few papers have examined differences in the representations
themselves which is the focus of this work.

In this paper, we explore developer preferences and per-
formance for different visual representation mechanisms for
integrating information from external information silos into
source code editors. Our primary concern with this research
was to learn, from real developers, how they perceive these
visual representations, and whether they helped (or hindered)
their development tasks. By focusing directly on the repre-
sentations, this work aims to provide evidence tool designers
can consider to improve how they integrate with source code
editors. To understand this, we surveyed 21 developers to
learn their preferred integration representations for a variety
of different software development tasks.

Ultimately, we learned that developers do value having
external information embedded within source code editors
but prefer lightweight representations that enable more com-
prehensive on-demand investigation over more heavyweight
representations. We created a functional technology probe

https://www.jetbrains.com/research/devecosystem-2020/


using a subset of these representations and evaluated these with
a controlled user experiment with 8 participants to see how
these representations impacted them as they performed four
development tasks. Through this experiment we found that
developers were able to quickly and effectively use external
information through these integrated representations.

The contributions of this paper are:

1) A description of common visual representations for inte-
grating information into source code editors.

2) A survey with 21 developers examining the relative
strengths and weaknesses of these representations for
common development tasks.

3) A controlled experiment with 8 participants demonstrat-
ing that developers can use inline representations to
complete concrete development tasks with fewer actions
and context switches.

II. INTEGRATING EXTERNAL INFORMATION

The goal of this paper is to determine how to best provide
actionable external information through software visualiza-
tions integrated into source code editors without overwhelming
developers.

A. Integration design principles

To accommodate integrating the diversity of external in-
formation sources into source code editors, we detail several
design principles that strive to balance the actionability of
the integrated information with the risk of that information
becoming overwhelming for the developer. This analysis is
restricted to information needs that can be associated with
specific project artefacts (e.g., lines, methods, or files) rather
than more general information needs. For example, while this
analysis includes code coverage (which is associated with
lines) or test history (which is associated with test methods),
it excludes project scheduling or marketing.

A natural concern when considering integrating a wealth
of external information into source code editors is that the
external information could distract from the source code itself.
Avoiding overwhelming developers with information that is
not relevant to their tasks is important because to developers
“code is king” [14]. We used the following four presentation
principles to guide our visual design decisions in order to try
to maximize the informativeness of the external information
while simultaneously minimizing its overwhelmingness. The
principles were identified by manually examining a variety of
existing source code editor plugins and identifying common
positive properties of their visual representations.

These principles are not meant to be prescriptive, but to
provide different dimensions for designers to consider when
thinking about how to integrate external information into de-
velopment environments. While these principles are described
as actions a designer should take, these steps are only relevant
if a designer aims to support a specific principle.

a) Non-intrusiveness.: It is important that external infor-
mation not distract developers. The main focus within code
editors is always the source code. Minimal representations
should be preferred; if a larger view is needed, it should
be hidden until it is contextually activated. Colours should
be chosen to not overlap with those used in the code editor
already (such as those used for syntax highlighting).

b) Intuitive expressiveness.: External information
sources each have their own semantics and these should
be considered in their representations. Wherever possible,
graphic representations and colours should be chosen that
fit with the information being displayed. For example, a
green X could represent code that is “covered by a passing
test” while a red 7 could represent “covered by failed tests”.

c) Expandability.: External information sources encode
rich sets of data. While representations should not be intrusive,
these abstractions will naturally encode less information than
the full information source. Any representation used should
make it possible to expand the information should the devel-
oper want to know more, or make it possible to directly access
the information in the external representation, if needed.

d) Uniqueness.: The presentation of information should
be distinguishable from other information. While external
information sources should encode their representation in
intuitive ways, they should be cognizant of how other sources
might also encode themselves such that they avoid confusion.

B. External information needs

Developers frequently refer to external information such
as version control, build status, test results, and coverage.
Here we categorize external information usage according to
their purpose from existing literature. Each kind of external
information is usually associated with a specific element type
(e.g., a variable, statement, line(s), block, method/function, or
class/file) which may influence how the information should
be represented. Additionally, some information needs have
pertinent temporal properties, from which past states can be
aggregated and compared with the current state (e.g., coverage
deltas, historical test performance).

While working on their projects, developers create and
access a wide variety of external information sources. While
these sources vary by development team and project, we have
included a non-exhaustive list of common software develop-
ment activities identified from prior work that often require
external information; these have been categorized below by
the developer’s goal when accessing the information.

Crucially, many of the information sources used to answer
these questions are stored externally to the project itself and is
accessed using different tools, online services, and result files
generated as byproducts of the development process. Each of
these is external to the resource the developer needs to modify
to accomplish their ask: the source code itself.

a) Team Awareness: Since all large software projects are
built by teams, developers rely on awareness information to
support collaboration and to keep appraised of their teammates
activities [15]. Being unaware of their teammate’s actions can



negatively affect developers’ own performance [16]. The kinds
of questions developers might ask surrounding awareness
include “Who is working on what?” and “Who changed this
[code]?” [3]. To answer these questions developers often
access the version control system to check on recent changes
to the code they are working on. One commercial tool that
supports this kind of activity is vscode-gitlens 2 which inte-
grates some version control (specifically Git) features directly
into the VS Code development environment. This kind of tool
enables developers to quickly learn who, why, and when a line
of code was changed with inline annotations.

b) Code Comprehension: Before adding new features or
improving existing code, developers often need to understand
the code they are working with. Source code comprehension is
a core software engineering activity [17]. Code comprehension
tasks are often time consuming [18] and involve finding
answers to questions like “Where is this method called or type
referenced?” and “What are the values of these arguments at
runtime?” [1].

Code comprehension tasks can also have temporal proper-
ties. These may include questions like “What is the evolution
of the code?” and “What caused this build to break?” [3].
Change-related information includes change metadata (who
and when a change was made), how the code was changed, and
the impact code changes can cause. Developers sometimes
seek to answer “What is the intention behind this piece of
source code?” [19]. Recent work demonstrated a combination
of approaches to tackle the concern location problem for
linking source code to specific software features [20].

c) Test Analysis: Test cases represent a special kind of
source code that has important properties for developers. Sim-
ilar to code changes, metadata information such as authorship
can help to find the developer responsible for an individual
test cases (e.g., “Who owns a test case?” [3]). Additionally,
developers might be interested in co-change analysis (e.g.,
“What test cases frequently change when this source code is
modified?”).

Additionally, test cases have important temporally-ordered
dynamic properties (e.g., “When did this test last fail?”, and
“Does this test frequently fail?”). The information to answer
these questions is infrequently stored directly with the source
code and is instead often maintained in external continuous
integration systems such as those provided by TravisCI3 or
Jenkins4.

d) Navigation and Debugging: Developers frequently
navigate through the source code in their projects to answer
specific queries. External information can also assist with these
tasks, helping developers quickly find locations where code
should be changed or added [21]. Online services can also
be used to answer important development questions, such as
“what are the churn rates for all Java projects”, that would be
challenging or impractical to answer using local analyses [22].

2https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
3https://travis-ci.org/
4https://www.jenkins.io

Analogously, debugging often involves navigating through the
code to answer questions like “Why is [variable] equal to
[value]?” [2] or “What is average execution time of this
statement?” [5].

C. Presentation views

Modern code editors such as Atom5 and VSCode6 are highly
customizable user interfaces using common technologies like
HTML, CSS, and JavaScript. Large communities of developers
have created code editor plugins for these editors. Examining
a broad set of existing source code editor plugins, we noted
that their most prominent presentation techniques can be split
into two categories: those that adorn the code editor with
inline views within the source code itself and those that
present the information in isolated views independent from the
source code. From our examination of existing plugins, both of
these categories can be further decomposed into unique visual
representations.

1) Inline views: These views have the benefit that they are
anchored by the source code they adorn. Figure 1 shows five
of the most common representations used in existing plugins.

1

2

3

4

5

6

7
x

Fig. 1. Commonly used inline source code editor representations used for
integrating external information. Of these, gutter (left margin) and badge (right
margin) visualizations are the most commonly used.

Each of these representations has benefits and drawbacks:
Gutter: Most source code editors have a reserved presenta-
tion space to the left of each editor line called the gutter.
Gutter representations place an icon or label in the gutter to
convey a small piece of information about a line of code,
function/method, or class. Gutter representations can typically
accommodate small charts, single words, or icons. Due to
space constraints, usually only a single adornment can be used
for each line of source code.
Badges: Badges appear to the right of source code lines.
Unlike gutter adornments, badges typically appear within the
source code line. As most source code lines are not of uniform
width and usually do not take the full horizontal viewport,
badges offer greater space for providing more expressive
information than gutter representations. Badges can appear
as text, icons, small graphics, or a combination of these as

5https://atom.io/
6https://code.visualstudio.com/

https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://travis-ci.org/
https://www.jenkins.io
https://atom.io/
https://code.visualstudio.com/


appropriate. Multiple badges can appear together provided
enough space, although when a line of code uses the full
viewport these may be hidden.
Highlight: Highlighting portions of a line of code (like a
variable or method invocation) can help provide additional
information about the highlighted element, for example by
highlighting other similar variable usages or method calls.
Hovering a pointer over the highlighted portion can also
provide additional information for that region in the form of
a short tool-tip (text description). It is normally not possible
to place more than one highlight on a single portion of source
code, although a single line can have multiple highlights as
long as they do not overlap. Unlike gutter or badge represen-
tations that can often convey their meaning just by glancing at
them, code highlights normally need to be explicitly interacted
with (e.g, by activating or hovering over them) to convey their
meaning, although code colouring schemes are a special kind
of code highlighting that does not require interaction as they
are always activated.
Context menu items: Context menus are often used to provide
access to information that might be less commonly used, be of
lower priority, or could be overwhelming if it were always dis-
played. In these cases, the information can be associated with
the code element (as with highlighting above) but without any
visual representation except when invoked using the context
menu in the code editor. By right clicking on the code element,
the developer can be shown additional information about the
code element. A primary downside of these representations is
that it can be unclear which code elements have additional
context menu options added to them which can inhibit their
discoverability. Additionally, developers need to remember
that the context menu option exists and remember to invoke
it when needed.
Overlay: These representations are often used to augment
the four other representations above. Overlays are panels
that appear over code elements when the developer clicks
on another representation (e.g., a gutter, badge, highlight, or
invokes a context menu option). Overlays are often used to
provide a more complex visual representation than is possible
with the other less intrusive representations. This provides the
developer the control to only display those overlays for which
they need additional information.

2) Isolated views: These views present information within
the development environment, but outside of the source code
itself. Isolated views are often helpful when a developer is
trying to get an overview or summary of the source code
and is not sure which segment of source code they should be
examining. Figure 2 shows common isolated mechanisms used
within IDEs. For example, when trying to improve coverage,
a developer might not know which file contains the highest
percentage of uncovered lines. A ranked list of source files
can deliver this information, but this list only exists in a full
coverage report, and is not suitable to put inside the code area
for a specific element as the developer would then need to
scan all code elements to check their coverage levels. Figure 2
shows the two most common isolated information views used

within code editing environments; as with inline views these
also have strengths and weaknesses:
Notification item: Most development environments have a
status bar that can be used to notify a developer of different
events. An icon can be placed in this notification space
to let the developer know that there is additional external
information available. Different icons can be used for different
notifications, or a single notification icon can reveal a list of
individual actions if more than one are available. To avoid
distraction, notification icons are generally subtle and are
not intrusive, although this could increase the likelihood that
developers miss an important notification if it could have
helped the developer with their task.
Notification panel: By far the most common isolated rep-
resentation is the notification panel; this modality is used
extensively by plugins that augment IDEs. Notification panels
are displayed in their own view adjacent the source code
editor to provide additional information. These panels usually
provide some kind of an overview that gathers individual
pieces of inline information about specific code elements into
a summary view in some kind of organized manner (e.g., a
hierarchically sorted tree), although may use their own novel
visualization mechanism. Since notification panels tend to be
large, they must compete with each other for screen space.
This means they are often turned off (or just hidden in non-
activated tabs), forcing the developer to remember both that
the tab exists, and that they should activate it, when they are
performing aspects of a task the panel could assist with.

1

2

3

4

5

6

7

x

Fig. 2. Commonly used isolated visualizations for integrating external
information into source code editors.

D. Leveraging presentation views

When determining how to integrate an external information
source into an IDE, developers need to balance the actionabil-
ity of the information with the overwhelmingness of the visual
representation. While an external information source could be
represented using several different presentation views, it is
important that the designer consider the design principles in
Section II-A when making their design choices.

This is especially important in an information-dense envi-
ronment like the IDE as it is easy to imagine representations
that would be overwhelming and intrusive given the breadth of
information sources available in large mature projects. While
embedding external information into source code editors can



increase the accessibility of the information (as the developer
does not need to access the external source to see the informa-
tion), it must still be functional and must co-exist with other
information sources.

For example, an online test coverage service might use gut-
ters for each source code line to indicate whether that line of
code is covered. When the developer clicks a gutter, an overlay
can popup showing the tests that cover the line. An isolated
presentation view could also be shown with a notification item
can be displayed to indicate overall coverage condition (e.g.,
relative to a project-specific threshold) and when clicked a
notification panel would appear with a full coverage report of
all files in the project. At the same time, adding a gutter icon
for every line of code may be overwhelming for the developer
and would prevent other information sources from adorning
the gutter (because there is only space for one element); in
this case, using a badge for method-level coverage might be
more helpful and allow the developer to expand the badge to
access more detailed reports about problematic methods.

To better understand how developers perceive the utility
and intrusiveness of the different visualizations, we sought
to gather their feedback in the form of an in depth survey
examining concrete external information integrations for a
variety of common development tasks.

III. INTEGRATION REPRESENTATION SURVEY

To understand developers’ preferences for the visual repre-
sentations of external information we conducted a survey and
distributed it online among software developers.

While examining existing plugins that integrate into devel-
opment environments, we noted that isolated representations
(especially custom panels) were the most common form of
visual integration; we wanted to determine if this matched
with developer preferences. Additionally, given the flexibility
and ubiquity of gutter and badge visualizations among inline
representations, we wanted to further understand developer
preferences among these options.

Consequently, the goal of the survey was to answer two
main research questions:
RQ1 Do developers have preferences among inline or iso-

lated visual representations?
RQ2 For inline representations, do developers prefer gutter-

based or badge-based visualizations?

A. Survey methodology

The survey was designed to take 10 minutes and was dis-
tributed via email to our academic and industrial contacts and
on social media through developer-relevant forums on Reddit
and HackerNews. Each respondent was provided with four
common tasks they might perform using external information.
For each task, they were given two visual representations that
we created by creating prototypes for an existing IDE.

In addition to selecting between their preferred represen-
tation for each task, the survey solicited rationale from the
participants for their selection. Ultimately 29 respondents
started the survey and 21 completely all four tasks (72.4%).

Unfortunately, we do not know how many people saw our
online recruitment and cannot calculate a response rate. 95.7%
of respondents self-identified as professional developers and an
average of 8.1 years of development experience.

The four tasks were selected from the author’s experience
using external information sources. While the tasks are clearly
not exhaustive of all possible development tasks, we believe
they represent a reasonably diverse cross section of develop-
ment tasks that could leverage external information. The four
tasks were provided in a randomized order, as were the two
design alternatives for each of the tasks. The specific questions
posed for each task were:

HIST This task required examining the past history of
test failures as recorded by the Continuous Integration
service which is executed as an online platform. “You are
facing some test case failures in a well-tested project. To
understand the importance of these failures, you are trying
to understand the historical behavior of failing tests.”

TEST In this task, the developer wanted to verify that their
changes would not cause the tests to fail when executed
with the regression test suite. “You are working on a
project with version control and continuous integration.
After you make a commit, or you pull commits, you want
to know whether some change breaks the build or fails
some tests.”

PROF The profile task involved trying to understand what
portion of code is slow by examining the online perfor-
mance test suite which is run in a controlled environment
to ensure that the results are consistent for all developers.
“While working on a source file in your project, you are
trying to figure out what part of the code is executing
slowly.”

COVER The coverage task involved examining the test
coverage results as collected by the Continuous Integra-
tion service and hosted by the coverage service. “While
working on a source file in your project, you want to
know which lines are covered by test cases and the current
status of those tests.”

The visual representations for these four tasks provided
badge-based and gutter-based representations. For example,
for the HIST task, Figure 3 was shown. For each task,
respondents were able to select between several rationale
related to why they chose one representation over another, or
were able to provide their own rationale if they had a different
reason. After choosing between badges and gutters, they were
also shown an independent representation that used a separate
panel that did not try to fit the external information inline and
were given the choice to choose between these. For example,
for the HIST task the separate panel shown can be found in
Figure 4. Further screenshots for these visual representations
is available in the M.Sc. thesis7.

7https://hdl.handle.net/2429/71778

https://hdl.handle.net/2429/71778


* By clicking the barcharts in (A) or the gutter icons in (B), the pop-up shown below will appear:

A.2.1 Which representation do you prefer?
# A (! A.2.2: Case 1)

# B (! A.2.2: Case 2)

A.2.2 Which of the following reasons explain your choice?

Case 1

⇤ “A” provides more information at a glance and saves me from the extra step (click)

⇤ “B” occupies gutter area, which is used for setting breakpoints

⇤ Other (please describe):

Case 2

⇤ “A” is distracting as it shares the same space as the source code

⇤ “B” is easier to spot since they align well

73

Fig. 3. Inline representations for badges (A) and gutters (B) for HIST.
* By clicking the barcharts in (A) or the gutter icons in (B), the pop-up shown below will appear:

A.2.1 Which representation do you prefer?
# A (! A.2.2: Case 1)

# B (! A.2.2: Case 2)

A.2.2 Which of the following reasons explain your choice?

Case 1

⇤ “A” provides more information at a glance and saves me from the extra step (click)

⇤ “B” occupies gutter area, which is used for setting breakpoints

⇤ Other (please describe):

Case 2

⇤ “A” is distracting as it shares the same space as the source code

⇤ “B” is easier to spot since they align well

73

Fig. 4. Isolated representation for the HIST task using its own panel.

B. RQ1: Inline vs. isolated representations

One drawback with supporting integration of external in-
formation is that the information could distract developers.
This is especially true if one information source monopolizes
the source code area or multiple external information sources
are trying to decorate the same portion of source code. One
advantage of allowing the information to be integrated is
that it could increase the utility of the information (both
by being more discoverable and by allowing direct usage).
One advantage of allowing the information to be hidden and
only displayed when toggled by the developer is that the
information could be made less distracting to them as they
work.

Figure 5 shows developer preferences between showing
information in an isolated panel or inline with code. For all
scenarios, most respondents prefer to have the information
shown in the code area (inline). Several respondents did
mention though that having an optional summary panel could
also be useful in addition to the inline representation.

1) Inline vs. toggled representations: Respondents who pre-
ferred inline representations mainly rationalized their prefer-
ence for reasons related to minimalism. Unobtrusive represen-
tations gave them the option to have access to the information
without it overwhelming their code editors:

“Stay minimal until I ask for more” — P4 HIST
“Keep it minimal and inline maybe like the ones
offered in VSCode” — P18 HIST
“Stay minimal until I ask for more information” —
P4 TEST
“I prefer inline with the option to explore in an
extra panel” — P18 PROF

For those respondents who preferred separate panels, their
primary rationale was because it enabled them to only con-
sider additional information when it is needed:

“Ability to hide the information when not required.”
— P2 HIST
“Ability to show the additional data when required.”
— P2 TEST
“Ability to hide information until required” — P2
COVER

Additionally, respondents had specific scenarios where sep-
arate panels had additional capabilities that inline presenta-
tions do not have:

“Extra panel can be sorted” — P25 PROF
“It may be easier to jump across files with the
panel. The bottom part of the panel also helps” —
P26 COVER
“Extra panel could in theory show extra information
about each relevant commit in the bar chart.” —
P6 HIST

That said, many respondents also specifically mentioned that
there were too many panels in their editors already, and that
for some tasks the inline representation was simply a better
match for the kind of task the data would be used for (for
example “inline with the editor panel makes for faster REPL
workflow” – P6 COVER.

2) Combined representations: A few participants want to
be able to combine both inline and independent representations
because they liked to have options to match their needs, for
example “Nice to have options” — P1 PROF. This sentiment
was echoed by several of the respondents who preferred the
inline representations but sometimes found the separate panels
handy. This was mainly due to the separate panel’s ability
to summarize information in a hierarchical fashion, although
sometimes having both allowed tackling problems in both top-
down and bottom-up ways: “[the panel] shows whole project
coverage by file, while the gutter shows coverage by line.”

RQ1: Should representations be inline or isolated? Inline
representations were considerably more popular with the sur-
veyed developers because they do not like the proliferation of
panels around their code editors. Simultaneously, developers
found isolated panels better at presenting summary data
and have some capabilities inline representations lack. The
option to activate an isolated panel from an inline represen-
tation could increase the utility of both representations.

C. RQ2: Inline representation preferences

For two of the tasks, developers preferred badges over
gutter visualizations (HIST: 65.2%, PROFILE: 73.9%). For
the other two tasks badges were not preferred (TEST: 45.8%,
COVER: 27.3%). While variation between tasks suggests that
the characteristics of the task remain an important factor
when choosing between these representations, the qualitative



52%

35%
13%

S1
Inline with optional panel
Inline
Separate panel

(a) History

50%

21% 29%

S2
Inline with optional panel
Inline
Separate panel

(b) Test

52%

35%
13%

S3
Inline with optional panel
Inline
Separate panel

(c) Profiles

64%

27%

9%

S4
Inline with optional panel
Inline
Separate panel

(d) Coverage

Fig. 5. Preferences for showing information in a separate panel for each scenario.

comments did seem to indicate that badges had more positive
attributes.

For respondents who preferred badges over gutters, their
primary rationale was that “A provides more information at
a glance and saves me from the extra step” (HIST: 93.3%,
TEST: 81.8%, PROFILE: 76.5%, COVER: 83.3%). This sug-
gests that respondents chose badges mostly because of the
higher information density. Concerns about using the gutter
area for external information seemed to be task dependent,
“[The gutter] occupies gutter area, which is used for setting
breakpoints” (HIST 13.3%, TEST 27.3%, PROFILE 41.2%,
COVER: 50.0% The primary challenge identified with de-
velopers with respect to gutter-based representations reflect
readability challenges with these limited representations:

“[The badge] is visually easier to read.” — P2 TEST
“’Failed’ text is hard to read.” — P11 PROF
“The gutter icon seems hard to read.” — P28 PROF

For respondents who preferred gutters over badges, their
primary rationale for selecting gutters were that badges “are in
the same space as the source code” (39%), “the gutter is easy
to spot” (48%), and gutters “provide enough information...
while keeping visually minimal” (55%).

For these respondents, their rationale mainly centered
around minimizing visual distraction:

“when you test hundreds of time, the bars area might
get too long.” — P7 TEST
“I like the icon in [the gutter].” — P27 PROF
“this gutter info is clear and easy to read. Also, [...]
there is a lot more inline text in A that can really
clutter up the text area.” — P11 COVER

The variation in opinions suggests that integrators of exter-
nal information need to carefully consider the representation
that will work best for the information they are trying to show.
One reason for this is that the information density developers
need varies. In the coverage task a binary piece of information
was needed (whether the element is covered or not) while in
the profiling task more descriptive information is required.

One distinct disadvantage inline representations have com-
pared to independent panels occurs when multiple external
information sources try to decorate the same code location.
While each independent panel can provide isolated views that

do not need to interact with one another, inline representations
can interfere with each other. To investigate how these can be
handled, we provided respondents with visual strategies for
resolving collisions in badge and gutter representations and
asked them to comment on these.

For this question, 76% of respondents preferred the
badge-based collision representations. Their rationale mainly
stemmed from the ability of badges to convey more informa-
tion making it easier to differentiate what was being shown:

“It is easier to read on the right side.” — P11
“More information is displayed (and in a pleasing
manner) making it easier to draw accurate
conclusions.” — P19
“[Badges are] more intuitive and prominent. It
does not feel annoying despite always there.” — P21

For the 24% of respondents who prefer gutters, their senti-
ments were mainly related to information overload:

“[Gutters] feel less visually jarring; there’s only
one line that expands horizontally. [Gutters] also
avoid an “explosion” of information and reminds
me of a context menu (feels more familiar).” — P20
“[Badges] really seem like an overload of
information and would hardly fit anymore if code
lines are long and take up a big part of the screen.”
— P28

RQ2: Do developers prefer gutters or badges? For the
four surveyed tasks, badge-based visualizations were slightly
preferred by developers over gutter-based visualizations. The
ability of badges to convey more information seems to be
the primary driver of this preference. Correspondingly, space
constraints imposed by gutters can cause in readability is-
sues. Gutter visualizations work for tasks where information
can be easily and naturally fit a small footprint. When more
information is needed, or multiple pieces of information vie
for the same inline locations, badges are preferred.



IV. EICE TECHNOLOGY PROBE

While the survey in Section III helped us to understand
developer preferences, to gather further insight into developer
performance we created the External Information in Code
Editor (EICE) prototype. This prototype was designed to
help us evaluate how developers would interact with external
information visualized within their code editors while perform-
ing real tasks. In particular, we wanted to ensure that the
visualization of external information within the developer’s
environment did not overwhelm them and negatively impact
their performance. EICE was developed as a plugin for the
Atom development environment.8

A. Controlled experiment

While the online survey focused on visual preferences
for integrating external information, we wanted to gain a
better understanding of how developers could actually use this
information using the EICE technology probe. To do this, we
performed a controlled experiment which set out to answer
two primary research questions:
RQ3 Does integrating external information impact task per-

formance?
RQ4 Are there negative consequences to integrating external

information?
a) Participants: At the conclusion of our prior sur-

vey, participants self-identified as being amenable for future
contact. From this pool 8 survey respondents became study
participants, each had at least one year of JavaScript and an
average of 7.5 years of professional development experience.

b) Project: To select a real project for the study, we
searched GitHub for projects written in JavaScript, with at
least one year of development history with between 20 and 40
files, and over 200 commits from 10 developers. We excluded
projects that did not have unit tests and that we could not easily
get to build. From these, we randomly selected the JSBarcode
project9. JsBarcode consists of 615 commits by 24 developers
over a 7 year period at the time of the study.

c) Tasks: The experiment involved four tasks (T1–T4).
As with the tasks in Section III-A, these four tasks were
selected from the author’s experience; they were different than
the prior four tasks to gain insight into developer feedback
for different tasks requiring external information. Each task
was independent of each other and used a different external
information source; external information was dynamically
loaded as the participant worked. The four experimental tasks
were:
T1 Comprehension (Runtime value): For values covered by

unit tests, EICE will display the value before and after
the line executes. Developers interact with an overlay
representation by clicking on a variable and requesting
runtime values.

T2 Build (Broken build): EICE adds gutter items to lines that
belongs to commits that directly or indirectly cause the

8Implementation details in M.Sc. thesis: https://hdl.handle.net/2429/71778
9https://github.com/lindell/JsBarcode

build to fail. When users click the gutter item the commit
SHA and related metadata will be displayed in an overlay
window.

T3 Test (Coverage): EICE pulls coverage data from the latest
coverage report and adds gutter items to lines captured
in the report. Green gutter items indicate the lines are
covered and how many times times they are covered. Red
gutter items indicate the lines are not covered by unit
tests.

T4 Optimization (Profiling): EICE extracts profiling results
of functions and shows a badge next to each function’s
declaration, showing how long it takes to run along with
the runtime of the entire program.

Participants did not need to write any source code, but
were asked to diagnose and propose a fix for each problem
after investigating the JSBarcode source code and associated
resources. The approximate time to complete a task was esti-
mated to be 10 minutes. Combined with the study introduction
and follow-up, the total duration of the study was one hour.

Each participant performed four tasks in a randomized
counterbalanced design. Two tasks were performed with the
EICE technology probe while two tasks were performed with
the control treatment where participants would use tools of
their choosing for accessing external information.

d) Metrics: Given the modest number of participants in
the experiment, and to gain as much insight as we could in
a limited controlled setting, we designed the experiment to
focus on the number of actions NA and the number of resource
switches NRS rather than the time required to complete the
task. The intuition behind these measures is that the more
actions a developer needs to take to complete a task, the more
effort the task may require. Additionally the more resource
switches and programs involved in completing the task, the
more complex the process becomes, increasing the cognitive
load to complete the task.

We instrumented the experimental computer to automat-
ically count a resource switch whenever the participant
switched from one application to another application. Resource
switches were also counted whenever the developer switched
between files in the code editor, web pages in the browser, or
tabs in the editor or browser.

While these measures are attempting to gain some insight
into relative developer performance, the high level goal of the
study was really to gather evidence that EICE did not unduly
burden developers as they worked; these measures are only
meant to be proxies to gain lightweight insight into the impact
of the tool.

B. RQ3: Impact on task performance

The results for the number of resource switches (NRS) for
the experimental and baseline tasks showed that participants
using EICE performed 33% as many resource switches (14
switches with EICE compared to 32 switches without EICE).
In fact, for three of the four tasks (T1, T3, T4), EICE partic-
ipants were able to use the external information embedded

https://hdl.handle.net/2429/71778
https://github.com/lindell/JsBarcode


in the code editor alone to complete the task. One of the
participants reflected:

“If I’m already working on something I don’t need
to worry about switching to all different applica-
tions.”— P4

In terms of the number of actions (NA), as with NRS,
participants using EICE for T1, T3, and T4 performed better
than with their traditional tools; across all tasks participants
using EICE performed 71% as many actions. This decreased
impact (relative to NRS) was largely related to T2, for which
participants found EICE hard to use; across the other three
tasks, EICE required only 51% as many actions to complete
the tasks.

Ultimately though, the goal of this small controlled exper-
iment was not to quantify the effort reduction of using EICE
vs traditional tooling. We mainly wanted to evaluate, with real
tasks using real external information from a real project, that
the visual integration did not overwhelm or confused develop-
ers causing them to to perform worse than with their traditional
tooling. In this way, we believe this experiment provides initial
hints that such integrated information can be both useful and
be visualized in a way that is not overwhelming to developers.

The participants also reflected positively on how having
access to this external information could impact them on their
own tasks. For example, “ [Even] I’ve disabled communica-
tions, and I’m working, but I still see that a really relevant
information because it would be showing me in the code that
I’m working on. So that can be quite helpful.” — (P4)

RQ3: Does integrating information impact performance?
Participants were able to successfully use external informa-
tion embedded into their source code editor to both decrease
the number of resource switches and number of actions for
most of the experimental tasks.

C. RQ4: Negative consequences of integration

Integrating external information does not automatically
make developer’s lives easier. For example, in T2 (broken
build) the EICE group performed worse than the control group
in terms of both NRS and NA. This was due to a design flaw
in how we integrated the build breakage external information
into the code editor: a usability decision we made (to open
the failure report when the participants clicked on the inline
visualization) caused participants expected to perform extra
resource switches and extra actions compared to the control
group. This demonstrates the importance of careful planning
and usability testing for these kinds of visualizations as they
can actually decrease developer performance.

Reflecting on their own projects, developers still had linger-
ing concerns about the integration becoming distracting: “[the
inline representation] might be too distracting in some cases”
— (P3), or that they would like to have a toggle to easily turn
off information sources they were not interested in: “having
the option to toggle on and off [the visual elements]” — (P1).

RQ4: Can inline integration be detrimental? When in-
tegrating information into the source code editor, designers
must carefully consider how developers will use and interact
with the information to ensure they do not actually cause the
developers to perform more work.

V. DISCUSSION

Developers use both code editing environments and external
development tools on a daily basis. This paper has provided a
glimpse into developer preferences for how code editors can be
augmented with external information. While the results may
seem straightforward, we believe they can provide concrete
design guidance for future tool developers. Specifically, devel-
oper guidance from the survey suggests that increased usage of
badge-based representations can both allow tool developers to
use more verbose representations (e.g., compact textual sum-
maries or graphs). Developers also found these representations
easier to use when multiple information sources are trying to
decorate the same code artefacts. Feedback from developers
also showed that in addition to integrating this information
into their code editors, they also appreciated direct linking
from the inline representation back to the original information
source so they could see it in its usual context if they needed
additional information.

Additionally, results form the experiment suggest that even
straightforwardly integrating existing information from ex-
ternal sources into the code editor can provide meaningful
value for developers. While the experiment primarily focused
on developer’s ability to use the integrated information, we
believe surfacing the information and making it accessible
without overt effort is just as important. These results have
implications for the importance of surfacing information and
the amount of immediate context needed for that exploratory
start point. By integrating external information into the code
editor, developers are relieved from not only the search step
(knowing where to find a piece of information for a specific
cod artefact), but also from the ideation step where they
need to think about searching for the information. Given the
value these links can provide to developers, additional research
on mechanisms to support exposing information from online
information sources may be warranted (to complement existing
research projects that infer these links).

A. Threats to validity

There are several threats to validity for an exploratory study
such as this one. These are important concerns that must be
taken into consideration when framing the results presented
in this work which is providing initial evidence for the utility
and preferences for the visualization of external information
within development environments.

a) Internal validity: The dynamic structure of the survey
made it challenging to directly compare all participants as
the followup questions were based on their prior responses
(e.g., the rationale for choosing A or B). This decision was
made to increase the feedback we could get from respondents,



but injected some of our own design thinking into the survey
process.

For the controlled experiment, we did not examine partic-
ipants as they worked on their own projects and tasks. This
would have allowed us to more directly examine the utility of
the information rather than using proxy metrics like number
of actions / context switches, but would have eliminated our
ability to have a meaningful control group without a much
larger participant pool.

b) External validity: The primary threat to external valid-
ity is the participant sample sizes of the survey and experiment.
While this is a clear limitation, the goal of the work was
to provide insight into developer preferences (survey) and
initial evidence whether integration decreased performance
(experiment). Additionally, the number of tasks evaluated
in the survey and the reliance on a single project for the
experiment both limit the generalizability of the results. As
with the primary threats to internal validity, an in vivo study
would be the next step to gain additional insight into the
challenges and benefits of integrating external information into
code editors in practice.

VI. RELATED WORK

Prior work has explored various methods to deliver external
information to developers including (1) software visualization,
(2) tools adding separate displays to code editors, and (3)
through novel tools that deliver their results using inline code
editor representations. This work differs from many prior
efforts in that it focuses on developer perceptions of the
representations themselves, rather than prior work which are
predominantly novel tools that happen to surface their results
within the code editor. A non-exhaustive overview of this work
is given below.

A. Software visualization

Software visualization provides another perspective to aid
code understanding. Prior work such as Software Land-
scapes [23], Software World [24], Component City [25], and
CodeCity [26], [27] all visualizes software allowing for data
exploration and analysis. Such approaches typically replace
code editor views with novel and independent visual repre-
sentations. In contrast, in this work we investigated developer
sentiment towards approaches that enable developers to not
leave their familiar code editing environment.

B. Code editor replacements

There are previous studies that attempt to adding “side
views” to code editors to presenting external information.
Reacher, an Eclipse plug-in, shows the call graph of methods
of interest next to the code editor view [28]. Software terrain
maps, based on the metaphor of cartographic maps, provides
an additional visualization display for developers to navigate
around the source code in the editor [29]. Code Bubbles [30],
Code Canvas [31] and Debug Canvas [32] take on a different
approach: they create a larger view where source code views
are enclosed in bubbles or regions that can be independently

laid out on a canvas. These representations can further display
relations among these smaller regions, easing the code com-
prehension and debugging process. Despite the perceived value
in such interfaces, they introduce new scalability issues that
are not as problematic for our less integrated approach [30].

C. Code editor augmentation
Tools such as HATARI [13] and GitLens10 CodeMetrics11.

Whyline [2] and PerformanceHat [5] integrate external infor-
mation by adding visual changes (e.g., annotations) directly
to the source code, without (necessarily) providing a sepa-
rate independent display. HATARI plug-in for Eclipse adds
annotations to source code elements, using colors to indicate
risk levels of code changing [13]. GitLens uses annotations
including highlight and heat-map to seamlessly integrate Git
core features in the code editor itself. CodeMetrics shows
the complexity information above the function declarations.
Whyline is a tool developed recently to allow developers to
select questions about a program’s output and work back-
wards from output to its causes [2]. PerformanceHat creates
operational awareness of performance problems and integrates
runtime performance traces into source codes, displaying the
performance statistics/impacts in the form of overlays [5]. This
type of tool is closest to the EICE technology probe in that
developers do not have to leave the code editor to benefit from
the tool’s results.

VII. CONCLUSIONS

In this paper, we investigate whether developers are open
to greater integration of the data from external information
sources into their development environments. In particular,
we wanted to learn more about developer preferences for the
visualization of this information and to check whether they
found it overwhelming or improved their ability to perform
some of their development tasks.

We did this through an online survey with 21 responses
which suggests that developers prefer the additional informa-
tion being visualised within their environments as long as
it is carefully done. In particular, developers prefer inline
representations that place information before the code (as
gutter icons) or after the code (as badge representations)
over representations that use isolated panels or views. A
common concern among developers is that they do not want
to be overwhelmed by the integrated information. Through a
controlled experiment we show initial evidence that developers
are able to leverage integrated information to both decrease the
number of actions and context switches required to perform
development tasks.

Ultimately, the survey and controlled experiment provide
initial evidence that developers support visualizing external
information in their environments and provides guidance for
future tool developers to consider when designing these visu-
alizations.

10VSCode plug-in for visualizing code authorship via Git blame annotations
and code lenses. (https://github.com/eamodio/vscode-gitlens)

11VSCode plug-in for computing and displaying code complexity inline
with functions. (https://github.com/kisstkondoros/codemetrics)

https://github.com/eamodio/vscode-gitlens
https://github.com/kisstkondoros/codemetrics


REFERENCES

[1] J. Sillito, G. Murphy, and K. De Volder, “Asking and Answering Ques-
tions during a Programming Change Task,” Transactions on Software
Engineering (TSE), vol. 34, no. 4, pp. 434–451, 2008.

[2] A. J. Ko and B. A. Myers, “Finding causes of program output with
the Java Whyline,” in Proceedings of the International Conference on
Human Factors in Computing Systems (CHI), 2009, pp. 1569–1578.

[3] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2010, pp. 175–184.

[4] E. Murphy-Hill, R. Jiresal, and G. C. Murphy, “Improving software
developers’ fluency by recommending development environment com-
mands,” in Proceedings of the International Symposium on the Founda-
tions of Software Engineering (FSE), 2012, pp. 1–11.

[5] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami, and H. C. Gall,
“PerformanceHat: Augmenting source code with runtime performance
traces in the IDE,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2018, pp. 41–44.

[6] T. Zimmermann, “Changes and bugs mining and predicting development
activities,” Ph.D. dissertation, Jan 2008.

[7] R. DeLine, G. Venolia, and K. Rowan, “Software development with code
maps,” Communications of the ACM (CACM), vol. 53, no. 8, p. 48–54,
Aug. 2010.

[8] G. Venolia, “Bridges between silos: A mi-
crosoft research project,” January 2005. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
bridges-between-silos-a-microsoft-research-project/

[9] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discovering
and exploiting relationships in software repositories,” in Proceedings of
the International Conference on Software Engineering (ICSE), 2010, pp.
125–134.

[10] D. Spinellis, “Developing in the cloud,” IEEE Software, vol. 31, no. 2,
pp. 41–43, Mar 2014.

[11] G. Venolia, “Textual allusions to artifacts in software-related reposito-
ries,” in Proceedings of the International Workshop on Mining Software
Repositories (MSR), 2006, pp. 151–154.

[12] D. Čubranić and G. C. Murphy, “Hipikat: recommending pertinent
software development artifacts,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2003, pp. 408–418.

[13] J. Śliwerski, T. Zimmermann, and A. Zeller, “HATARI: Raising risk
awareness,” in Proceedings of the European Software Engineering
Conference held jointly with International Symposium on Foundations
of Software Engineering (ESEC/FSE), 2005, p. 107–110.

[14] J. Singer, “Practices of software maintenance,” in Proceedings of the
International Conference on Software Maintenance (ICSM), 1998, pp.
139–145.

[15] J. Chisan, “Towards a model of awareness support of software develop-
ment in GSD,” in Proceedings of the International Workshop on Global
Software Development (GSD), 2004, pp. 28–33.

[16] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness and
Merge Conflicts in Distributed Software Development,” in International
Conference on Global Software Engineering (GSE), 2014, pp. 26–35.

[17] M. P. O’Brien, “Software Comprehension – A Review & Research
Direction,” p. 29.

[18] N. A. Al-Saiyd, “Source code comprehension analysis in software main-
tenance,” in Proceedings of the International Conference on Computer
and Communication Systems (ICCCS), 2017, pp. 1–5.

[19] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the International Con-
ference on Software Engineering (ICSE), 2007, pp. 344–353.

[20] M. Eaddy, A. Aho, G. Antoniol, and Y.-G. Gueheneuc, “CERBERUS:
Tracing Requirements to Source Code Using Information Retrieval,
Dynamic Analysis, and Program Analysis,” in Proceedings of the
International Conference on Program Comprehension (ICPC), 2008, pp.
53–62.

[21] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure
for large-scale collection and analysis of open-source code,” Science of
Computer Programming (SCP), vol. 79, pp. 241–259, Jan. 2014.

[22] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the International Conference on Software Engineering
(ICSE), May 2013, pp. 422–431.

[23] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz, “Software land-
scapes: Visualizing the structure of large software systems,” in Pro-
ceedings of the Transactions on Visualization and Computer Graphics
(TCVG), 2004.

[24] C. Knight and M. Munro, “Virtual but visible software,” in Proceedings
of the International Conference on Information Visualization (IV), 2000,
pp. 198–205.

[25] S. M. Charters, C. Knight, N. Thomas, and M. Munro, “Visualisation for
informed decision making; from code to components,” in Proceedings of
the International Conference on Software Engineering and Knowledge
Engineering (SEKE), 2002, pp. 765–772.

[26] R. Wettel and M. Lanza, “CodeCity: 3d visualization of large-scale
software,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2008, pp. 921–922.

[27] R. Wettel, “Scripting 3d visualizations with codecity,” in Proceedings
of the Workshop on FAMIX and Moose in Reengineering (FAMOOS),
2008.

[28] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), 2011,
pp. 117–124.

[29] R. DeLine, “Staying Oriented with Software Terrain Maps,” in Workshop
on Visual Languages and Computation (VLC), 2005, pp. 309–314.

[30] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Ka-
plan, C. Coleman, F. Adeputra, and J. J. LaViola Jr, “Code bubbles:
Rethinking the user interface paradigm of integrated development envi-
ronments,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2010, pp. 455–464.

[31] R. DeLine and K. Rowan, “Code Canvas: Zooming towards better devel-
opment environments,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2010, p. 207.

[32] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “De-
bugger Canvas: Industrial experience with the code bubbles paradigm,”
in Proceedings of the International Conference on Software Engineering
(ICSE), 2012, pp. 1064–1073.

https://www.microsoft.com/en-us/research/publication/bridges-between-silos-a-microsoft-research-project/
https://www.microsoft.com/en-us/research/publication/bridges-between-silos-a-microsoft-research-project/

