
Task-specific source code dependency investigation

Reid Holmes and Robert J. Walker
Laboratory for Software Modification Research

Department of Computer Science
University of Calgary

{rtholmes, rwalker}@cpsc.ucalgary.ca

Abstract
We present a simple, visual approach to help develop-
ers view and navigate structural dependency information,
aimed specifically at pragmatic reuse tasks. Our visual ap-
proach, implemented as the Gilligan tool, leverages stan-
dard GUI widgets (such as lists and editors) that devel-
opers are adept at using. Gilligan represents complex de-
pendency data in a simplified format, appropriate for in-
vestigating reuse tasks. We present a small-scale, semi-
controlled experiment that indicates that the approach per-
mits more accurate identification of relevant structural de-
pendencies with a lower time investment, as compared to
traditional manual approaches. Last, we discuss the poten-
tial for the approach to aid in other specific software under-
standing tasks.

1. Introduction

Developers often wish to reuse source code in ways that it
has not been designed to be reused. Developers undertaking
such pragmatic reuse tasks can benefit from tool support to
quickly and accurately identify the structural dependencies
(e.g., classes and methods that they reference) of any code
fragments they are considering reusing. In planning these
tasks, developers need a specific subset of information en-
coded in the source code they want to reuse. As such, gen-
eral graph visualization techniques are not needed; indeed,
the general nature of full-blown graph visualization can in-
hibit the understanding needed for dependency analyses for
pragmatic software reuse [4].

Understanding the scope of a fragment’s dependencies
is essential for a developer to make an informed decision
about whether to reuse the fragment of source code or to
re-implement its functionality [3]. After the developer finds
the core of the functionality that she is interested in reusing,
she must consider how best to “triage” its dependencies on
the rest of the original system. To do this, she traces each
dependency from that core to the entity being referenced
(e.g., a type, method, or field). If the referenced entity also

provides useful functionality, the developer is likely to add
it to the code to be reused. If the referenced entity is of no
use to the developer, she then has to consider whether the
dependency can be dead-ended (i.e., the method call or field
reference will be eliminated), or remapped to a different en-
tity in her target system. Ultimately, she wants to minimize
the unwanted functionality that will be incorporated into her
system. We refer to the end-product, that is the collection
of nodes and triage decisions, of this investigation process
as a pragmatic reuse plan.

We consider there to be three key properties needed to
support this investigation and decision process: propaga-
tional navigation, where a source code entity need be in-
vestigated only if it is reachable transitively through other
entities that are to be reused; low commitment, where early
decisions can be changed and the navigation can be easily
continued as needed; and flexibility in abstraction, where
visualization at any level between the package level to the
detailed source code might be needed [8].

Current integrated development environments (IDEs)—
such as Eclipse, IntelliJ, or Visual Studio—facilitate the
navigation of the structural dependencies of source code.
However, IDEs focus on the source code itself, provide lim-
ited views of the dependencies (typically one file at a time),
and do not help the developer to enumerate these depen-
dencies and track their decisions about how they should be
triaged.

We have developed a source code dependency visual-
ization mechanism specifically for developers who are in-
vestigating and planning pragmatic reuse tasks. Our ap-
proach aims to better support developers performing these
tasks by providing only the subset of features they need [6].
While using a general graph-based visualization seems like
a natural fit for this task, these techniques fail to adequately
support propagational navigation, quickly leading the de-
veloper to be disoriented by a proliferation of relationships
and entities [2, 3]. Our primary concern is to reduce the
cognitive effort required of the developer while investigat-
ing the structural dependencies for a source code fragment.



By focusing on the three key properties (propagational nav-
igation, low commitment, and flexibility in abstraction), our
tool can be more focussed as compared to more generic
techniques. In addition, our tool (called Gilligan) provides
an interface based on standard GUI widgets (tree lists and
editors) thereby minimizing the presence of unfamiliar in-
teraction techniques. One key aspect of our approach is that
it allows developers to record their decisions as they investi-
gate individual dependencies; this aims to reduce their cog-
nitive burden by relieving them of having to remember ev-
ery decision they have made.

We evaluate our approach via a semi-controlled exper-
iment that measured the ability of six developers to deter-
mine the structural dependencies of four different source
code fragments using either our tool or standard IDE tools.
Our investigation focuses on the ability of our visualization
technique to help developers identify all of the structural re-
lationships within a fragment of source code. We found de-
velopers were able to more completely identify these struc-
tural relationships in less time using our tool than with stan-
dard manual approaches.

The remainder of the paper is structured as follows. Sec-
tion 2 describes a motivational scenario involving a prag-
matic reuse task. Section 3 details the design requirements
of our approach to support the needs of developers perform-
ing pragmatic reuse tasks and is followed by related work
in Section 4. Our visualization approach is outlined in Sec-
tion 5 and the evaluation follows in Section 6. Section 7
discusses remaining issues.

This paper contributes a visual approach that helps devel-
opers to quickly identify and triage both the direct and in-
direct structural dependencies of any source code fragment.
This mechanism is evaluated through a small-scale, semi-
controlled experiment measuring its effectiveness compared
to standard developer practice.

2. Motivating Scenario
Consider a developer who wants to create a system that lis-
tens for events using simple sockets. From her experience,
she knows that Log4J1 has the ability to send events via
sockets. She also knows of Ganymede2, a system that pro-
vides a Log4J view within the Eclipse IDE that receives its
events through sockets. As Ganymede does a task similar
to what she wants to provide, she investigates this project to
see if she can reuse any of its source code; while Ganymede
was not designed for reuse, it still may offer functionality
she can benefit from.

While investigating the dependencies of this pragmatic
reuse task, she is essentially interested in answering one
question: “Where in the source code is a feasible bound-
ary for the feature I would like to reuse?” To answer this

1http://logging.apache.org/log4j
2http://ganymede.sf.net

question, she would like to know the extent of each depen-
dency of the code she is considering reusing. By knowing
the scope she can determine if a dependency is trivial (for
instance, being dependent on java.lang.String is not a
problem for Java programs) or onerous (for instance, if the
program was dependent on a method that had 1000 other
dependencies of its own). She can use this knowledge to
determine where to create the boundary of the feature.

After a quick search though the Ganymede source code,
she locates the relatively simple Log4JServer.start-

Listener() method. This method is only 18 lines long
and contains 15 method calls, 2 object instantiations, 1 field
reference, and 1 local variable assignment. At a glance,
she can see that startListener() does exactly what she
wants. What she cannot tell at a glance is how tangled
startListener() is with the rest of Ganymede. Inves-
tigating each of the dependencies using her IDE, the de-
veloper navigates through 22 methods spread throughout
15 classes in 9 packages. These packages include a range
of functionality (including java.net, org.eclipse.ui,
and net.sf.ganymede.preferences).

Figure 1. Manually created depiction of de-
pendencies for startListener().

If the developer decides to invest the time to research the
extended dependency list, she will likely derive a picture
similar to Figure 1. This picture has its drawbacks: It is
not amenable to updates, nor can the developer see how it
is directly associated to the source code. Also, if she wants
additional information about any node in the diagram, she
must locate and open that type in her IDE and check man-
ually. These shortcomings make it difficult to work with
the plan in an iterative fashion. Additionally, if she knows
she is writing a Java plug in for the Eclipse environment,
she knows that she does not need to consider dependencies
from these projects (such as java.* and org.eclipse.*)
as she knows her system already depends on these libraries.
Even for this small scenario it can be difficult enough to



correctly identify all of the relevant structural dependencies
without tool support, let alone tracking her decisions about
each of them.

3. Task Requirements
We sought to fulfill three primary requirements while de-
signing our dependency investigation tool. While we devel-
oped our visualization we thought of how each feature we
were considering adding would support these three points.
If the feature did not clearly meet these goals they were re-
jected.

Propagational navigation. Developers operate in a time-
limited environment. Visual tool support must allow them
to quickly traverse through a series of dependencies with-
out getting lost. This is particularly important as we have
previously found that developers would follow paths just
to check some fact, but would have trouble getting back to
their starting point [3].

Low commitment. In pragmatic reuse tasks, decisions
must be made during the process of gathering knowledge
about the transitive dependencies of a feature. As such,
early decisions can be invalidated by knowledge discovered
later. Developers should be able to easily back out of deci-
sions, and retrace dependency paths regardless of their “cur-
rent position” in the task.

Flexibility in abstraction. We cannot predict in advance
how the developer will want to view any particular piece of
data. As such, we needed to provide a range of alternatives
from high-level abstractions to their concrete realizations in
the source code. Also, we wanted the visualization to be
flexible in that the developer could select any entity in the
abstraction to go to its code and to add any element they
were interested in into the visualization whether it was rel-
evant to what they were viewing or not.

4 Related work
In our earlier work [3], we attempted to use a general graph
visualization technique for navigating dependencies. As the
systems being studied grew larger, the technique failed to
scale, and industrial developers became easily disoriented.

A variety of program comprehension approaches are
based on graph visualization (e.g., Rigi [5]). In attempt-
ing to be as general-purpose as possible, they tend to be
ill-suited for specific tasks [8]. They also tend to ignore the
particular needs of industrial developers [6] in investigat-
ing pragmatic reuse tasks and quickly deciding whether or
how to pursue them. We impose a particular process model
and its related navigational strategy on the developers using
our approach; despite the fact that this would not be a good
design choice for a general-purpose program understanding
tool [9], we believe that the narrowly targeted application
eliminates the need to permit a range of navigational strate-
gies.

Likewise, a number of approaches have been developed
to aid navigating source code dependencies. Of these, the
most similar to our proposal is the Feature Extraction and
Analysis Tool (FEAT) [7], which permits a developer to
navigate from a source code entity to the entities on which it
depends (fan-out) or to the entities that depend on it (fan-in).
FEAT is too generic for our situation, as fan-in analysis is
irrelevant; also, FEAT does not support recording decisions
about dependencies, so central to our context.

A wide array of approaches have appeared in recent
years for automatically or semi-automatically identifying
the extent of features in source code (e.g., the work of Eisen-
barth et al. [1]). Such approaches could be used as a starting
point in a pragmatic reuse task; however, given that features
of interest are often not nicely encapsulated, an intricate and
inexact decision-making process would still be needed to
draw the boundary between the feature and the rest of the
system. The previous work on feature location does not aid
in that task.

Several visual techniques exist to view graph structures
as trees. Of these, TreePlus [4] is most similar to our ap-
proach. TreePlus advocates the Plant a seed, watch it grow
metaphor for graph visualization, starting from a point and
working outwards—essentially, propagational navigation.
We believe that the TreePlus approach to visualization is
still too generic for our purposes, and would place a greater
learning burden on developers than they would be willing
to shoulder because of its novel approach to presenting its
information. We feel that using standard GUI widgets that
developers are comfortable with is more likely to lead to
adoption; however, future work will be needed to confirm
or refute our conjecture.

5. Visual Approach
Our tool for creating pragmatic reuse plans is called Gilli-
gan and is implemented as an Eclipse plug-in3. Gilligan’s
visualization involves two components: (1) three inter-
dependent tree-list panes for abstractly representing source
code dependencies (Figure 2 [top]); and (2) an editor view
for displaying source code itself (Figure 2 [bottom]). To
start Gilligan, the developer selects the system she wishes to
investigate for reuse, as well as a target system within which
she wishes to reuse the code. She then identifies at least
one source code entity of interest (to her) from the source
system. In Figure 2 the startListener() method has
been selected as the starting point for investigation; this is
added to the leftmost (concern) pane. Any number of nodes
(which can be classes, methods, or fields) can be added to
this pane. Nodes can be added or removed from this pane
either via a dialog or from the other two panes (using the
context menu) to the right at any time. Nodes are always
shown with some form of context; that is, their package and

3http://eclipse.org (v3.2.1)



containing class is always visible. At any time the devel-
oper can request the source code corresponding to any node
in the three panes, via selection of the appropriate context
menu item.

The direct dependencies for any node that is selected in
the concern view are shown in the center pane. If more than
one node is selected, the union of their direct dependencies
is displayed. Unlike in the concern pane, nodes only appear
in the direct dependency pane as a result of the developer’s
selections within the concern pane. Developers can, how-
ever, hide nodes that are not of interest to them from this
view.

The indirect dependencies of any selection in the direct
dependency view are shown in the rightmost view. Selec-
tions in this pane do not affect the panes to the left; if a
node is selected in this pane, its dependencies are added to
the same pane. To differentiate these dependencies from the
others in the list, the developer can click to add the node to
the concern view to see both the direct and indirect depen-
dency lists.

There are three columns in each of the tree views. The
leftmost column corresponds to the element’s name, and
provides a descriptive icon. This icon indicates the type
of the node (package, class/interface, method, or field). The
icon can also be decorated to provide extra information. De-
pendencies on types that are solely present as binaries (i.e.,
class files) are annotated with a slash through their icon; if
a class has sub- or supertypes these also overlay this icon,
as down- or up-arrows. The second column is a coloured
rectangle corresponding to the annotation the developer has
placed on the node; these annotations are discussed later
in this section. The third column enumerates the number
of direct dependencies of a node, while the fourth enumer-
ates the number of dependencies in the transitive closure of
the node’s dependencies. These two columns are useful to
give the developer a quick sense of the number of depen-
dencies down any particular path. Any node with 0 depen-
dencies need not be investigated at all, while a node with
over 100 dependencies may be crucial to investigate.

Nodes are also annotated to show if they have been vis-
ited before; nodes that have not been visited are showed in
lighter text than those that have. This gives the developer a
simple cue as to where she has been before.

If the developer is interested in viewing a particular node
in the list, she can use the text search fields at the top of each
pane to filter the list and only show the nodes in which she
is interested. In these cases, the nodes retain their parents
so their origin can be easily seen. The tree lists can also be
fully expanded or contracted as required; this can be helpful
if the developer only wants a package-level overview or is
particularly interested in the field- and method-level infor-
mation. The lists are also fully keyboard navigable, which
makes it a simple matter to quickly traverse the nodes in the

list, viewing their direct and indirect dependencies.
The developer is free to examine the source code for any

node. Gilligan marks up the source code (Figure 2, bottom)
with the same colours as the decisions that the developer
has already made.

Interaction model. The core feature of the visualization
is its ability to dynamically update to show the developer
the dependencies for the nodes she is investigating. The lists
update based on her selections and provide information that
is similar to that which she would have access through in a
graph, but presented in a list-based view. Because the lists
are linear and the order of their results is stable (alphabet-
ically sorted), it is easy for the developer to return to any
previous state. By allowing her to add any node to the con-
cern (leftmost) pane, the developer has a particularly handy
way of storing and retrieving nodes of interest during her in-
vestigation. This display mechanism does hide some details
that would be present in a graph-based view. In particular,
the origin of a dependency cannot be directly identified if
multiple nodes are selected, nor can the number of times a
dependency is referenced. These two facts can be derived
by navigating the lists if needed, but we have informally ob-
served that developers performing pragmatic reuse tasks are
not typically interested in this information. If the developer
wants to see the transitive closure of all of the structural
dependencies of a node in the concern pane, all she needs
to do is select all of the node’s direct dependencies in the
direct dependency pane. Facilitating the navigation of the
dependencies highlights only half of Gilligan’s utility; we
also help the developer record their decisions about each
dependency through various annotations.

Annotations. To convert the time spent investigating de-
pendencies into a concrete plan, we provide an annotation
mechanism on top of the interaction model. The annotations
simply consist of marking nodes with different colours that
the developer can use to record different decisions about the
dependencies she is investigating. Green annotations corre-
spond to dependencies on code that the developer wants to
reuse. Red annotations correspond to code that she does not
want to reuse. Blue annotations indicate code that performs
functionality already provided within the developer’s target
system, but with a different interface. These three anno-
tations are manually chosen by the developer according to
her decisions as to how to triage dependencies. Yellow an-
notations are automatically generated by the system; these
correspond to dependencies that are already provided within
the target system. For example, in Figure 2 the target system
includes the Eclipse and Java libraries, so all dependencies
on these are automatically annotated in yellow.

The prominent nature of the annotations allows the de-
veloper to get a sense of the types of dependencies she is
considering, at a glance. The developer is free to anno-
tate dependencies while traversing them, rather than thor-



Figure 2. Screenshot of Gilligan; abstract views above, annotated source code below.

oughly investigating, forgetting details, and then making
decisions for unclear reasons. However, the developer is
free to change her mind about the decisions at any time.
While no two tasks are alike, the developer can determine
whether the amount of reused code versus the other annota-
tions makes it worthwhile for her to pursue the reuse task.
Without this overall view, it can be difficult for the devel-
oper to make an informed decision about the reuse task.

6. Evaluation
To evaluate the effectiveness of our approach relative to
standard IDE tools, we conducted a semi-controlled exper-
iment. We recruited six participants, each of whom per-
formed four tasks. Two tasks were undertaken using our
approach, while the other two tasks were performed using
standard IDE tools (“manually”). The participants were
tasked with identifying the transitive dependencies for a
fragment of source code. The number of dependencies each
participant needed to identify in each task ranged from 30
to 93. Participants were given an unlimited amount of time
to complete each task and were passively monitored dur-
ing this time. Each participant was a software engineering
graduate student, each of whom was comfortable with the
Eclipse IDE and actively writes code on a regular basis.

We augmented the IDE for the manual case with the
ConcernMapper plug-in4; the subjects used this to record
those source code elements they considered for each task.
Concern Mapper also served as an augmentation of the stan-

4http://www.cs.mcgill.ca/ martin/cm/ (v1.3.1)

dard IDE toolset, as the subjects could use it as an index to
navigate between entities they had previously added to it.

6.1 Experimental set-up

Subjects (S1 through S6) were assigned to treatment groups
(G1, G2) in a randomized fashion. As we had a limited
number of subjects we chose not to randomize the task (T1
through T4) order, but rather leave it fixed so the learning
effect from one task to another would be the same for each
subject. The subjects in G1 performed T1 and T2 with Gilli-
gan and T3 and T4 manually, while the subjects in G2 re-
versed this treatment. Additionally, to decrease the learning
effect, we chose each task from different systems so they
would not overlap.

In addition to recording the time required to complete
each task, we also recorded the nodes identified as being
dependencies of the assigned fragment of interest. We com-
pared these results to solutions we derived by carefully
completing the task several times. This resulted in our
knowledge the number of correct, missing, and incorrect
nodes for each trial. Using these numbers we are able to re-
port precision (ratio of relevant nodes identified to relevant
and irrelevant nodes identified) and recall (ratio of relevant
nodes identified to number of relevant nodes in solution)
results.

Next we describe each task along with some observa-
tions made while the participants were performing them.
The the size of the correct solutions for each task is shown in
Table 1. Before the participants took part in the study, they



Task Classes Fields Methods Total
Ganymede 4 9 17 30
HttpClient 7 22 31 60
GanttManager 12 10 28 50
Jajuk 15 47 31 93

Table 1. Numbers of dependencies in the cor-
rect solutions.

were each given a written description of what the study was
about and a training task during which they could talk to
the investigators as they learned about both Concern Map-
per and Gilligan. The subjects had as long as they wanted
to investigate the tools on the training task before starting
the four experimental tasks.

Task 1: Ganymede. The first task involved investigating
the dependencies for starting a Log4J Socket Server inside
Ganymede, an Eclipse-based Log4J project5. Ganymede
consists of 34 classes and 2,234 lines of code. The sub-
jects were tasked with finding all of the transitive depen-
dencies for Log4JServer.startListener() while ex-
cluding any dependences from the Java standard libraries
or from the org.eclipse.* packages. S1, S2, and S3
used Gilligan for this task, finding all of the correct de-
pendencies in an average of 5 minutes and 20 seconds.
Performing the task manually, participants S4, S5, and
S6 had a recall of 0.77 and took an average of 13 min-
utes 40 seconds. The recall of S4–S6 suffered because
each of them failed to adequately explore the dependen-
cies of GanymedeUtilities.initActions(). This one
method call obscured as a condition in an if statement but
was the root of a dependency chain containing over 18 other
elements. Although they identified many of these depen-
dencies via other paths, they ended up neglecting to identify
an average of 7 structural dependencies from the solution,
each of which the subjects using Gilligan found.

Task 2: HttpClient. For the second task the subjects
had to identify the dependencies for parsing cookies in
HttpClient6. This project contains 165 classes encoding
15,970 lines of code. The investigations started in Cookie-
SpecBase.parse(...) and excluded any Java standard
library classes. The participants performing this task man-
ually identified significantly fewer correct dependencies
than the participants supported by Gilligan (46% vs. 99%).
Again, participants manually performing the task missed a
large number of dependencies by failing to follow a sin-
gle path through Date.parseDate(...); this path led to
13 dependencies on ParameterParser that each of these
subjects failed to detect.

5http://ganymede.sf.net (v0.9.3.1)
6http://jakarta.apache.org/httpclient (v3.0 rc1)

Task 3: GanttManager. The third task involved locating
the dependencies for adding a delay to a Gantt activity in
GanttManager7. The Gantt project comprises 555 classes
and 43,247 lines of code. Each participant started in
ConstraintImpl.addDelay(...). Again, the partici-
pants were asked to disregard dependencies to Java standard
library code. In this task, both treatment groups failed to de-
tect a large number of the structural dependencies. Partic-
ipants in the manual treatment group had an average recall
of only 39% over an average of 17 minutes of investigation
while the Gilligan-supported subjects had an average recall
of 50% over 8 minutes and 20 seconds. While observing
the participants performing this task, 5 of the 6 failed to no-
tice that a large portion of the structural dependencies for
this task (half of them) were performed by subtypes that
needed to be investigated indirectly. Several of the struc-
tural dependencies led the participants to interfaces and ab-
stract classes; only one of the participants investigated the
subtypes of these interfaces. In each case only one subtype
existed so it was easy to determine which type the code was
actually dependent on.

Task 4: Jajuk. The final task looked at adding
an item to a playlist inside the Jajuk media man-
ager8. Jajuk is implemented by 227 classes compris-
ing 30,679 lines of code. The participants were asked
to ignore dependencies on Java standard libraries and
on org.apache.logging.log4j.* packages. Each
participant started their investigation in History.add-

Item(...). This task had the greatest discrepancy be-
tween the Gilligan-supported subjects and the manual par-
ticipants. The manual-treatment subjects had an average
recall of 19% in 9 minutes and 40 seconds. The partici-
pants using Gilligan had an average recall of 98%, spend-
ing 11 minutes and 20 seconds to identify these dependen-
cies. Although the manual-treatment subjects performed the
task on average faster than the Gilligan-supported subjects
(by 1 minute and 40 seconds), they performed significantly
worse in locating each of the correct dependencies. During
this task we observed the participants revisiting the same
node much more than in other tasks. The manual-treatment
participants in particular would visit the same method sev-
eral times trying to remember if they had been there before.
The manual participants each missed a branch containing
77 dependencies by not following a single path into File-

Manager.getInstance().

6.2 Observations

Observing each of the participants while they performed the
tasks yielded several insights. First, on every manual task,
the participants had difficulty determining if dependencies

7http://ganttproject.sf.net (v2.0.4)
8http://jajuk.info (v1.3.0)



Figure 3. Recall for the four tasks.

were part of the restricted set of dependencies they did not
have to consider. The participants would hover over the de-
pendency to see its fully-qualified type or they would navi-
gate to the dependency and scroll to the top to see its pack-
age signature. For method bodies that had a large number
of dependencies that met the restrictions, the subjects often
missed important dependencies as they were obscured by
unimportant ones; this was the case that led to the missed
path in T2. While using Gilligan, the participants would
scroll though the transitive dependency list to check for any
nodes that had not been annotated as a final step. While this
was effective for T1, T2, and T4, it led to errors in T3 as the
subjects needed to interact more with the tool to request the
subtypes of the interfaces they had located.

After the participants had completed all four treatments,
we performed an exit interview to see how they perceived
their performance for each treatment. The participants were
quite positive about their performance: on a Likert scale
from 1 (very poor) to 7 (very high) they rated their con-
fidence in their solution at an average of 6.7 for the tool-
supported cases and 5 for the manual cases. The most com-
mon complaint about the manual approach was that “since
you can’t remember where you’ve been you often end up
doing things over” (S4); these sentiments were echoed in
similar comments by S2, S5, and S6. S1 also stated that de-
pendencies could sometimes be “obfuscated by the source
code” and that “scanning through code your brain sees
chunks and if you misinterpret some part you’ll just skip
over [it]”. This was borne out in their performance of the
manual tasks.

6.3 Results

For each task, we had created an answer key that could be
used to evaluate the structural elements identified by the
participants. We have talked primarily in terms of recall;
that is, the proportion of correct nodes identified by each
subject for each task (Figure 3). From this graph we can
see that participants manually carrying out the tasks gen-
erally did worse than those supported by Gilligan. Neither
approach yielded high recall for T3.

As we had a correct solution we were also able to cal-
culate precision; that is the proportion of invalid nodes to
valid nodes. The manual-treatment participants achieved an
average precision of 89% while the Gilligan-supported sub-
jects achieved an average of 98%. Unlike the recall case,
precision was fairly consistent across all of the tasks, so we
do not present it in a graph.

Figure 4 compares the average time taken per-task
against the average recall. In this chart better solutions
would appear at the bottom right, while worse solutions
would appear at the top left. In general from this graph
we can see that the manual tasks took longer and had lower
recall than the tasks for which the subjects had access Gilli-
gan. The subjects took an average of 9 minutes per task
using Gilligan and 14 minutes performing the tasks manu-
ally. Their average recall using Gilligan was 0.87 compared
to 0.45 in the manual case.

Figure 4. Average recall and time.

7. Discussion
In this section we examine issues relating to the validity of
the experiment we performed, open issues surrounding our
visual approach, and future directions this work may take.

7.1 Experimental validity
We conducted our evaluation to gather initial evidence into
the efficacy of our approach to judge whether further invest-
ment should be made in the tool. The small sample size and
the small scale of our evaluation are obvious drawbacks.
While our subjects were graduate students, they were all
software engineers who actively write code, and many of
them have industrial experience. Furthermore, while the
tasks performed by the subjects were not very large, the av-
erage recall for the manual cases was quite low; using larger
tasks would likely only exacerbate this result. Our semi-
controlled experiment demonstrated, for the tasks and sub-
jects we tested, that Gilligan increased recall and decreased
the time required for subjects to identify the structural de-
pendencies compared to manual techniques. Further evalu-
ation involving industrial developers is needed to determine



the generalizability of these results. Comparing Gilligan to
other approaches such as TreePlus could also be beneficial.

7.2 Open issues

Gilligan performed well during the evaluation. However,
in the third task the developers failed to locate many of the
relevant dependencies. This shortcoming occurred because,
by default, the tool is designed to show dependencies from
method calls and field references. In this task, many of the
dependencies originated in subtypes in the inheritance hier-
archy. While visual cues for this information were provided
by the tool, we believe that they were not effective because
the developers trusted its default output. Gilligan will have
to be modified to provide more inheritance-aware informa-
tion by default in the future.

Is this a software visualization approach? Gilligan is
a hybrid approach combining visualization techniques with
standard GUI widgets. We believe Gilligan is indeed a vi-
sualization approach because it abstracts the data it presents
from its model, and it relies on the graphical cues given
for the annotations. For instance, during the study sub-
jects would check the completeness of their solutions in the
Gilligan-supported cases by selecting all of the direct de-
pendencies for the fragment they were to investigate. They
would then quickly scroll through the resulting list of the
transitive dependencies to ensure that each of them was
annotated with a colour. The subjects would also open
the source code view for nodes they were interested in to
quickly determine the coverage of the annotation colours in
that source code. By using standard GUI widgets, this hy-
brid approach is designed to be easy for developers to learn
to interact with.

In Section 3 we identified three traits that we designed
Gilligan to support. In terms of propagational navigation,
Gilligan quickly shows developers the dependencies of any
node in the system. They do not have to compose specific
queries; the dependencies are automatically displayed based
upon their selection. As the navigation is based on sim-
ple selections in lists, the quick investigation of dependency
paths, and back-tracking out of them to previous states with-
out becoming lost, is supported. This supports low commit-
ment. By providing both the abstract list-based views along
with the annotated source code the developer has the ability
to view the system at varying degrees of detail. This flexi-
bility of abstraction allows the developer to investigate each
part of the system at the level of fidelity that best meets their
needs. By supporting these three traits, Gilligan is able to
help developers quickly identify the information they need
to perform their reuse planning tasks.

We created Gilligan to help developers navigate and an-
notate structural dependencies for the purposes of creating
pragmatic reuse plans. However, other applications for this
type of approach exist. Currently developers perform refac-

toring tasks one step at a time. By creating a refactoring
plan, developers could select multiple different refactorings
and apply them all at once. This could allow for more in-
depth refactoring tasks. Our investigative approach could
also be used as a front-end for impact analysis tasks. Devel-
opers could quickly identify those pieces of code that their
code relies on before carrying out a task.

8. Conclusion
We have presented an approach for visualizing source code
dependencies for the purpose of creating reuse plans to be
used while evaluating pragmatic reuse tasks. This approach
relies on a co-located list metaphor for visualizing direct
and indirect dependencies. Annotations can be added to
any node in the visualization to allow the developer to tag
nodes with different decisions they have made. Once the
developer has triaged all of the dependencies in the sys-
tem they can use the resultant reuse plan to make an in-
formed decision about the feasibility of pursuing the reuse
task. We have evaluated our visualization through a small-
scale, semi-controlled experiment and found it to be more
effective (in terms of recall and time savings) at providing
the developer with the correct dependencies than when de-
termined manually.

References
[1] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in

source code. IEEE Trans. Softw. Eng., 29(3):210–224, 2003.
[2] I. Herman, G. Melançon, and M. S. Marshall. Graph visual-

ization and navigation in information visualization: A survey.
IEEE Trans. Vis. Comp. Graph., 6(1):24–43, 2000.

[3] R. Holmes and R. J. Walker. Supporting the investi-
gation and planning of pragmatic reuse tasks. In Proc.
Int’l Conf. Softw. Eng., 2007. Pre-press version available:
http://lsmr.cs.ucalgary.ca/pubs.

[4] B. Lee et al. TreePlus: Interactive exploration of networks
with enhanced tree layouts. IEEE Trans. Vis. Comp. Graph.,
12(6):1414–1426, 2006.

[5] H. A. Müller and K. Klashinsky. Rigi: A system for
programming-in-the-large. In Proc. Int’l Conf. Softw. Eng.,
pages 80–87, 1988.

[6] S. P. Reiss. The paradox of software visualization. In Proc.
Int’l Wkshp. Visualizing Softw. for Underst. and Analysis,
pages 59–63, 2005.

[7] M. P. Robillard and G. C. Murphy. Concern graphs: Finding
and describing concerns using structural program dependen-
cies. In Proc. Int’l Conf. Softw. Eng., pages 406–416, 2002.

[8] T. Schäfer and M. Mezini. Towards more flexibility in soft-
ware visualization tools. In Proc. Int’l Wkshp. Visualizing
Softw. for Underst. and Analysis, pages 64–69, 2005.

[9] M.-A. D. Storey, K. Wong, and H. A. Müller. How do pro-
gram understanding tools affect how programmers understand
programs? Sci. Comp. Progr., 36(2-3):183–207, 2000.


