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Abstract—
Test cases use assertions to check program behaviour. While these

assertions may not be complex, they are themselves code that must
be written correctly in order to determine whether a test case should
pass or fail. We claim that most test assertions are relatively repetitive
and straight-forward, making their construction well suited to automation
and that this automation can reduce developer effort while improving as-
sertion quality. Examining 33,873 assertions from 105 projects revealed
that developer-written assertions fall into twelve high-level categories,
confirming that the vast majority (>90%) of test assertions are fairly
simple in practice. We created AutoAssert, a human-in-the-loop tool to
fit naturally into a developer’s test-writing workflow by automatically gen-
erating assertions for JavaScript and TypeScript test cases. A developer
invokes AutoAssert by identifying the variable they want validated; Au-
toAssert uses dynamic analysis to generate assertions relevant for this
variable and its runtime values, injecting the assertions into the test case
for the developer to accept, modify, delete. Comparing AutoAssert’s
assertions to those written by developers, we found that the assertions
generated by AutoAssert are the same kind of assertion as was written
by developers 84% of the time in a sample of over 1,000 assertions.
Additionally we validated the utility of AutoAssert-generated assertions
with 17 developers who found the majority of generated assertions to be
useful and expressed considerable interest in using such a tool for their
own projects.

1 INTRODUCTION

Automated testing continues to grow in importance for
modern software development. There are many kinds of
automated tests: unit tests can provide quick feedback for
developers [1], integration tests can ensure components
work in concert [2], and smoke tests provide rapid-high
level feedback [3]; taken together these tests all play a central
role in regression testing [4]. One commonality among these
kinds of automated testing is that each test case needs
assertions to verify the behaviour of the code under test.

A test case comprises code that invokes a behaviour in
the code under test and a set of assertions that validate if
that behaviour is as expected. Assertions play an out-sized
role in test cases [5] because they serve as oracles: a test case
passes if all of its assertions pass; the test case fails if any of
its assertions fail. Despite the fact that assertions themselves
are short and somewhat repetitive segments of code, prior
work has shown that support is needed to reduce the cost
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of identifying test oracles [6] and that developer-written test
case assertions need to be strengthened [7].

Consequently, several researchers have investigated how
to generate assertions automatically. Assertion generation
approaches are broadly classified as being either static or
dynamic. Static approaches (e.g., UnitPlus [8], Obsidian [9],
Atlas [10]) have the benefit of being fast; but developers
need to verify that the asserted values make sense for
their system and that the generated assertions actually pass,
as the generated values used in assertions are not based
on actual values that the variables will hold at runtime.
Dynamic approaches tend to be slower as they must execute
the code under test to inspect runtime values in order to
generate assertions will pass when they are executed.

Existing dynamic approaches (e.g., Eclat [11],
ZoomIn [12]) lack a way of knowing which aspects of
the code under test the tester wants to validate. Without
this information, these approaches create assertions for any
variable in the test file and after every time a variable is
modified. The resulting test cases do not resemble those
written by developers: the test cases are bloated with
assertions and this impairs the tests’ ability to serve as
documentation for expected behaviour. Unfortunately,
assertion generation approaches have been broadly
evaluated in terms of some form of precision, but have thus
far not been evaluated with developers.

In this paper we present how a human-in-the-loop ap-
proach can address shortcomings of dynamic approaches to
assertion generation. Specifically, we investigate how devel-
opers write assertions and introduce and evaluate a tool,
called AutoAssert, that developers can use to interactively
generate assertions for their test cases as they write them.
AutoAssert is designed to fit into a developer’s normal test-
writing workflow. As the developer is creating or modifying
a test case, they select a variable in their test case for
which they want AutoAssert to quickly generate assertions.
AutoAssert then generates and inserts one to four passing
assertions into the test case that the developer examines
to keep, delete, or modify as they see fit. AutoAssert uses
dynamic analysis to observe the runtime value of a selected
variable and determines the most appropriate assertions for
the variable. The human-in-the-loop aspect of the tool is
important: the developer selects the variables they want
assertions for, the tool generates assertions only for these
variables using only valid values, and the developer eval-
uates the relatively small number of generated assertions,
thereby ensuring that only assertions they think are useful
are persisted in their test case. AutoAssert accounts for run-
time variations (e.g., non-determinism) and can customize
generated assertions to match a project’s style.
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More specifically, the primary goal of this research is
to investigate the feasibility of generating test assertions
with a human-in-the-loop system and evaluate the utility
of these assertions for industrial developers. To do this, we
employed the following methodology: We first performed
a quantitative analysis of developer-written assertions to
understand what these look like in practice (Section 2).
Using this understanding, we built a proof-of-concept tool
called AutoAssert to automatically generate the most com-
monly occurring assertions (Section 3). Using a quantitative
simulation study we compared the assertions generated by
AutoAssert to those written by developers, and show that
AutoAssert can generate the same kind of assertions as
developers 84% of the time (Section 4). Finally, we evaluated
the utility of the AutoAssert tool in a formative evaluation
with real developers, which is uncommon for assertion
generation approaches (Section 5).

This paper makes the following contributions:

• An empirical study characterizing the size, complexity,
and semantics of developer-written assertions.

• A prototype tool called AutoAssert that supports
human-in-the-loop assertion generation.

• An empirical simulation comparing the assertions gen-
erated by AutoAssert to those originally written by
developers.

• A formative user study examining how developers per-
ceived the utility of automatically generated assertions
for real test cases.

This work characterizes developer-written assertions
and demonstrates a precise approach that can automatically
generate the majority of these assertions. We also extend
prior work by showing that developers are able to interpret
automatically generated assertions and find them useful
while working with test cases.

2 ASSERTIONS IN PRACTICE

We first sought to understand how developers write asser-
tions in practice by investigating:

RQ1: What do test assertions look like in practice?

This research question examined the scope, complexity, and
semantic variation of developer-written assertions in real
software systems. The insight from this investigation guided
the design of our assertion-generation approach to ensure it
can create the kinds of assertions that developers actually

Fig. 1. Histogram showing the number of keywords per assertion across
assertions using the expect API.

write. By characterizing real-world developer-written asser-
tions, this study can also help others better understand what
these assertions look like in practice.

2.1 Methodology
To answer RQ1, we performed a quantitative study by stat-
ically analyzing developer-written test assertions present in
open-source projects. We selected these projects by examin-
ing all JavaScript and TypeScript projects published on npm
that are dependent on the Chai assertion library and Mocha
test framework.

Mocha and Chai are common JavaScript unit testing
frameworks, analogous to JUnit in Java. From these projects,
we selected projects with at least 100 stars to try to cap-
ture maintained systems and filter out personal projects.
This resulted in 105 open-source projects; we analyzed all
33,873 test assertions from 18,937 test cases present in these.

We used the TypeScript parser (which can also parse
JavaScript) to create a static analysis tool to analyze each
of these assertions. The analysis tool first checked whether
an assertion was non-trivial, that is whether it actually
asserted on a variable, in contrast to a trivial assertion like
expect.fail(). This reduced the number of assertions
from 33,873 to 33,650. For the 33,650 non-trivial assertions,
the analysis tool extracted:

1) Element under test. Elements under test were property
accesses (35.8%), variables holding the result of method
calls (31.3%), or inline method calls (18.1%).

2) Assertion method. The assertion library API declares the
available assertion methods (e.g., equals, include).
For this study we included all methods declared by the
Chai assertion library.

3) Expected value. The element under test is compared
against an expected value for correctness. This was
most commonly a literal value such as a string or
a number (61.6%). Chai methods were often used as
expected values, for example expect(val).to.be.-
true (24%). For the remaining assertions, the expected
values were identifiers (12.3%), property accesses (6%),
complex expressions (3.4%), or method calls (2.7%). As
a single assertion can involve more than one expected
value, percentages add to more than 100%.

2.2 Results
We next analyzed the assertions to learn how many were
used in each test case, how complex they were, what
kinds of assertions developers use, and how they were
constructed.

Fig. 2. Histogram showing the number of assertions per test case across
14,824 test cases containing at least one inline assertion.
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TABLE 1
Assertions encountered in practice. This shows the twelve high-level assertion categories categorized from 33,650 non-trivial assertions contained
in the 18,937 tests from the 105 analyzed projects. Some assertions can appear in multiple categories resulting in an overall percentage greater

than 100. Categories are based on assertion semantics and have been adjusted to account for semantic equivalents as described in Section 2.2.4.

Category % Count Description Representative assertion operators

Equality 39.3% 13,325 Exact matches of values or references to.equal, to.eq
Boolean 14.3% 4,854 Value is true or false to.be.true, to.be.false
Inclusion 7.1% 2,409 Element present in arrays or strings to.include, to.have.members
Length 6.7% 2,259 Array or string length to.have.length, to.not.be.empty
Existence 6.1% 2,073 Value is null or undefined to.exist, to.be.null
Properties 4.8% 1,610 Existence and/or values of object properties to.have.keys, to.have.property
Calls 4.0% 1,369 Method has been called, check arguments to.be.called, to.be.calledOnce
Type 3.3% 1,101 Primitive types and class instances to.be.a, to.be.instanceOf
Numeric 2.2% 736 Comparisons of numeric values to each other to.be.below, to.be.at.least
Throw 2.0% 659 Function throws or returns successfully to.throw, to.not.throw
Patterns 1.9% 645 Regular expressions and pattern matching to.match, to.have.matches
Truthiness 1.8% 619 Value can be coerced to true or false to.be.ok, to.be.falsy

Uncategorized 6.3% 2,147 Does not fit other categories, specific plugins to.be.fulfilled, to.have.style
Invalid 2.1% 717 API misuse [No assertion operator]

2.2.1 Assertion Density

Developers add assertions to their test cases to validate
program behaviours; in practice we find that most tests con-
tain few assertions. Of the 18,937 test cases, 4,113 test cases
(22%) contain no test assertions1 or rely on helper functions
to assert behaviour. Our dataset omits tests containing no
assertions to avoid skewing the mean; we also omitted tests
that invoke assertions from helper functions.

Figure 2 shows the distribution of the number of asser-
tions per test case among the remaining 14,824 tests that
contain at least one assertion: these test cases have a mean
of 1.4 assertions per test and a median of 1 assertion per test;
17.4% of the test cases have three or more assertions; and the
outlying test case with the most assertions contained 183
assertions. These results argue against writing assertions for
every variable and after every change in variable value.

õ
Developers typically include a low number of
assertions per test case; assertion generation
techniques should focus on producing a small set
of key assertions.

2.2.2 Assertion Complexity

In practice, most assertion statements are relatively straight-
forward. To examine the complexity of assertions, we
counted the number of keywords from the assertion li-
brary present in each assertion statement. Chai’s expect
API allows for building complex assertion statements by
chaining these keywords, so this count can serve as a proxy
for an assertion’s complexity. Some examples of assertion
statements and their keyword counts are:

# Assertion Statement

2 expect(val).throws(err);
3 expect(journal).to.equal(’TSE’);
4 expect(reviewers).to.not.include(’r2’);
11 expect(pages).to.exist.and.

to.be.at.least(10).and.at.most(13);

1. Some assertion-free tests simply check to see if the code under test
throws an error, which implicitly causes the test case to fail.

Figure 1 shows the assertion complexity across the
20,418 assertions using the expect assertion form. Al-
though Chai supports two forms of assertions (written
with either the expect or assert keyword) projects over-
whelmingly use one form or the other. The two forms
are semantically identical and the number of assertions in
either form would be the same, but assertions written using
assert are more compact and use fewer keywords than
assertions written using expect. To increase the internal
consistency of our assertion-complexity analysis, we exam-
ined only expect assertions because that form is more
commonly used and is more verbose, leading to results of
higher complexity. This only removed 12% of the developer-
written assertions from the analysis, as 88% of examined
assertions used the expect syntax. Of the 20,418 expect
assertions analyzed, most contain three or four keywords,
which typically corresponds to a single check (three key-
words) or the negation of a check (four keywords) in the
Chai assertion library. While the last example above shows
that it is possible to write more complex compound asser-
tions in Chai, it turns out that developers do not seem to do
this often in practice.

õ
Most developer-written assertions are simple;
assertion generation techniques should favour sim-
ple assertions over complex assertions.

2.2.3 Assertion Categories

To understand the kinds of assertions developers authored,
we categorized all 33,650 non-trivial assertions in the
dataset. We grouped assertions by their keywords, discard-
ing those keywords that were used only as modifiers (e.g.,
not, deep) or syntactic sugar (e.g., to, have); this left only
the keywords representing specific assertion semantics. To
understand the semantics of each keyword, we used the
keyword name and the official documentation from the
assertion library to confirm the kind of behaviours validated
by each keyword. We then performed an open card sort [13]
on the per-keyword list to identify categories of semantic be-
haviours validated by developers in practice. For example,
the keywords length, size, and empty would be grouped
into the same category LENGTH. While these keywords
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are each independent, they all evaluate the same kind of
semantic property for the value under test.

The result is twelve categories of assertions that devel-
opers commonly expressed in their test cases to validate
the behavioural correctness of the code under test. Table 1
lists the categories and percentage of assertions classified in
each category. The results indicate that developers validate
a breadth of behaviours and that most of these behaviours
(>90%) fall into a reasonable number of categories.

õ
Developers create assertions to check a wide
variety of program semantics; assertion generation
approaches must look beyond simple equality to
capture these behaviours.

2.2.4 Assertion Equivalence
Most assertions can be constructed in multiple semanti-
cally equivalent forms. Semantically equivalent assertions
generally fall into two categories: In the first, the assertion
library provides multiple equivalent assertion methods (e.g.,
equals and eq) as a form of syntactic sugar for perform-
ing the same underlying check. In the second, develop-
ers make different stylistic choices that are semantically
equivalent (e.g., expect(arr.length).to.equal(1)
vs. expect(arr).to.have.length(1)). This kind of
equivalence, with one choice being a specific assertion op-
erator and the other being framed as an equality check, was
the most commonly observed form of semantic equivalence.

To identify the prevalence of semantically equivalent
assertions, we randomly selected 5% of each category’s
assertions from Table 1 and checked whether each assertion
was categorized correctly or was actually an equivalent
semantic form from another category. In this analysis we
did not note any persistent misuse of 11 of the 12 assertion
categories.

In contrast to other categories, equality-based assertions
were often used in place of other more semantically-specific
assertion operators. In total, 50.7% of assertions were framed
as equality checks. However, our manual examination of the
random sample of equality assertions revealed that 22.5% of
these checks could be written with a more specific assertion

TABLE 2
Analysis of the uses of the equality assertion methods to determine
what properties developers check with this operator. This shows that

22.5% of equality assertions in our study assert more
semantically-specific behaviour.

Category % Example

Length 9.0% expect(val.length).
to.equal(0);

Boolean 8.1% expect(val).
to.equal(true);

Calls 2.4% expect(val.callCount).
to.equal(1);

Existence 2.2% expect(val).
to.not.equal(null);

Inclusion 0.5% expect(val.includes(’foo’)).
to.equal(true);

Type 0.2% expect(typeof val).
to.equal(’string’);

Numeric 0.0% expect(val < 0).
to.equal(true);

operator. This reduced the prevalence of equality assertions
from 50.7% of all assertions to 39.3%. Table 2 shows the
distribution of equality checks that are actually semantic
members of other assertion categories. We refined our static-
analysis tool to reclassify instances of the seven types of
specialized equality checks (listed in Table 2) as belonging
to their respective semantic category and we re-ran analysis.
The numbers and percentages reported in Table 1 reflect the
results of this refined analysis, reporting the semantic intent
of the analyzed assertions.

There are two main advantages to using a specific as-
sertion operator rather than an equality-based operator (i.e.,
a call to equals). The first advantage is that the meaning
of the assertion is more directly evident from the assertion
statement itself; for example, the following two assertions
are semantically equivalent, but the first more clearly en-
codes its intent:
// Equivalent assertions
expect(arr).to.contain(’c’);
expect(arr.indexOf(’c’) >= 0).to.equal(true);

Listing 1. Two equivalent assertions; the first uses a specific assertion
operator while the second uses a more general operator.

The second advantage is that, upon assertion failure,
the more-specific assertion can report a more-specific error
message for the developer to act on. Consider the error
messages given when the above two assertions fail; the more
specific assertion is able to raise a more meaningful error
message:

// Corresponding failures
AssertionError: expected [ ’a’, ’b’ ] to include ’c’
AssertionError: expected false to equal true

Listing 2. Error messages emitted when the two assertions in Listing 1
fail. The more specific assertion provides a more descriptive and
actionable error message.

õ
Developers may write assertions for the same
behaviour in a variety of ways; assertion genera-
tion approaches should be aware of these differ-
ences, while promoting consistency and specificity.

RQ1 Summary

Most test cases contain relatively few assertions
(median=1) and these assertions are not complex.
Assertions can be broadly classified into 12 high-
level categories: 39.3% of assertions validate equality
and the rest check specific behaviours, although
semantically-equivalent forms are common.

3 AUTOMATIC ASSERTION GENERATION

Based on the findings about developer-written assertions
from Section 2, we created a prototype tool called Au-
toAssert that automatically generates many common kinds
of assertions. Assertion generation proceeds in four main
phases, as depicted in Figure 3. First, the developer identi-
fies a variable in a test case for which they want assertions;
the test case is executed (twice), and the values assigned
to the variable are recorded for each execution. Second,
AutoAssert identifies the kinds of assertions that should
be generated based on the values assigned to the variable
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Fig. 3. Automatic assertion generation process. The developer initiates
the assertion generation process by selecting a specific variable in a
test case. AutoAssert traces the test case execution, identifies which
assertions are appropriate, selects the best semantic form for the de-
veloper’s project, and generates the proper assertion text and inserts it
into the test case. The developer then reviews the assertions to ensure
both that the assertion operators are appropriate and that the observed
values match their expectations; they edit or remove any assertion that
does not meet their expectations.

at runtime. Third, the most appropriate semantic forms are
selected for the generated assertions, based on the norms
of the project. Finally, the assertion text is generated and
inserted into the test case for the developer to review. This
review step is crucial, because AutoAssert presumes that the
code under test is correct. Each of these phases is described
below.

3.1 Design methodology

For our prototype implementation of AutoAssert, we
chose to generate assertions for the EQUALITY, BOOLEAN,
LENGTH, EXISTENCE, and TYPE and THROW categories
from Table 1 as our dynamic approach seemed particu-
larly amenable to these. Additionally, these categories have
clearly observable properties that imply the exact expected
values they should be validated against. One slight dif-
ference is the THROW category where JavaScript allows
variables to be assigned as function pointers. If a variable is
a function pointer that does not take arguments, AutoAssert
can create appropriate assertions.

Some assertion categories are more challenging to sup-
port including INCLUSION, PROPERTIES, CALLS, NUMERIC,
PATTERNS, and TRUTHINESS. INCLUSION and PROPERTIES

both rely on knowledge of which specific property, element,
or substring of the variable under test is the important one
to validate and cannot be determined by the resulting value
alone. Similarly NUMERIC and PATTERNS assertions both
involve comparisons against a broader set of values where
many possible ranges and patterns could be correct that
AutoAssert does not have the ability to choose between
(for example expect(id).to.be.greaterThan(7.4)).
CALLS assertions check to make sure that a function has
been called, rather than inspecting a value for correctness;
it is not clear how one could predict when this kind of
check is appropriate. Finally, although easy to implement,
TRUTHINESS was the least seen category and we considered
it to be largely redundant given that AutoAssert supports
both the BOOLEAN and EXISTENCE categories.

3.2 Tracing Program Values
Although a variety of approaches could be used to deter-
mine the values of variables under test, AutoAssert uses
a dynamic approach by executing an individual test case
and recording the runtime values assigned to the variable
selected by the developer.
it(’Should generate v1 with options’, function () {

const options = {
node: [0x01, 0x23, 0x45, 0x67, 0x89, 0xab]

};
const uuid = UUIDUtil.generate(’v1’, options);

});

Listing 3. An example test case. A developer would generate assertions
by selecting uuid and invoking AutoAssert.

For example, for the test case in Listing 3, the developer
selects a variable of interest (e.g., uuid) by right clicking
on the variable and invokes AutoAssert. The tool invisi-
bly injects observation code into the individual test case
immediately below the statement containing the selected
variable instance, executes the test case twice, and records
the values assigned to the variable (uuid). After the test case
is executed, the observation code is removed.2 JavaScript
and TypeScript provide native support for traversing the
properties declared on a variable, enabling AutoAssert to
easily examine the dynamic state of the variable after exe-
cuting the code under test.

Listing 4 shows the recorded values of variable uuid for
the two executions. Running each test case twice provides
an opportunity to detect when the two recorded values
differ (e.g., when assigned a timestamp or a randomly
generated value like a UUID)3. Identifying the properties
of a variable that change between executions decreases the
probability that AutoAssert will generate assertions that are
too strong. In this case, we can see that the runtime values
of uuid in the two test-case executions (1) are both strings,
(2) have the same length, but (3) contain different values.
In the case that two recorded values are identical (which is
the norm, rather than the exception), the value is recorded
only once. For more complex variables (e.g., for objects),

2. For TypeScript projects, the project is incrementally compiled after
injecting the tracing code, but before the test is run.

3. We hypothesize that non-deterministic tests will either be fully
random, or have potential differences that are determined by external
factors such as time, platform, or environment variables. Under this
assumption, running the test case twice should be sufficient to detect
differences.
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the value property will contain the serialized object. To
increase the options for generated assertions on instances of
classes, AutoAssert includes with the serialized value of an
object all method names as well as all property names and
values4.

[{
type: ’string’,
value: ’8b839680-e0e9-11ea-b5a6-0123456789ab’,
length: 36

},
{
type: ’string’,
value: ’232ab3a0-e0cd-11ea-b840-0123456789ab’,
length: 36

}]

Listing 4. An example of a final value recording, showing the identified
type and value. In this case, the variable’s values differ in the two
executions.

When a variable changes between executions, Au-
toAssert only generates assertions on aspects of the variable
that are common between executions. For example, in List-
ing 4, an existence assertion will be generated because the
variable contained a value in both executions. Since the vari-
able is a string in both executions, a type checking assertion
will also be generated. As the variable value differs between
executions, an equality assertion will not be generated.

3.3 Identifying Assertion Categories
Both test case executions usually return the same value for
the variable under test. AutoAssert next identifies the most
appropriate assertions for that value. While it would be
straightforward to simply use the equality operator to create
an assertion to compare the variable to its traced value Au-
toAssert tries instead to find a set of more-specific assertions
in order to maximize the utility of the error message raised
for any failing assertion, as detailed in Section 2.2.4.

In general, AutoAssert tries to generate three assertions,
each of increasing strength. The first, weakest, kind of asser-
tion checks for the existence of a value (e.g., undefined
or null). This assertion is applicable to all variables in
JavaScript and TypeScript test cases. The middle-strength
assertion checks an attribute of the variable, depending on
the runtime value of the variable. For an array, this would
usually be its length. For all other variables, its type will
be checked (e.g., string, number, object). For traces that
involve a thrown exception, the throws operator is used
to ensure an exception is thrown. Finally, the strongest kind
of assertion usually performs an appropriate equality check
(e.g., equals for primitive types, deep equals for complex
objects or arrays) to ensure the actual value matches the
expected value.

With respect to the last assertion, AutoAssert priori-
tizes specific assertions over generic equality-based asser-
tions. To do this, the tool always selects non-equality as-
sertion categories (from Table 1) if they are applicable to
the given variable and only falls back on equality when
more specific assertions are not appropriate (for example
expect(val).to.be.true would be used in place of
expect(val).to.equal(true) for boolean values). If
the developer selects a variable of interest that does not

4. Note that JSON’s standard serialization of objects (stringify())
does not serialize method names.

have a clear value, such as a function or a promise, then
only existence and type checks (and no equality check) are
generated.

While generating assertions from several categories of-
ten results in ‘extra’ assertions, the additional assertions
increase the specificity of the resulting error messages. For
example Listing 5 shows three assertions for a simple object
assigned to val. The first checks that the object val exists
(e.g., is not undefined or null). The second ensures that
val has the right type. The final check validates that val
has the expected value. While only the last check is required
(as a non-existent or wrongly-typed value would fail the
equality check), the initial checks would produce more
specific and easier to understand error messages should an
assertion fail in a future test run, making it easier for the
developer to diagnose the fault. These assertions are not
meant to be absolute: it is expected that the developer will
delete any assertion they deem redundant or too strict to
suit their personal preference, or edit them to meet their
needs.

const val = db.getPaper(’2021-10-0442’);
// Exist means neither null nor undefined
expect(val).to.exist;
// Typecheck similar to typeof operator
expect(val).to.be.an(’object’);
// Value equality
expect(val).to.equal({venue: ’tse’, year: ’2022’});

Listing 5. An example set of Chai assertions generated after a line of
test code that returns a simple object.

3.4 Selecting and generating assertions

Given that developers can write assertions in many different
forms, AutoAssert tries to increase the probability that the
generated assertions will match developer expectations by
choosing the assertion form that best matches those used by
a given project. For example, Listing 6 shows how even a
simple null-checking assertion can be written three different
ways. While the first of these is the most specific and would
be preferred in the absence of any other input, AutoAssert
can optionally statically analyze the developer’s project to
determine if the project usually uses specific versions of
equivalent forms for any assertion category.

expect(val).to.be.null;
expect(val).to.be.a(’null’);
expect(val).to.equal(null);

Listing 6. Semantically equivalent assertions for checking whether
value is null.

To do this, AutoAssert scans all test cases in the project,
and counts the usage of each assertion form for each
assertion category. For example, for equality assertions, the
analysis counts the usages of different forms of equality
(e.g., eq, eql, equal, equals, toEqual, strictEqual,
deepEqual, deepStrictEqual, toStrictEqual,
equalIgnoreSpaces) to determine which is most used
for checking equality in the existing test cases so that
generated assertions can be as consistent as possible with
prior developer-written assertions. This analysis only needs
to be done once, but can be re-run at any time.

Selecting project-specific forms is optional; if the static
analysis has not been run on the project (or there are not yet
any test cases in the project), AutoAssert will select the most
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Fig. 4. Usage of AutoAssert through IntelliJ context menu, adding an
option to the context menu when a selection is made.

common forms that were identified in the initial assertion
equivalence analysis (Section 2.2.4).

Generating assertion text is straightforward once the
assertion category, equivalent form, and order of an asser-
tion is determined. The generated text is a multi-line string
that is injected into the developer’s test code immediately
following the program statement that contains the variable
instance on which they invoked AutoAssert.

3.5 Evaluating assertions

Since AutoAssert is designed as an interactive human-in-
the-loop system, the developer finalizes their test case by
evaluating whether each generated assertion matches their
expectations. This step is crucial because assertions that
do not match their expectations could uncover unexpected
behaviour in the code under test, or could represent as-
sertions that differ from how the developer would like to
evaluate the current behaviour. The developers have three
broad ways to audit each assertion: (1) For any assertion
that matches their expectations, they can leave the assertion
text in the test case. (2) Developers can edit the text (e.g., to
make an assertion more specific or more broad) by modify-
ing the assertion text directly. (3) The developer can delete
any assertion that does not evaluate behaviour a developer
believes is appropriate for their test case.

AutoAssert includes a rationale statement, in the form of
a comment, inserted into the code along with each assertion
to explain what behaviour the assertion is validating. These
comments can be seen in Listing 5. These comments can be
disabled with a tool preference if developers find them to be
overly verbose.

3.6 Implementation

Our approach is amenable to any language that supports
dynamic variable introspection. The AutoAssert prototype
supports both JavaScript and TypeScript. The JavaScript
ecosystem supports a large number of assertion libraries; we
selected the Chai assertion library, although other assertion
libraries could be supported.

To embed AutoAssert into a developer’s normal work-
flow, the prototype was implemented as an extension to
the IntelliJ IDE5 because of its strong support for exten-
sions, wide user-base, and support for both JavaScript and
TypeScript. Figure 4 shows AutoAssert being invoked from
within IntelliJ. An online demonstration of the AutoAssert

5. https://www.jetbrains.com/idea/

plugin is online6 and the source code the entire AutoAssert
IntelliJ implementation is available online7.

AutoAssert is invoked with a context menu option “Gen-
erate Assertions” that appears whenever a developer right-
clicks on a variable in a test case in their IDE. AutoAssert
invisibly injects the observation code, runs the test case
(including the injected code), generates and inserts the as-
sertions into the test case for the developer to inspect, and
removes the injected observation code. The time required for
this process depends on the time it takes to run the test case
itself through the IDE; AutoAssert itself has no meaningful
overhead.

4 EVALUATING ASSERTION CORRECTNESS

To evaluate the quality of the assertions generated by our
prototypical AutoAssert tool, we performed an empiri-
cal simulation comparing our generated assertions against
those written by developers in real software projects. To do
this, we investigated:
RQ2: Can AutoAssert generate assertions similar to those
written by developers?
The goal of this simulation is to see how consistently Au-
toAssert can generate an assertion in the same category as
a developer-written assertion for the same variable in the
same program statement. Being able to consistently produce
assertions similar to those written by developers is crucial
for making an assertion generation tool that developers
could use and trust.

4.1 Methodology

To perform our empirical simulation, we selected 10 open
source projects with developer-written test suites. Projects
were selected from our final list of candidate projects as
discussed in Section 2.1, sorted by stars. We then chose the
first 10 projects whose test suites we were able to execute.
We identified all developer-written assertions in the passing
test cases from the 10 selected projects for a final list of
1,335 assertions. For each of these assertions we extracted
the element under test (assumed to be the left-hand side
of the assertion) and used this as input to trigger assertion
generation with AutoAssert. For each of these, AutoAssert
generated one to four assertions.

We then evaluated whether the assertions AutoAssert
generated for a variable matched those written by the de-
veloper. One author manually compared the assertions to
verify whether the semantics of the developer-written asser-
tion was replicated by the generate assertions (accounting
for equivalent forms as described in Section 2.2.4). A second
author independently examined a random sample of 20%
of the inspected assertions to verify the consistency of the
categorization process. The independent rater agreed on the
categorization for all 267 of the 267 randomly inspected
assertions, suggesting that assigning an assertion to its
category can be reliably performed.

Listing 7 shows an instance of a category match. In this
case one of the generated assertions happens to be identical,

6. Online demonstration: https://youtu.be/w1MoeZxfJko
7. Source: https://github.com/LucasZamprogno/AutoAssert
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TABLE 3
Breakdown of the dynamic generation results. AutoAssert almost

always generates an assertion of the same category (for the supported
assertion categories).

Category % of Sample Total # Correct % Correct

Equality 60.22% 804 796 99.00%
Boolean 7.57% 101 101 100.00%
Existence 7.57% 101 101 100.00%
Type 4.87% 65 64 98.46%
Length 4.42% 59 57 96.61%
Throw 0.67% 9 9 100.00%

Numeric 8.84% 118 0 0.00%
Truthiness 4.34% 58 0 0.00%
Properties 0.75% 10 0 0.00%
Inclusion 0.60% 8 0 0.00%
Calls 0.07% 1 0 0.00%
Patterns 0.07% 1 0 0.00%

Total 100.00% 1,335 1,128 84.49%

but this would also be considered a match if any other
equality-based assertion method were used. Listing 8 shows
a category miss, where the original assertion performs a
type-based check, whereas our assertion checks that the
value is exactly null as this was the value error actually
had assigned to it when the test executed.

Essentially, this evaluation examines whether any of the
(at most four) assertions match the assertion written by
the developer. This evaluation was not intended as a top-
k comparison as AutoAssert intentionally orders generated
assertions from weakest to strongest, and intentionally gen-
erates additional assertions that we believe improve the
quality of the assertion error messages, even if these extra
assertions are not exactly what the developer would write
themselves. For the generated assertions in Listing 7 we
could have configured AutoAssert to only generate the final
assertion, which matches the developer-written assertion,
but (as described in Section 3.3) we generated additional
assertions improve the understandably of a future assertion
failure. In practice this means that the last generated as-
sertion is the most likely to match the form written by the
developer as it is the strongest.

// Original assertion:
expect(data).to.deep.equal([’test1’, ’test2’]);
// Generated assertions:
expect(data).to.exist;
expect(data).to.be.a(’array’);
expect(data).to.have.length(2);
expect(data).to.deep.equal([’test1’,’test2’]);

Listing 7. Example of generated assertions containing the same
category (equality) as the original. This is considered a hit.

// Original assertion:
expect(error).to.not.be.instanceof(Error);
// Generated assertion:
expect(error).to.be.null;

Listing 8. Example of generated assertions that did not contain the same
category (type) as the original assertion. This is considered a miss.

4.2 Results

Table 3 shows the result of this evaluation. The AutoAssert
prototype generates assertions only for the categories in the
top half of the table. 85% (1,139 of 1,335) assertions in this

study fall into the six supported assertion categories. Of
these, AutoAssert generated corresponding assertions in the
same category 99% of the time (1,128 of 1,139 assertions).
This resulted in an overall accuracy of 84.5% (1,128 of 1,355
assertions) for the current AutoAssert prototype.

One type of assertion that is particularly challenging to
support is an assertion about what a value is not. Listing 8
shows an example of a developer-written assertion that a
variable should not be instantiated with an Error object.
Assertions such as these are challenging because the space
of what a value is not is infinitely large. To understand the
prevalence of negated assertions, we checked our results
for the presence of the not modifier or methods such as
notEquals: Of our successful assertion generations, 17 of
the 804 equality assertions, one boolean assertion, and one
length assertion all contain a negation. There are also 23 ex-
istence assertions with not modifiers, however AutoAssert
is able to generate these correctly, so this type of negated
assertion is not a concern.

Another failure mode is assertions where the element
under test is equal to a certain named function, such as:

expect(global[methodName]).to
.equal(ORIGINAL_DSL[methodName])

Generating such an assertion would require being able to
identify the name of the function returned and the proper
scoping in order to reference the function in an assertion.

Finally, as discussed in Section 3.2, assertion generation
is more complicated when the variable under test has dif-
ferent values in different test runs. In our sample, 40 of the
1,335 (3%) assertions we generated had elements under test
that were different when the test was run a second time.
AutoAssert was able to detect these differences by executing
each assertion twice and refrained from generating value-
based assertions.

This evaluation shows that for most assertions of interest
to developers, AutoAssert generates assertions of the appro-
priate category. Even if AutoAssert assertions do not exactly
match developer-written assertions (especially with respect
to variable values), the generated assertions are guaranteed
to pass because assertion values are derived from variable
values observed at runtime. This consistency is important
because in the context of a developer-invoked tool, if a
developer lacks confidence that the tool can produce the
types of assertion they want with valid values, they may
forego using the tool altogether.

RQ2 Summary

Using a heuristic-based dynamic approach to as-
sertion generation, AutoAssert can consistently pro-
duce assertions in the same category as those
originally written by developers. Across over
1,000 developer-written assertions, AutoAssert re-
produced the original assertion category 99% of sup-
ported assertions, with an overall accuracy of 84.5%.

5 USER STUDY

Since AutoAssert was able to generate appropriate asser-
tions for 84% of cases, we next performed a user study
with developers to learn how they perceive the generated
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assertions. This evaluation was important because while
assertion generation tools have been evaluated empirically,
they have rarely been evaluated interactively with real de-
velopers. Specifically, we sought to answer the following
two research questions:
RQ3: How do developers write assertions in practice?
RQ4: Do developers find the assertions generated by
AutoAssert valuable?
These questions investigate whether the assertions gener-
ated by AutoAssert are valuable to real developers.

5.1 Methodology

Participants for our user study were recruited primarily
through various software-development related forums on
Reddit.8 23 individuals, 21 men and 2 women, participated
in the study in some capacity, with 17 completing all of
the study’s tasks and both surveys. The study took 20–30
minutes to complete and 4 of the developers won $50 gift
cards through a raffle at the study conclusion.

The study was completely browser-based and began
with a pre-task survey; the participants next used a web-
based version of AutoAssert to generate assertions for eight
test cases; and the study concluded with a post-task survey.
This online format was not our preferred modality, but in
response to COVID-19 we decided this was the prudent way
to move forward and engage engineers.

5.1.1 Pre-task survey
The pre-task survey collected participant consent and gath-
ered relevant demographic information including years of
professional programming experience, years of experience
writing tests, and familiarity with JavaScript. The goal of
the pre-task survey was to answer RQ3 and learn about the
processes participants follow as they write their tests and
assertions; participants were asked the following questions:
PRE-1: Do your tests include (a) no assertions, (b) as-

sertions for pre-conditions, (c) assertions for post-
conditions, (d) both pre- and post-conditions.

PRE-2: What process do you follow when writing asser-
tions?

PRE-3: Do you use any external tools for test or assertion
generation?

At the conclusion of the pre-survey, participants were
automatically forwarded to our browser-based version of
AutoAssert.

5.1.2 AutoAssert tasks
To answer RQ4 we sought to have participants use Au-
toAssert and evaluate the generated assertions for real
test cases taken from real systems. The browser-based Au-
toAssert is based on the same code backend as the IDE
version of the tool, but with a browser-based code editor9.
The UI for the tool was otherwise the same: participants
could view the test and associated source file, they could
invoke AutoAssert with a context menu by clicking on
the variables they wanted assertions for, and AutoAssert

8. Specifically, r/javascript, r/devops, r/softwaretesting
9. Based on Ace https://ace.c9.io

Fig. 5. Usage of AutoAssert through the web interface created for the
user study, replicating the context menu behaviour from the initial plugin
version.

would inject its generated assertions into the browser-based
editor for the participants to manipulate as they thought
appropriate. The UI for the browser-based AutoAssert is
shown in Figure 5.10

For this portion of the study, participants used Au-
toAssert to generate assertions for a series of test cases.
When presented with generated assertions, the participants
were free to delete, modify, or add any assertions they
wanted until they felt the assertions were appropriate for the
test case. Participants were also able to use code comments
if they wanted to provide specific feedback about the asser-
tions. Participants performed one training task and seven
experimental tasks. The training task was a simple test case
along with comments that showed the participant how to
invoke AutoAssert and guided them through a sample task.

Five of the seven non-training tasks were taken from
two open source projects: Typeset,11 which is a string ma-
nipulation library for replacing ASCII characters with more
visually appealing Unicode characters, and Nock,12 which
is a server test mocking framework. Each task consisted of
a real test case selected from one of these projects but with
the assertions removed. To allow participants to concentrate
on understanding the test code instead of the product code,
we added a short comment to each test case summarizing
the intended functionality being tested. Project order was
randomized, as was test order within a project; however, test
cases from the same project were always presented together
so that participants did not have to context switch between
projects.

We also included two ‘poison pill’ tasks that appeared
between the two randomized blocks of tasks. These tasks
generated assertions that were intentionally poor, to evalu-
ate how developers reacted to poor automation. Specifically,
for these tests, AutoAssert generated strict equality checks
on code that produced unique results on every run (i.e., Au-
toAssert refrained from running the test cases twice to check
for differences in elements under test). We devised these
two tasks to ascertain whether participants would modify
poorly generated assertions or comment on the challenges
in the post-survey. These poison pill tasks were meant to
check that participants were reading and thinking about the
assertions as intended, and not immediately moving to the
next task to finish the study faster. For all tasks, the browser-
based tool recorded the state of the code editor when the

10. An anonymized, log-free version of the complete browser-based
AutoAssert implementation and all experimental tasks can be found at
https://se.cs.ubc.ca/AutoAssert/ (VM may take a moment to start).

11. https://github.com/davidmerfield/Typeset
12. https://github.com/nock/nock
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participant progressed to the next task (by tapping ‘next’
in a bar on the bottom of their screen). After completing all
eight tasks participants were automatically forwarded to the
post-task survey.

5.1.3 Post-task survey
The post-task survey acted as a debrief for the AutoAssert
tasks. Participants were asked the following questions:
POST-1: Would you use a tool like AutoAssert if it were

integrated with your development environment?
POST-2: How did you find AutoAssert’s runtime perfor-

mance?
POST-3: In terms of assertion quality, how did the gen-

erated assertions compare with those you would
write manually?

POST-4: Were the automatically generated assertions better
or worse than what you would normally write?

POST-5: Can you foresee scenarios where assertion gener-
ation may fail?

POST-6: Do you have any suggestions to improve the
automatically-generated assertions?

The first three questions were based on a Likert scale
while the rest were open ended.

These questions sought to gain further insight into RQ4
as well as record how well developers believed they had
performed on the study’s AutoAssert tasks.

5.2 Results

In this section we discuss the results from our user study, in-
cluding the pre-survey about real-world, test-development
behaviour, the study’s assertion-generation tasks, and post-
survey feedback about AutoAssert.

5.2.1 Pre-task survey.
Twenty-three participants completed our pre-survey (91%
male). Of these, 74% identified themselves as professional
engineers and had an average of 11.7 years of development
experience. 74% of participants said they were at least
moderately familiar with JavaScript. Seventeen participants
completed the AutoAssert tasks and post-survey in full.

Kinds of assertions (PRE-1). Two participants (9%)
stated they did not typically include assertions in their tests,
beyond the tests’ built-in ability to detect thrown errors.
Eleven participants (48%) claimed to include assertions as
post-conditions and ten participants (43%) claimed to use
assertions as both pre- and post-conditions in their test
cases.

Assertion writing process (PRE-2). Participants re-
ported to employ a wide variety of processes when creating
their test cases and assertions. Although for simple unit tests
developers may have some assertions in mind when starting
their test case, for more complex test cases one participant
said, “If [the code under test] is something more complex, I run
the code and then verify that the result makes sense before writing
assertions.” This notion of checking the output before writing
the assertions arose frequently, “I would run the code inspect
the output and then write assertion against it”, “I inspect the
output before writing my assertions”, and “inspect the actual
output after running the test”.

Ultimately, although most participants (91%) reported
that they often knew in advance which assertions they
would write, a surprising number (65%) mentioned running
the code under test and inspecting its output in one form
or other. Taken together, these comments suggest that the
participants’ approaches to writing assertions fit well with
the process AutoAssert embodies, as these developers often
have (at least initial) implementations before writing their
test cases and it is not uncommon that they inspect program
output before writing assertions.

Existing tools (PRE-3). No participants reported using
any existing test generation or assertion generation tools.
One concern with such a tool was the overhead associated
with learning how to use such a tool and whether it would
fit with their typical test-writing processes. Another concern
was around whether the assertions would actually be accu-
rate for the code under test.

RQ3 Summary

Developers often write their test cases and asser-
tions after developing the code under test. They
frequently run their new test cases and inspect the
values returned by the code under test while creating
and debugging their assertions.

5.2.2 AutoAssert tasks
Seventeen participants completed all of the study’s Au-
toAssert tasks, of which fourteen of the seventeen partici-
pants indicated that the ‘poison pill’ tasks were problematic
(they either changed the assertions or made inline com-
ments), suggesting a high level of engagement with the
AutoAssert output. In our analyses below, we exclude the
three developers who did not notice these problems (for a
remainder of fourteen participants).

Five participants left all of the assertions generated by
AutoAssert in place for the five good tasks, suggesting that
they agreed that the assertions generated by AutoAssert
were appropriate. For the nine participants who changed
the assertions, the most common behaviour (performed by
six participants) was to remove the less strict existence
and type-checking assertions in places where they believed
(correctly) that an equality check would also catch these
faults.

Two participants left comments on Nock tests involving
server responses, noting that they would create assertions
for both the response code and response body, rather than
create assertions for only one or the other. Such comments
reflect on the structure of the task (as it was setup to evaluate
the response code, not the response body) rather than on the
tool itself. One participant deleted the strict equality check
from the string-manipulation tasks, leaving the existence
and type checks. One participant extracted a literal value,
which appeared in both the test setup and the generated
assertion, into a variable for cleaner code. Three participants
made changes to the expected values that did not match
the program behaviour in at least one test, presumably
misunderstanding the intended behaviour of the code under
test or believing the code to be incorrect.

AutoAssert task summary. Ultimately, the fourteen
engaged participants generated a combined total of 210
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assertions using AutoAssert for the non-poison-pill tasks
they performed. Of these assertions, they “approved” 174
(83%) as being correct by leaving them in the code and “re-
jected” 36 (17%) by removing or modifying them. Figure 6
shows an instance of a participant removing two of the three
assertions generated during a task.

5.2.3 Post-task survey

After using AutoAssert for eight tasks, participants pro-
vided a wealth of feedback. Quantitatively, 15/17 (88%) of
participants expressed an interest in using a tool like Au-
toAssert if it were available to them (POST-1). The runtime
performance of a tool like AutoAssert can be a concern given
the tight feedback loop developers perform while iterating
on their tests. 16/17 (94%) of respondents found the tool
performance to be acceptable or better (POST-2). Naturally,
we were most interested in how developers perceived the
quality of the assertions. Only 4/17 (24%) of participants
found AutoAssert’s automatically-generated assertions to
be somewhat worse than those they would write themselves
(POST-3). More details about these responses can be seen in
Figure 7.

AutoAssert assertion quality (POST-4). The participants
who felt that the assertions could be improved provided
opposing views as to what ‘better’ means for assertion qual-
ity. Four of the participants suggested that early, less-strict
assertions were functionally captured by the later more-
strict assertions, were unnecessary, and should be removed.
Other participants appreciated the increasing specificity of
the generated assertions and worried that the most-strict
assertions might be overly specific, preferring to remove the
latter. For example, one participant noted that “They do cover
cases that I might miss (e.g., the exists checks)” where another
stated that “I found the exists and type assertions redundant. I
like that they might help debug the cause of a bug but the diff
given when the test fails should make those cases obvious to spot
with the value assertion alone.” This suggests that a one-size-
fits-all Assertion Generation approach might not be feasible
and that some kind of personalization might be warranted
to accommodate divergent assertion-writing strategies.

Participants did note that AutoAssert produces asser-
tions that they might not have created themselves but that

Fig. 6. Three assertions generated by AutoAssert during a task. When
evaluating the generated assertions, the participant removed the first
two assertions (as shown in red text) but kept the final, most specific,
assertion (as shown in green text).

Fig. 7. Breakdown of participant responses to the three Likert-scale
questions from the post-task survey (POST-1, POST-2, and POST-3).

they thought were valuable, “It would generate assertions
that I might be too lazy to write myself” and “They were very
thorough, which encouraged me to include more of them.”

Encouragingly, many participants commented on the
poison-pill tasks.13 These participants noted that assertion
generation would not be appropriate for test cases that
have random or changing values (POST-5). Fortunately, the
real AutoAssert tool does handle these situations, and it
would not have produced failing assertions for these two
tasks if all its features had been enabled. Participants also
expressed concern about other scenarios not included in
the tasks (POST-5): One participant noted that it would be
hard to handle cases where only a substring of a result
(part of our Inclusion category) was the only important
part of the return value. Multiple participants noted that
deep equality checks would be decreasingly appropriate as
objects or arrays under test became larger.

Improving assertion generation (POST-6). Many par-
ticipants had general advice for improving assertion-
generation tools. One participant suggested having an ex-
plicit configuration option to adjust the strictness of the
generated assertions, such as a choice between “deep equals
vs. some elements are equal vs. lengths are equal vs. length is
at least vs. length is non-zero”. Multiple participants felt that
the generated assertions should try to adhere to the coding
style and conventions of existing test cases (e.g., for quotes,
line lengths, and indentation). One participant, rightly, was
worried that automated assertion generation “may offer the
developer a false sense of security”. We fully agree: we believe
that it is important that assertion-generation systems be
human-in-the-loop, so that the developer can carefully ex-
amine the automatically generated assertions and ensure the
values they check are actually correct (i.e. that the assertions
test the right behaviour, and do not create passing assertions
for incorrect behaviour).

RQ4 Summary

Developers found the assertions created by Au-
toAssert to be broadly useful at validating program
behaviour for the test cases they evaluated. We hy-
pothesize that additional personalization (e.g., for
strictness and style) could address the majority of
concerns developers identified with the generated
assertions.

13. Participants did not know that these tasks generated intentionally
‘poor’ assertions.
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6 DISCUSSION

In this paper we have confirmed that most test cases have
few assertions and those assertions tend to be uncompli-
cated (Section 2), and that AutoAssert can generate the
majority of these automatically (Section 4). We have also
found that assertion generation can fit within a developer’s
testing workflow and that developers respond positively
to generated assertions (Section 5). That said, AutoAssert
has several limitations, and developers have made concrete
suggestions for future improvements.

6.1 Adaptations to Developer Feedback
Previously, Section 3.4 described how AutoAssert detects
which assertion forms to use in a test suite. However, devel-
opers expressed a desire to be able to explicitly overrule
the detected forms, and we have added this capability
to the AutoAssert customization page. For each assertion
category, developers can optionally choose which specific
form of assertion they prefer, overruling the form chosen
by AutoAssert’s static analysis. To further address concerns
around superfluous assertions, AutoAssert now includes a
verbosity option enabling developers tho choose whether
minimal or more verbose assertions should be generated.

6.2 Improving Readability with Generated Assertions
While not the focus of our study, we formed several obser-
vations while reading through large numbers of sampled
and generated assertions about how assertion generation
tools could improve test case readability. One problem ob-
served in our sampled assertions was a surprising num-
ber of instances where developers had written assertions
“backwards”. That is, the value under test is placed as
the expected value, and vice versa. For example assertions
such as expect(true).to.equal(result). While the
functional correctness is often maintained in these cases, as-
sertion readability suffers. Generated assertions would not
make this mistake, and would improve readability through
consistency. Although there are many different assertions
methods and semantically equivalent forms for the same
behavioural check, generated assertions would be consistent
in their selection of assertion forms for a given behaviour.
Additionally, when multiple assertions are produced they
will always be produced in the same order in terms of
strictness without developer intervention. Much like clean
code is desirable for easier understanding and maintenance,
clean assertions similarly benefit test code.

6.3 Limitations and Future Work
There are a few areas where our heuristic approach for
generating assertions falls short.

Properties within complex objects. When asserting
behaviour on complex objects, developers often assert on
a specific property (or subset of properties) about the object.
Although a developer could choose instead to save that
specific property in a variable and then assert on that
variable, it would be more natural for their workflow if a
tool could suggest or determine the correct property. One
extension that we aim to add is interactive support that
would allow users to explore and choose which properties

to assert on, for languages with static class definitions. This
would improve the selection of assertion targets and the
specificity of the assertion methods.

Richer assertion categories. Currently AutoAssert
supports assertion categories like EXISTENCE, TYPE, and
EQUALITY well. However categories such as RANGES and
INCLUSION are currently not supported. Expected values
for these categories are not directly inferrable from observed
values as they could require isolating a particular sub-
element of interest, or extrapolating a range of permissible
values. Improvements in this area would likely require step-
ping out of the bounds of simple heuristics. One direction
could be to combine the observed runtime values with a
learning approach like used by Watson et al. [10].

Assertion evolution when tests fail. Maintaining
test suites requires considerable developer effort [14]. Au-
toAssert could be extended to help developers update their
tests when assertions fail to account for new dynamic be-
haviour by presenting them with new assertions for their
consideration, thereby easing the process of evolving their
test cases.

6.4 Threats to validity

Several threats to validity should be considered given our
experimental design.

External validity. The kinds of assertions developers
write may be influenced by their choice of language and
framework. In this paper we have focused on JavaScript
and TypeScript and our findings may not hold for other
languages. Similarly, the projects we selected for our Au-
toAssert user study and quantitative analysis may not be
representative of all test suites and test cases, although we
tried to reduce this threat by examining a broad selection of
105 projects.

Specifically, the choice of language and framework may
impact the relative weights and categories given in Table 1.
For example we would expect the percentage of type checks
to be substantially lower in statically typed languages such
as Java, compared to the dynamically typed JavaScript
where developers do not have built-in type checking at
compile time. However we do not believe language or
library selection weakens other aspects of AutoAssert: the
motivations behind developer-in-the-loop dynamic asser-
tion generation should still be broadly applicable.

Our generated assertions are also molded by the lan-
guage we chose to support. JavaScript is well suited to
creating and comparing literal values. Prior work has shown
how these limitations can be overcome: The Orstra system
demonstrated that static analysis can find appropriate ob-
server methods to view private class fields, and suggest
sequences of method calls to create class objects for use as
expected values in Java [15].

Internal validity. Our empirical study of developer-
written assertions in Section 2 did not consider assertions
within helper functions as they could not be attributed to
individual test cases. Additionally, the method in Section 4
considered AutoAssert generated assertions to be ‘correct’
if they matched the same category as assertions written by
developers. It is possible that our evaluation results would
have reported fewer matches if we instead had directly
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compared the semantics of the generated and developer-
written assertions. We tried to reduce this threat by engag-
ing industrial developers to use the tool and evaluate gener-
ated assertions for real test cases. The tasks our participants
completed with AutoAssert were based on projects and tests
with which they were not familiar; this is unusual as test-
writers are typically familiar with the code they are validat-
ing. As such, some study participants may have been more
deferential to automated tools than they otherwise might
be. Since the focus of the user study was on the assertions
themselves rather than the test outcome, participants might
have behaved differently if they had run the test cases in
their own familiar environments. Unfortunately, because of
the COVID-19 pandemic, we felt obligated to pivot to an
online user study.

The quantitative study in Section 2 and simulation study
in Section 4 both examine the assertions written by devel-
opers in their own test cases. Our analysis did not seek to
determine whether these developer-written tests were unit,
integration, or system tests. While our primary focus was
to support unit testing, we do not see specific barriers to
AutoAssert helping developers generate assertions for other
categories of tests, as long as the code under test can be pro-
grammatically invoked and some output variable examined
for correctness, although this bears future investigation.

7 RELATED WORK

Several works have investigated generating assertions for
a variety of tasks. Support for generating assertions is
motivated by the fact that developing test oracles is expen-
sive and even human-facing approaches require innovation
to reduce their costs [6]. Recent work has further con-
firmed that developer-written test-case assertions need to
be strengthened to better detect faults [7]. Static approaches
have the benefit of being relatively fast, at the risk of gener-
ating assertions that may not pass when executed. Dynamic
approaches generate assertions that are more likely to pass
(unless they explicitly seek out failing assertions as a part
of fault identification). The accuracy of generated assertions
matters, if the goal of the approach is to have developers
examine failing assertions.

Most tools have been evaluated empirically, and thus far
none have been evaluated with developers, despite being
developer-invokable tools. A summary of the most closely-
related prior work is provided in Table 4. Unfortunately,
given the differences in approach, programming language,
and tool intent, a direct comparison of the accuracy of
these approaches is not possible. Compared to prior work,
AutoAssert was uniquely designed to work interactively
with the developer as they created their individual unit
tests. In this way, AutoAssert seeks to reduce development
friction associated with writing unit tests by enabling the
developer to concentrate on invoking the code-under-test
and letting the tool generate reasonable assertions for that
code [16]. Our user-based validation is also unique as it
provides the first evidence that developers can both use, and
value, the assertions generated by our developer-in-the-loop
approach.

TABLE 4
High-level comparison to prior approaches whose main focus is

generating developer-facing test case assertions.

Tool Method Evaluation
Empirical User

Atlas [10] Static Yes No
UnitPlus [8] Static Yes No
Obsidian [9] Static No No
Eclat [11] Dynamic Yes No
ZoomIn [12] Dynamic Yes No

AutoAssert Dynamic Yes Yes

The Atlas system by Watson et al. applies machine learn-
ing to assertion generation [10]. Atlas is trained on the JUnit
tests of thousands of Java projects containing hundreds of
thousands of assertions. These tests are also abstracted to
improve pattern finding. The system was evaluated by re-
moving assertions from a sample of tests excluded from the
training corpus and seeing if Atlas could recreate them. For
each removed assertion, Atlas achieved a 31% accuracy with
its first generated assertion, and nearly 50% accuracy for the
original assertion being replicated in the top five generated
assertions. Atlas achieves reasonably high accuracy without
the need for dynamic analysis. However without runtime
information, the generated values cannot be guaranteed to
match their actual values.

The UnitPlus tool recommends test and assertion code
for developer-selected methods [8]. UnitPlus performs a
static analysis of the class under test to determine which
methods from the class are state-modifying and which are
observers. UnitPlus then attempts to construct a series of
state-modifying method calls to configure an object for
use in an assertion. Similar to AutoAssert, UnitPlus is
a developer-in-the-loop solution in which the developer
selects an element under test to produce both test code
and assertion code. Through an evaluation with four li-
braries, UnitPlus was shown to identify 187/314 (60%) state-
modifying methods, which is how the tool generates as-
sertions. However without dynamic information, any non-
trivial expected value would be need to be provided by the
developer.

Eclat leverages invariant detection to generate human-
readable assertions for generated test cases [11]. Leveraging
the Daikon invariant detection system [17], Eclat observes
runtime pre- and post-conditions over a series of test execu-
tions. These invariants can then be used as pre-condition
and post-condition assertions in future tests. Eclat’s goal
is to identify fault-revealing inputs and it meets this goal
with an evaluated precision of 59% and a false-positive
rate of 12%. The ZoomIn tool also leverages Daikon to
identify assertions suited to locating faults and to note
which assertions may be faulty. Additionally, invariants may
inform future developer-written tests [12]. For example if an
invariant appears to be unexpectedly restrictive, this may be
indicative of an insufficient variety of test inputs. ZoomIn
identifies 50% of fault-inducing inputs by examining only
1.5% of generated assertions. Neither Eclat or ZoomIn have
been evaluated with users.
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Obsidian is another instance of a developer-in-the-loop
system to support developers in writing test cases [9]. Ob-
sidian can setup test cases and structure the test cases with
helper methods, leaving the developer to specify specific
assertion values. Some values can be guessed using stati-
cally accessible defaults, such as specific constructor fields,
to provide some tests with functional generated assertions.
As such, Obsidian provides complementary functionality
to AutoAssert by providing static test setup but requiring
developers to manually determine correct assertion values.
Unfortunately, these assertions have not been evaluated in
terms of correctness or developer utility.

Test-suite generation approaches also generate assertions
to act as oracles for the generated test suites. The Orstra
test-generation tool combines state-modifying and observer-
method analysis with dynamic runtime information [15].
With a focus on automatically generating test suites, Orstra
executes tests and collects all object and observer-method
states within the test as it runs. EvoSuite automates test-
suite generation, whereby test-body code is created through
a mix of methods including symbolic execution and an evo-
lutionary approach [18]. EvoSuite uses mutation testing to
select the assertions that are most likely to reveal faults, pro-
viding high-quality assertions at the cost of long runtimes
associated with mutation testing. Similairly, Randoop also
generates complete regression test suites [19] . In contrast,
AutoAssert fills a different use case by assisting develop-
ers who seek to create or modify an individual test case
rather than generate an entire suite. While test generation
approaches tend to generate whole test suites, AutoAssert
is designed to be used interactively to help developers
build their test suite assertions within their normal testing
process.

8 CONCLUSION

Assertions play a fundamental role in automated test cases
as they check that the code under test behaves as expected.
While assertions are numerous, they are also somewhat
repetitive and have well-defined structure making them
amenable to automatic generation. In this paper, we investi-
gate how developers write assertions in practice through
an empirical study and introduce AutoAssert, a tool to
interactively generate assertions for developers as they write
their test cases. AutoAssert is a human-in-the-loop system: a
developer explicitly invokes the tool to generate assertions
for a specific variable they want validated in a test case;
they can then use their expertise to ensure both that the
generated assertions match their expectations and that the
asserted values are correct. In an empirical study of over
1,000 assertions, AutoAssert was able to generate assertions
similar in purpose to those written by developers 84% of
the time. Through a user study, developers reported that
the generated assertions were broadly useful and many
developers wished to use the tool for their own projects,
showing developer interest in automated support for asser-
tion generation.
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