
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Comparing Block-based Programming Models
for Two-armed Robots

Nico Ritschel, Vladimir Kovalenko, Reid Holmes, Ronald Garcia, and David C. Shepherd

Abstract—Modern industrial robots can work alongside human workers and coordinate with other robots. This means they can
perform complex tasks, but doing so requires complex programming. Therefore, robots are typically programmed by experts, but there
are not enough to meet the growing demand for robots. To reduce the need for experts, researchers have tried to make robot
programming accessible to factory workers without programming experience. However, none of that previous work supports
coordinating multiple robot arms that work on the same task. In this paper we present four block-based programming language designs
that enable end-users to program two-armed robots. We analyze the benefits and trade-offs of each design on expressiveness and
user cognition, and evaluate the designs based on a survey of 273 professional participants of whom 110 had no previous
programming experience. We further present an interactive experiment based on a prototype implementation of the design we deem
best. This experiment confirmed that novices can successfully use our prototype to complete realistic robotics tasks. This work
contributes to making coordinated programming of robots accessible to end-users. It further explores how visual programming
elements can make traditionally challenging programming tasks more beginner-friendly.

Index Terms—Programming environments, User interfaces, Robot programming, Parallel programming, Block-based programming

F

1 INTRODUCTION

Robot technology has advanced substantially and now
supports robots that can safely work alongside humans.
These robots, called collaborative robots, work faster and bet-
ter than either humans or robots alone [1], [2]. Collaborative
robots have become cheap and effective enough to make
them suitable for many tasks where robots were previ-
ously uneconomic [3]. When multiple collaborative robots
interact with each other, they can solve tasks even more
effectively [4]. For example, they can hold, weld, screw or
fold a single object in parallel, or solve new tasks, like jointly
lifting heavy loads.

Unfortunately, collaborative robots are difficult to pro-
gram, and doing so requires complex programming tools.
When multiple robot arms need to interact, they cannot be
programmed independently. There must be coordination be-
tween the computations on collaborating robots, which adds
further complexity. For this reason, robots are programmed
by experts, but expert programmers are expensive and there
are not enough of them available to program all robots [5].

If the workers collaborating with the robots could pro-
gram the robots themselves, then there would be enough
programmers, and it would be cheaper. But these workers
are usually end-users without programming experience or
education. They need programming tools that are easier to
use and learn.

Researchers have tried to create easy-to-use program-
ming tools. Much of this work uses block-based program-
ming languages. Block-based languages appeal to begin-

• N. Ritschel, R. Holmes and R. Garcia are with the Department of
Computer Science, The University of British Columbia, Vancouver, BC
V6T 1Z4 Canada.

• V. Kovalenko is with JetBrains Research, JetBrains N.V., 1017 ZM
Amsterdam, The Netherlands.

• D. Shepherd is with the College of Engineering, Virginia Commonwealth
University, Richmond, VA 23284 USA.

ners due to their graphical, friendly design. Block-based
languages make it easier for beginners to learn program-
ming [6]. There are also block-based languages for pro-
gramming collaborative robots [7]. However, coordinated
programming of multiple collaborative robot arms is not
supported by block-based languages.

In this paper, we explore novel techniques to support
coordinated programming in block-based languages. After
creating several candidate designs, we conducted a pre-
liminary study of whether end-users could understand the
behaviour of coordinated programs presented to them. We
found that they best understood those designs where the
program layout resembles the physical layout of the collab-
orative robot. Based on this finding, we derived four candi-
date design options that differ with respect to their synchro-
nization model and program flow presentation. Choosing
an explicit synchronization model significantly extends the
expressiveness of the designs compared to using implicit
synchronization. The presentation of program flow does not
affect the semantics or expressiveness of the designs.

For each of our candidate designs we identified potential
benefits and trade-offs in terms of program comprehension
and usability. We empirically evaluated these trade-offs
through a survey of 273 professional users like engineers,
managers, and robot workers (110 without previous pro-
gramming experience). We found that participants under-
stood all variants equally well, but gave higher usability rat-
ings for those that present program flow vertically. Figure 1
shows these findings mapped to the two-dimensional de-
sign space we explored in our survey. We built a functional
prototype of the design that uses explicit synchronization
and vertical program flow. An interactive experiment on 11
industrial participants confirmed that most could use our
prototype to successfully write coordinated programs for a
multi-armed robot.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Implicit Synchronization,
Vertical Flow (I-V)

Implicit Synchronization,
Horizontal Flow (I-H)

Explicit Synchronization,
Vertical Flow (E-V)

Explicit Synchronization,
Horizontal Flow (E-H)

Ex
pr

es
si

ve
ne

ss

higher

lower
lower higherPerceived Usability

Fig. 1: Design space based on synchronization model and
program flow direction. Each of the designs shown in Fig-
ures 6, 7, 8 and 9 corresponds to one cell of this table.

2 RELATED WORK

Our work draws ideas from robot programming, visual
programming and parallel programming. It further builds
on established technology from end-user programming and
computer science education. In this Section we discuss these
influences on our work.

2.1 End-user Robot Programming
Most robot programming tools expect users to have a
background in both computer science and robotics. Even
these users need extensive training to program robots effec-
tively [8].

Biggs and MacDonald surveyed tools that try to make
robot programming more accessible for beginners [8]. They
categorized the approaches taken by these tools as manual
or automatic. Manual tools use domain-specific languages
that are simpler, have more scaffolding and use higher-
level commands than expert languages. Automatic tools on
the other hand try to eliminate the need for programming
altogether. One example of an automated approach allows
users to move the robot arm by hand and then replay the
movements later [5]. This approach, called demonstration-
based learning, has also been combined with object, task or
gesture recognition to make it even more effective [9].

Even beginner-friendly tools can have a range of target
audiences. Some systems, like Lego Mindstorms EV3 [10]
and MORPHA [11], target absolute novices with no pro-
gramming experience. Other systems, such as Polyscope [12],
are more complex and target intermediate users. Systems
for intermediate users not only allow users to write more
complex programs but also to target more advanced robots.

This work was heavily influenced by CoBlox. CoBlox is
a programming environment designed to allow beginners
to program collaborative robot arms [7]. In CoBlox, users
can manually move the robot arm to its intended location
and then capture this position to use it in a block-based
program. CoBlox was the first environment to combine a
manual programming environment with techniques from
demonstration-based learning. The authors of CoBlox have
evaluated it and found that it is easier to learn and use for
end-users than other commercially available tools [7].

CoBlox uses a simple domain-specific programming lan-
guage. All programs are linear sequences of blocks that
move the robot arm or hand. CoBlox only supports pro-
gramming one robot arm at a time and cannot express
coordination among arms. It is therefore not suitable for
programming multiple robot arms that work in tandem.

2.2 Block-based and Visual Programming

The success of environments like Scratch [13] and Blockly [14]
made block-based programming a popular topic of research.
Studies have shown that block-based languages can effec-
tively teach programming concepts to novices [15] and can
be easier to learn than text-based languages [6]. Recent stud-
ies suggest that these strengths also apply to block-based
robot programming, both in education [16] and industry [7].

Block-based languages are typically described as "graph-
ical" [13] or "visual" [17]. This suggests that they are related
to the research area of visual programming languages [18].
Block-based languages use similar techniques to visual pro-
gramming languages: They use visual channels like color
and shape to encode information, and they use graphical
user interactions like drag-and-drop. However, they do not
apply the same overall strategies as visual programming
languages: Unlike visual languages, they do usually not
attempt to use a concrete visual presentation of data in its
domain. They further do not support the direct manipu-
lation of data, or try to make semantic information more
explicit [19]. Only some block-based languages, like Scratch,
attempt to give users more immediate, live feedback than
traditional text-based languages [20]. Block-based languages
are text-based languages, where the text is encapsulated in
graphical blocks. We therefore do not believe that block-
based languages should be categorized as visual program-
ming languages.

The authors of most block-based languages expect users
to eventually transition to text-based programming [21].
This is because they are often used in computer science
education. Their goal is to prepare students to program
in traditional programming languages. This explains why
block-based languages do not use the same strategies as
visual languages: If they look too different from text, it is
harder for users to transition to text-based languages later.

This work targets industrial end-users. Most industrial
end-users do not intend to learn programming beyond what
is necessary for their current task. Therefore we do not need
end-users to be able transition to text-based programming
languages. We can apply all of the previously mentioned
visual design strategies to our language design.

2.3 Parallelism in Block-based and Visual Languages

Coordinating multiple robot arms is very similar to coordi-
nating parallel programs. In both cases, concurrent actions
need to be executed with specific timing constraints to serve
their intended purpose. Parallel programming is typically
considered an advanced topic in computer science educa-
tion. It is only taught after students have already mastered
sequential programs. We want to enable novices to learn
sequential and coordinated programming at the same time.

Previous block-based programming languages have
used a variety of techniques to make parallel program-
ming beginner-friendly. Environments like Scratch [13] sup-
port concurrent, event-driven programming for handling
user interactions. The Parallel Snap! [22] environment for
programming distributed systems supports domain-specific
high-level abstractions such as MapReduce or the producer-
consumer problem. This allows these environments to cover

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Fig. 2: Parallelism in Alice. While multi-threading and syn-
chronization are abstracted into a single "do together" block,
the nested, linear structure can make programs hard to read.

one specific type of parallelism very effectively. The block-
based language Alice on the other hand uses a special "do
together" block that enables generic multi-threading [23].
An example program that uses one is shown in Figure 2.
Alice supports a wide range of parallel programs but also
provides less scaffolding and visualization than Scratch or
Parallel Snap!, making it potentially harder to learn.

Visual programming languages have also aimed to sim-
plify parallel programming. The graph-based visual robotics
language Lego Mindstorms EV3 allows each command
node to have multiple outgoing edges. All nodes connected
in this way are executed in parallel [10]. Figure 3 shows
an example program that uses EV3. Both the top and the
bottom row of the program are executed simultaneously.

An advantage of EV3’s approach is that programs can
usually be arranged to look like a timeline from left to
right or top to bottom. However, this requires that the users
manually arrange each node on the canvas to match the
intended program flow. To ensure that two commands are
executed simultaneously, users further need to manually
synchronize them: They need to manually add a complex
barrier construct (highlighted in yellow in Figure 3). Besides
adding visual clutter, this also requires users to correctly use
other non-trivial language features like variables and loops.
Other visual data-flow languages that support parallel pro-
gramming, like VIVA [24] or CODE [25], have similar design
issues as EV3.

The block-based and the visual programming languages
we described have significant drawbacks. Some only sup-
port specific forms of parallel programming that are not
fit for coordinating robots. Others do not provide effective
visualization, or require significant manual effort from the
user. We aim to support better visualisation and propose a
language design that fits the needs of robot programmers.

3 DESIGN CONSIDERATIONS

The actions of multiple robots can be coordinated in many
ways. The optimal choice depends on the task that the user
is trying to complete. In this work we focus on coordinating
two robot arms. Two robot arms can be coordinated in two
distinct ways:

• Synchronous coordination - Some tasks require both
robot arms to move at the same time and speed, al-
though potentially in different directions. Examples for

Fig. 3: Parallelism in Lego Mindstorms EV3. The sole pur-
pose of all blocks highlighted in yellow is to synchronize the
top and bottom row.

such tasks are carrying, turning, folding or tearing an
item.

• Asynchronous coordination - Other tasks require both
robot arms to move independently, potentially waiting
for each other at some point before continuing. Exam-
ples for such tasks include handing an item from one
arm to another, and holding an item in place with one
arm while the other one stirs, screws, or welds.

In this section we present our process of designing a
programming language that is end-user friendly and sup-
ports both synchronous and asynchronous coordination.
We conducted small-scale preliminary studies with novice
programmers to guide our design work. We then conducted
a larger empirical evaluation of the resulting designs can-
didates. In this Section we focus on our analytical design
considerations and the decisions they motivated.

The 13 Cognitive Dimensions of Notation (CDN) [26] are
a popular framework for analyzing visual languages. This
framework describes how users understand and interact
with with different visualizations. The CDN provides termi-
nology to effectively describe and compare many different
types of visual languages. We use its terminology in the
following sections when describing our design decisions.1

3.1 Showing Coordinated Programs Side-By-Side

Robot programmers often have to write code based on
imprecise, high-level task descriptions. They need to si-
multaneously determine the necessary steps for each robot
arm and the necessary coordination between them. For
beginners, this process can be challenging even for tasks
where no coordination is necessary. The first goal of our
design process was therefore to find ways for novices to
effectively read and write code for two independent robot
arms.

In early design drafts, we used a single, linear pro-
gram where each command had a parameter that speci-
fied which arm should move. We also tried using sepa-
rate Move Right Arm and Move Left Arm blocks. Both
designs intertwine the movements of the two arms and
force users to distinguish them in their heads. This is a
Hard Mental Operation. Further, these designs also reduce
the Visibility of each arm’s individual actions.

1. We mark references to CDN terminology by underlining them.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Fig. 4: Two-armed robot carrying an item with two arms.

For our next design iteration, we considered the perspec-
tive of the user when programming and testing. Figure 4
shows the users’ typical view of a two-armed robot: They
are facing the robot from the front with one arm on the
left and one on the right. To mimic this perspective in
our programming language, we decided to separate the
programs for each arm and place them side-by-side. To
connect both programs, we use a single block that spans
both columns and has two tabs for successor nodes. This
integrates well with the interlocking jigsaw aesthetic of
block-based languages. The resulting layout can be seen in
the first 5 rows of Figure 5.

One important detail of the design shown in Figure 5
is that it requires slightly different blocks for each arm. For
example, the Open Hand blocks in the two columns need to
have their jigsaw tabs aligned either on the left or the right
of each block. Using different blocks for each arm means
that program fragments cannot be easily moved between
arms. This leads to an increased Viscosity of our language.
Therefore it is important to automatically adapt the blocks
depending on which arm it is assigned to. One way to do so
is to swap the alignment of blocks based on the side of the
canvas they are placed on.

3.2 Synchronous Coordinated Movements
Two columns are an effective way to present two inde-
pendent programs side-by-side. However, our goal was to
support coordinated tasks where the robot arms don’t act
independently.

Consider a task where the robot in Figure 4 is supposed
to place the held Lego piece on the table. This task requires
both arms to move downward simultaneously. This could
be implemented by two side-by-side Move blocks, one for
each arm. However, a movement like this requires precision
to make sure that timing, speed and distance of both arms
fit exactly. This increases the system’s Error-proneness. It
also leaves the dependency of the two movements implicit,
creating a Hidden Dependency.

To simplify defining synchronous movements across
arms, we introduce new block types that span both columns.
The first type, that we refer to as a Follow block, is shown
in Figure 5. This block lets the user define the target location

Move to Above Place Right .Move to Above Place Left .

Open Hand.Open Hand.

Move to Place Left . Follow movement.

Move to Above Place Left . Follow movement.

Move to Above Pick Left . Follow movement.

Close Hand.

Move to Above Pickup Left .

Close Hand.

Move to Pick up Left . Move to Pick up Right .

Open Hand.

Move to Above Pickup Right .Open Hand.

When is pressed:

Fig. 5: Example program using two columns and top-to-
bottom program flow. Both robot arms jointly pick and place
an object using synchronous two-armed movements.

for one arm and computes the other arm’s movements auto-
matically. It makes both arms move in parallel by ensuring
that their distance and speed are matched. The second new
block type is a Mirror block. It also matches the speeds of
the arms but makes them move in opposite directions. This
is necessary for tasks like folding of objects.

An advantage of both new block types is that they fit
well how beginners think about synchronous movements.
Their designs and labels match the verbal descriptions that
early participants intuitively gave for synchronous move-
ments. This suggests that the Closeness of Mapping between
these blocks and the way beginners think about tasks is
beneficial for linking the code to the physical domain.

3.3 Timing and Synchronization of Asynchronous
Movements
A typical robot program like the one in Figure 5 combines
both synchronized and individual commands. When the
arms move independently, the actions that are presented
side-by-side may not always take the same amount of time.
Later commands may however require a specific order or
timing of arm movements. At some point, one of the two
arms may need to wait for the other one to achieve this
timing.

We showed our design draft as presented in Figure 5 to
a small group of novice participants. We explained to them
that the robot might take significantly less time to open its
hand than it does to move its arm. We then asked them
about their interpretation of the timing of the following
commands. The answers of most participants suggested that
they read the program as a timeline. They assumed that
each row of blocks, starting from the top and moving down,
is executed simultaneously for both the left and the right
robot arm. This means that they expected the arms to wait
if one is faster than the other.

Based on this feedback, we drafted a design that im-
plicitly synchronizes the arms after each row of blocks. We
added Wait blocks in cases where only one arm is required
to move. These blocks ensure that all blocks are connected
in the jigsaw-style of block-based languages. An example

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Move to Above Place .

Open Hand.

Wait.

Move to Place .

Move to Above Place .

Wait.

Wait.

Wait.

Open Hand.

Wait.

Wait.

Close Hand.

Move to Pick up .

Move to Above Pickup .

Move to Handover A . Move to Handover B .

Move to Above Pickup .

Open Hand.

Wait.

Wait.

Wait.

Wait.

Open Hand.

When is pressed:

Close Hand.

Fig. 6: Example program using implicit synchronization and
vertical program flow (I-V). One robot arm hands over
an item to the other. Arms wait for each other after each
command.

program using this design is shown in Figure 6. It tells one
robot arm to pick up an item and hand it to the other arm,
and then tells the other arm to grab it and put it down.

The design shown in Figure 6 has a significant limitation:
Since every block has exactly one counterpart in the other
arm’s program, only one command can ever be executed
simultaneously with another command. If a short command
is combined with a long one, this can introduce unnecessary
wait times. An example for this is the first four rows of the
program in Figure 5: While the first four commands for each
arm require no coordination, the arms would still wait for
each other after every step. Therefore, the example program
as it is written here wastes time whenever arm movements
take longer to execute than opening a robot arm’s hand.
While efficiency could be improved by swapping the order
of commands, this may not be obvious to beginners. There
are also other cases where the order of commands is relevant
and the design is not expressive enough to write more
efficient programs.

A second drawback of the presented design becomes
visible in Figure 5. If only one arm should be active for
an extended period of time, multiple Wait blocks must
be inserted for the other arm. This is necessary to retain
Consistency with the block-based jigsaw design, which does
not allow gaps between blocks. However, it adds visual
clutter to the design and increases its Diffuseness. It can
further reduce the Visibility of those command blocks that
describe active robot behavior.

We considered ways to solve the problems of the pre-
sented design while keeping it readable like a timeline.
One way is to modify the height of blocks based on how
long they take to execute. Another is to add indicators that
warn users about wait times. However, in practice it is not
possible to predict the exact length of each robot command.

Move to Above Place .

Open Hand.

Move to Place .

Move to Above Place .

Wait for each other.

Open Hand.

Wait for each other.

Close Hand.

Wait for each other.

Move to Handover A .

Move to Above Pickup .

Close Hand.

Move to Pickup .

Move to Above Pickup . Move to Handover B .

Open Hand. Open Hand.

When is pressed:

Fig. 7: Equivalent program to the one shown in Figure 6,
using explicit synchronization and vertical program flow (E-
V). Arms are acting independently and only synchronized
when they reach grey Barrier blocks. This program was
used in Task 3b of our survey.

It is even possible that the same command takes a different
amount of time between multiple runs. We cannot therefore
rely on this information.

An alternative approach to synchronization can be found
in traditional parallel programming: barriers can force
threads to wait until all of them have reached the same
point in program execution. They synchronize concurrent
programs explicitly. We have created an alternative design
based on this approach. It does not require blocks to wait for
each other after each row, but uses Barrier blocks instead.
Figure 7 shows the hand-over program from Figure 6 re-
written in this design.

A design with explicit barriers allows the execution of
any number of commands in parallel. This makes it strictly
more expressive than the design shown before in Figure 6.
It comes however with the drawback that programs cannot
always be read as a timeline. Take the program from Figure 5
as an example: When interpreted based on this design, it
is not clear which of the first commands for each arm are
executed simultaneously.

As Figures 6 and 7 illustrate, programs may only need
a small number of Barrier blocks. This is especially the
case since two-column blocks like Follow blocks also act
as a barrier. Users must think about timing when it matters
for the program’s correctness. This makes the Diffuseness
of this design lower than for the previous design. How-
ever, this does not necessarily make programs shorter, as
Figures 6 and 7 show.

The two presented designs that use implicit and explicit

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

➟
To:

Above
Place

➟

➟➟

➟
Pick-up

To:
Hand-
over A

To:

Hand-
over B

To:
Place

To:

➟
Above

Pick-up

To: ➟
Above

Pick-up

To:

➟
To:

Above
Place

L

R

Fig. 8: Equivalent program to the one in Figure 6, using implicit synchronization and a horizontal program flow (I-H).

➟
To:

Above
Place

➟

➟➟

➟
Pick-up

To:
Hand-
over A

To:

Hand-
over B

To:
Place

To:

➟
Above

Pick-up

To: ➟
Above

Pick-up

To:

➟
To:

Above
Place

L

R

Fig. 9: Equivalent program to the one in Figure 6, using explicit synchronization and a horizontal program flow (E-H).

synchronization both come with individual trade-offs. An
analytical approach cannot reliably determine which of the
two design alternatives is easier to comprehend. Answer-
ing this question empirically motivated us to conduct the
survey we present in Section 4.

3.4 Vertical vs. Horizontal Program Flow

Our preliminary studies indicated that beginners intuitively
read side-by-side programs, such as shown in Figures 5, like
a timeline. This intuition might be influenced by previous
experiences with widely available commercial tools for au-
dio, video or animation editing. These tools use similar time-
line visualizations and show events occurring in parallel on
multiple time-aligned tracks.

Unlike our previously presented design drafts, most
other tools present time as flowing horizontally. We are
not aware of research that investigated if mapping time
to a vertical or horizontal axis is more effective. We as-
sume that most applications choose a horizontal design to
maximize screen space or for other practical, layout-related
reasons. Nonetheless, the likely pre-exposure of many users
to horizontal timeline visualizations might influence their
intuitions and comprehension.

Figures 8 and 9 show horizontal versions of the pro-
grams we previously presented in Figures 6 and 7. As the
figures show, a horizontal layout requires more modifica-
tions than simply rotating the code: Since English text flows
from the left to right, labels that are placed next to each other
horizontally consume significantly more space than when
they are placed vertically. This leads to screen space being
used less effectively and drastically reduces the Visibility of
the overall program context. We have therefore decided to
use icons instead of text-based labels for all commands, with
the exception of user-named locations.

Previous research has shown that icons are less effective
for comprehension than textual labels [27]. However, our
design drafts use fewer different symbols than this previous

work. We therefore speculated that there might be an ac-
ceptable trade-off between using icons and and being able
to present time flow horizontally.

In addition to icons, the horizontal design comes with
another trade-off: Unlike in the vertical design, the two rows
of the horizontal layout do not directly correspond to the
positions of the left and right robot arm. Mapping the top
row to the left arm and the bottom to the right one might be
a Hard Mental Operation for users.

The trade-offs between the vertical and horizontal design
alternatives are similar to those of the different synchro-
nization alternatives. It is hard to draw conclusions by only
using an analytical approach. We have therefore decided to
evaluate the impact of both the synchronization model and
the program flow orientation in the comparative survey we
present in Section 4.

4 COMPARATIVE SURVEY

In Section 3 we presented four candidate designs for a
novel robot programming language. We designed all of
them to be novice-friendly and enable users to coordinate
two interacting robot arms. They differ in how they model
synchronization between arms and in how they present pro-
gram flow. We discussed analytically how these differences
might affect the comprehensibility of each design. However,
we also wanted to empirically validate how well potential
users can comprehend and use each design to decide which
one is worth further development. To conduct a study on
a larger scale, we designed an automated survey that we
could distribute to a large number of participants.

The leftmost column in Table 1 shows an overview of
our survey structure. We started with a brief demographic
questionnaire to classify participants as novices and experts.
We then asked them to complete three tasks to measure how
well they are able to comprehend our design candidates.
Finally, we asked the participants to rate the usability of the
designs they saw and indicate which factors influenced their
ratings.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7y

Introduction 273 Participants Started Survey
Demographics 110 Novices 163 Experts
Task 1 50 Vertical 60 Horizontal 77 Vertical 86 Horizontal
Task 2 45 Vertical 53 Horizontal 55 Vertical 68 Horizontal
Task 2 (alt. design) 41 Vertical 50 Horizontal 54 Vertical 65 Horizontal
Task 3 22 I-V 14 E-V 25 I-H 23 E-H 20 I-V 31 E-V 28 I-H 32 E-H
Task 3 (alt. design) 22 I-H 14 E-H 25 I-V 23 E-V 18 I-H 31 E-H 27 I-V 31 E-V
Usability Questionnaire 84 Novices Completed Questionnaire 107 Experts Completed Questionnaire
Completed 191 Participants Completed Survey

TABLE 1: Survey flow (from top to bottom) with participant numbers for each design treatment. Participants were first
categorized as novices and experts and then randomly assigned one of the designs shown in Figures 6, 7, 8 and 9

4.1 Research Questions

In this Section we present the research questions guiding
our survey. We further show how the overall structure of
the survey contributes to answering each question. We then
provide a more detailed description of each component of
the survey.

RQ1: How well do novices comprehend our candidate
designs?

As part of our design process we created mock-ups of
sample programs written in each design candidate, like
those shown in Figures 6, 7, 8 and 9. We used these
mock-ups to validate our designs. We designed a series
of three tasks, each based on one example program, and a
series of comprehension questions. We divided participants
into randomized groups that were each shown a different
design candidate throughout the survey. By grading each
participant’s results for these tasks, we measured how well
each design allowed them to comprehend realistic example
programs written in it.

The first task did not use parallelism and was intended
to introduce participants to block-based robot program-
ming. The second task used synchronous parallelism and
was based on the program shown in Figure 5. The third
task used asynchronous parallelism and was based on the
program shown in Figure 6.

RQ2: Which design(s) do novices prefer?
We see the differences in comprehensibility as a major

factor in determining the quality of our designs. However,
users may prefer a design for reasons unrelated to their
ability to understand it. We therefore asked participants
to fill out a short questionnaire asking how usable the
prototype was.

We also wanted to give participants the opportunity to
directly compare the designs. We showed each participant
one alternative to the design they were originally assigned
and let them rate its usability. We also asked them which one
they would prefer overall. Table 1 shows the order in which
each participant group was shown the tasks and design
alternatives.

RQ3: Which factors influence the preference and overall
opinion of novices?

We also wanted to find out which factors contributed
the most to each participant’s preferences. We pre-selected
a number of differences, such as program flow orientation
or using icons vs. text as labels, and asked participants how

important each of these differences was to their decision.
We also gave them the opportunity to name other factors
and to provide us with an open-ended explanation of their
decision. These questions were part of the usability ques-
tionnaire shown in Table 1.

RQ4: Do experts have different preferences than novices?
While our language designs are intended to be novice-

friendly, they should also be usable by expert programmers.
Since experts may have different needs and preferences than
novice end-users, we included both in our study. We define
novices as users with no significant experience with any
programming language, no previous robotics programming
experience, and no professional role related to software
development. We end our analysis by comparing the pref-
erences of both groups.

4.2 Recruitment

To recruit participants for our survey we reached out to both
employees of a large, multi-national robotics company, and
the broader public by advertising in online communities
focused on engineering. We had 313 responses, with partic-
ipants from a wide range of professional backgrounds (e.g.
engineers, software developers, administrators). The results
we present in Section 5 are based on those 273 participants
who gave consent to have their data collected and who
completed at least one task of the survey.

4.3 Study Protocol

We wanted to evaluate the participants’ ability to compre-
hend programs written in our candidate designs on both a
syntactic and a semantic level. For this purpose we designed
three tasks with increasingly complex sample programs
that were inspired by realistic usage scenarios. We divided
participants into randomized groups, each of which was
shown a mock-up based on a different design candidate
matching one of the cells in Figure 1. For each question,
we also gave participants a use case description. We then
asked them to answer a series of questions to evaluate
their comprehension. We intentionally focused on questions
related to timing and parallelism, as these are the novel
aspects of our design.

Before showing our participants the first task, we gave
them an introduction to robot programming and the kind of
robot that our designs target. We showed participants a one
minute video. In this video a researcher makes the robot

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

perform a simple pick-and-place procedure with one arm.
We did not show any programming interface to ensure that
we didn’t bias participants.

To avoid overwhelming participants, we ordered the
three tasks following this video by increasing complexity.
Each task consisted of a use case description, a mock-
up program and a number of comprehension questions.
Example questions were "select all rows/columns during
which the right robot arm carries the cube" or "which blocks
need to be modified to change the cube’s target destination".
Participants were allowed to leave questions unanswered
and continue with the rest of the survey.

After the second and third tasks, we showed participants
an alternative mock-up using a different design candidate.
This prepared them to compare the designs during our
follow-up questionnaire. To avoid confusion between the
shown designs, we decided not to show participants the
alternative synchronization model but only the alternative
program flow direction. Table 1 shows the resulting order in
which each participant group was shown each design.

4.4 Comprehension Tasks

Task 1 was designed to be a warm-up task that only uses
one arm and gives participants a chance to get familiar with
the block-based programming environment. We showed
participants a one-armed pick-and-place routine. A similar
routine was used by Weintrop et. al. in their CoBlox experi-
ments [7]. Since this task did not contain any coordination,
we only distinguish between two different designs for this
task, based on the used program flow direction. We asked
two questions to determine whether participants had a basic
understanding of the environment, one question about the
(completely linear) timing of commands, and one question
about how they would change the item’s target destination.

Task 2 used parallelism, but was intentionally similar to
Task 1 so that participants could identify the same overall
structure. The vertical mock-up for this task was identical to
the one presented in Figure 5. We asked participants two
questions to evaluate if they had a basic understanding
of the function of rows and columns in the given pro-
gram. Then we asked them to identify what the purpose
of the given program was. Finally we asked them two
questions about the timing of parallel commands. The first
of these questions allowed two possibly correct answers,
based on the parallelism model the participant intuitively
assumed. The second question then verified if participants
were applying their chosen model consistently to the whole
program.

Task 3 was the most complex task. It showed participants
an uncommented 30 second video of a robot arm handing an
item to another arm, and an incorrect program attempting
to reproduce this behaviour. Figures 6 through 9 show the
correct versions of this program in each of the evaluated
design alternatives. The version used in the survey however
had the Open and Close block in the middle of each
program swapped. This error would cause one arm to drop
the held item before the other one could grab it. We asked
participants one general question about the timing of the
program that was independent of the contained error. We
also asked two questions about identifying the erroneous

blocks. The final question suggested ways to fix the error,
and asked participants to identify at least one that could
work.

4.5 Usability and Preference Survey
To capture participant preferences, we solicited their opin-
ions of the two design alternatives they were shown. After
working on all three tasks of our survey, we asked them to
rate the usability of each design via standardized questions
from the System Usability Scale (SUS) [28]. Since some of the
SUS questions only apply in a context where users are able
to use a system actively, we asked only 6 of the 10 questions
defined by the SUS and then computed an overall score.
According to previous research [29], this gives results that
are comparable to the full questionnaire after scaling the
resulting score.

Besides rating usability, we also asked participants to in-
dicate their overall preference between the two used design
alternatives on a 5-point Likert scale. We also asked how
important some of the design differences were to their pref-
erence. We further allowed participants to list other factors
for their decision. We asked about three major differences
between the vertical and horizontal designs: the direction
of program flow, the type of labeling used for blocks (icons
vs. text) and the uniformity (or lack of uniformity) of block
sizes. Since each participant used either implicit or explicit
synchronization, we rely on the usability survey to compare
these design types.

5 SURVEY RESULTS

In this Section we present the results of the comparative
survey from Section 4. All of our results are based on the
273 participants who both gave consent to their data being
collected and completed at least one of the tasks assigned to
them. We classified 110 participants as novices and 163 as
experts. The numbers of participants that finished each in-
dividual task are listed in Table 1. A total of 191 participants
(84 novices and 107 experts) finished the entire survey.

5.1 RQ1: How well do novices comprehend our candi-
date designs?
Based on the 110 novice responses, Table 2 summarizes the
distributions of comprehension scores for each task and de-
sign. The table also shows the average scores for each task.
The overall average scores of participants on Task 2 and 3
were high, even though these tasks were non-trivial. How-
ever, novice participants performed substantially worse on
Task 1 than Tasks 2 or 3.

We did not expect participants to perform worse on
Task 1, since this task was intended to be the easiest and did
not involve any form of coordination between arms. A closer
inspection of the results shows that the low overall score can
be attributed to a single comprehension question that only
32% of all novices answered correctly. This question asked
participants how they would change the target destination
of an object carried by the robot arm. It was the only
question that involved the manipulation of locations. We
assume that a lack of training on the meaning of locations is
the most likely cause for this finding.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

Novice Participants Task 1: 1-armed Pick and Place Task 2: 2-armed Pick and Place Task 3a: 2-armed Handover

Implicit, Vertical

Explicit, Vertical

0 20 40 60 80 100 0 20 40 60 80 100
0 20 40 60 80 100

Implicit, Horizontal

Explicit, Horizontal

Overall average: 55% Overall average: 75% Overall average: 67%

TABLE 2: Box-plots2 of the scores of novices for each task’s comprehension questions. Participant numbers (n) are reported
in Table 1. Novices performed well on all tasks except Task 1 when using the horizontal design.

Participants who used the horizontal design performed
worse on average on Task 1. The difference is substantial
and statistically significant (29% worse; independent sam-
ples t-test assuming equal variances finds t(108) = 90.54,
p < .0001). For Tasks 2 and 3, there is also a difference in
the average values, but it is smaller and not statistically sig-
nificant (<10% worse; independent samples t-test assuming
equal variances for Task 2 finds t(96) = 1.06, p = .15; one-
way ANOVA for Task 3 finds F (3, 80) = 0.22, p = .88).

RQ1 Summary: The data shows that participants’ perfor-
mance was high for all tasks, except for the warm-up task,
independently of the used design.

5.2 RQ2: Which design(s) do novices prefer?

We measured participants’ preferences using the SUS scale
(see Section 4). The SUS scale, ranging from 0 to 100 points,
cannot be interpreted linearly. Based on meta-studies, we
can however convert SUS scores into a percentile rank which
compares our designs to other systems that were evaluated
using the same scale. While we used only 6 out of the 10
questions of the standard questionnaire, previous research
indicates that the scaled scores are still equivalent to the
same percentiles [29].

Figure 10 shows the raw scores of our designs on the
SUS percentile curve. Meta-studies find that the average
SUS score across studies is 66 [29]. The scores of all our
designs are above this average, ranging from the 60th to
the 80th SUS percentile. There is almost no difference (<1
point) between the average SUS scores of the designs using
implicit and explicit synchronization. We do see however a
substantial and statistically significant 8-point difference in
favor of the vertical designs over the horizontal ones. A one-
way ANOVA finds F (3, 164) = 5.41, p = .0014. A post-hoc
Tukey HSD finds that vertical designs are always better than
horizontal ones (all p < .05).

In addition to calculating SUS scores, we also asked
participants directly which design they prefer. Of all partici-
pants, 57% answered that they slightly or strongly preferred
the vertical design they were shown. Another 39% slightly
or strongly preferred a horizontal design. Remarkably, only
4% of all participants had no preference at all.

RQ2 Summary: The data shows that the majority of novice
participants preferred the vertical program flow, but have
no preference between synchronization models.

0

10
20

30
40
50

60
70

80
90
100

0 10 20 30 40 50 60 70 80 90 100
S
U

S
 P

er
ce

n
ti

le
Raw SUS Score

 SUS Percentile Curve

 Design I-V (Avg. Score: 79.4)

 Design E-V (Avg. Score: 78.7)

 Design I-H (Avg. Score: 70.8)

 Design E-H (Avg. Score: 70.2)

Fig. 10: SUS scores computed for novice participants’ re-
sponses, plotted on the SUS percentile curve. Participants
rated the vertical design candidates significantly better.

5.3 RQ3: Which factors influence the preference and
overall opinion of novices?
Pre-Selected Factors: We showed all participants two de-
signs: The one we assigned to them and an alternative one
that uses the same synchronization model but a different
program flow orientation. We asked them which factors had
the biggest influence on their preference ratings. The first
row of Table 3 summarizes how participants rated three pre-
selected design differences on a 5-point Likert scale. Overall,
participants found the differences in labeling (text vs. icons)
to be the most important factor, closely followed by the
orientation of program flow. It seemed less important for
participants whether blocks had a uniform size.

We conducted two additional analyses: First, we investi-
gated if participants that preferred different designs had dif-
ferent factors that influenced them. We grouped the factors
by preferred design as shown in Table 3. An independent-
sample t-test assuming equal variances finds no statistically
significant difference between the two groups for any factor
(from left to right: t(78) = 0.35, p = .36; t(78) = 0.86,
p = .20; t(78) = 0.52, p = .30). Second, we verified that
participants did not always prefer their assigned design
over the alternative they were shown later. A one-way
ANOVA finds no statistically significant difference between
participants based on which design they were assigned
(F (3, 77) = 0.27, p = .85).

2. For all box-plots in this paper, we use center lines to show the
medians, box limits to indicate the 25th and 75th percentiles and
whiskers extending to the 5th and 95th percentiles.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Orientation Icons/Text Uniformity

Overall

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Pref. VT

Pref. HR

TABLE 3: Perceived importance of individual design aspects
for novice participants, overall and grouped by their pre-
ferred design: 1 is least important, 5 is most important.

Qualitative Feedback: In addition to rating the importance
of pre-selected design differences, we allowed participants
to provide written feedback on what they liked about their
preferred design. Almost all participants used this opportu-
nity, resulting in comments from 78 of our 84 novice par-
ticipants. We used open coding to categorize participants’
responses based on named attributes and keywords. This
resulted in 48 unique codes, each qualified as being posi-
tive/negative and assigned to one or more of the designs.

Positive comments about program comprehension were
common for all design alternatives, but were found more
frequently for the vertical designs: The most frequently used
and uniformly distributed codes were understandable (45
overall mentions) and simple (44 overall mentions). The code
intuitive was more frequently used for the vertical designs
(30 mentions) than the horizontal ones (12 mentions). Some
participants also mentioned that a vertical design was com-
pact (6 mentions) while none said this about any horizontal
design.

Participants’ preference for the vertical design was fur-
ther explained by their consistent comments on key issues.
One participant commented, “Because I work vertically in
Excel a lot, the vertical format was more intuitive.”, which
was echoed in many other comments, such as “I like the
vertical due to the normal flow of scrolling down in the
computer screen” and “information is normally presented
top to bottom on a screen”. The users’ prior experience
with vertical flow in other settings may have led to a
preference for it in this setting. Another clear reason that
users preferred the vertical flow was that “it is easier to
associate left and right arms with left and right columns,
rather than rows”, mentioned by many users, who com-
mented that “the natural left and right orientation of the
vertical programming was a big positive” and “the left-right
distinction is more clear rather than having to remember
that top is left and bottom is right.”

There were however codes that highlighted strengths
of the horizontal design as well: The code shows time flow
was used 8 times for horizontal designs compared to only
3 times for the vertical designs. Further, 21 participants
complimented the icon labels used in the horizontal designs.
In contrast, only 8 participants mentioned the text labels of
the vertical designs positively, while 2 participants criticized
them. These results are consistent with the previous ob-
servation that while the majority of participants preferred
the vertical design, there is a minority with a substantial
preference for the horizontal design.

Those users that preferred the horizontal design also ex-
plained their preference consistently. One participant com-

0

10
20

30
40
50

60
70

80
90
100

0 10 20 30 40 50 60 70 80 90 100

S
U

S
 P

er
ce

n
ti

le

Raw SUS Score

 SUS Percentile Curve

 Design I-V (Avg. Score: 81.6)

 Design E-V (Avg. Score: 81.1)

 Design I-H (Avg. Score: 74.8)

 Design E-H (Avg. Score: 74.1)

Fig. 11: SUS scores computed for expert participants’ re-
sponses, plotted on the SUS percentile curve. Experts gave
consistently higher ratings for all designs and had the same
preferences as novices.

mented “The icons in the horizontal example made it easy to
understand in one glance which actions are performed”; this
was echoed by others, such as “the horizontal flow’s icons
were very useful and intuitive” and “[I] like the horizontal’s
use of pictures over text”. While the icons were the most
positively mentioned property, a few users also commented
that “it was easier to mentally determine the timing of the
program’s actions”, “the horizontal design clearly gave me
a timeline”, and “I liked that it follows the design of most
timelines, which feels most natural.” However, perhaps the
most relevant comment that several users made was the
suggestion that we “bring the visual aids of the actions [(the
icons]) from the horizontal version to the vertical version.”

The synchronization model did not seem to influence the
prevalence of any specific code. In addition, only a small
number of comments mentioned the used synchronization
model: Some participants said that they liked the used way
of synchronization (5 mentions for the explicit and 4 for
the implicit variant). This suggests that the synchronization
model had only a minor influence on the opinion of partici-
pants.

RQ3 Summary: The data shows that the way blocks are la-
beled (text or icon-based) influenced participants’ opinion
the most, followed by the program flow orientation.

5.4 RQ4: Do experts have different preferences than
novices?
Figure 11 shows the SUS scores we calculated based on
the responses of expert participants. The experts not only
performed better in all comprehension tasks, but also gave
higher usability ratings for all design alternatives. They did
however show the same preferences between the design al-
ternatives as novices: The difference between the designs us-
ing implicit and explicit synchronization models is negligi-
ble (<1 point), while there is a substantial 7-point difference
between the ones using vertical and horizontal program
flow. A one-way ANOVA finds that there is a significant
difference in our results (F (3, 206) = 4.80, p = .0030).
Unlike for novices, a post-hoc Tukey HSD however only
finds a statistically significant difference between Design E-
V and the Designs I-H and E-H (both p < .05).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

To identify factors that influenced expert users we used
the same approach as for RQ3 on the results for expert users:
In addition to collecting importance ratings for the pre-
selected differences, we also coded 91 written comments.
However, we did not see any noticeable difference in either
of the results compared to novices.

RQ4 Summary: Overall, expert participants gave higher
average usability ratings and showed the same preference
for designs with vertical program flow as novices.

6 INTERACTIVE PROTOTYPE STUDY

In Sections 4 and 5 we presented a survey that com-
pared four design candidates. We found that users could
comprehend all designs equally well. We further found
that the users preferred vertical program flow but had no
preference between synchronization models. As discussed
in Section 3, our designs with explicit synchronization are
more expressive than those with implicit synchronization.
We therefore decided to continue the development of our
design candidate that presents program flow vertically and
uses explicit synchronization.

While our survey measured how well participants could
comprehend given mock-up programs, we were not able
to verify if participants could write these programs them-
selves. To validate the usability of the design candidate that
we implemented, we conducted an interactive follow-up
experiment. This study was smaller than our survey but
provided important insight into how novices could use our
design to solve realistic robotics tasks.

6.1 Implementation

Our prototype implementation is based on a modified ver-
sion of CoBlox, an existing environment for block-based
robot programming [7]. CoBlox itself builds on the estab-
lished block-based programming editor Blockly [14]. We
modified CoBlox to add support for blocks with two inputs
and outputs, allowing us to implement a two-column en-
vironment and support programs similar to our previously
presented mock-ups. While the resulting programming en-
vironment is a fully functional, we were not able to support
testing and debugging programs on a real robot due to time
constraints.

6.2 Study Protocol

Our study assessed the following research question:
RQ5: Can users solve realistic coordinated robot program-
ming tasks using our prototype?

We recruited 11 participants at a large office site of a
multinational engineering company. Participants came from
a diverse set of professional backgrounds, similar to those
of our comparative survey. We classified participants as
novices or experts based on the same classification questions
as for our survey.

We showed all participants a short introduction video to
demonstrate the prototype to them. The video explained the
available blocks and showed how to write a simple program
that picks up and then drops a cube. The participants

had the opportunity to pause the video and ask the study
supervisor clarification questions at any point.

After they finished watching the video, we asked partic-
ipants to solve two tasks. For each task we gave users a text
that described the intended behaviour of the robot. We also
gave them a picture that showed a number of pre-defined
locations that they could use in programs. The first task
was to create a two-armed pick-and-place program, similar
to Task 2 of our survey. The second task was to create a
program to hand an item over from one arm to the other,
similar to Task 3 of our survey. All participants solved the
tasks in the same order.

We wanted to provide participants with a way to test
their programs. Since we could not support testing on a
real robot, we instead offered participants to manually "sim-
ulate" their current program for them: When participants
asked to test their programs, the study supervisor would
imitate the robot’s movements with their arms. However,
only 2 of the participants used this opportunity before
submitting their final solutions.

We measured the time that participants needed to com-
plete each task. We further graded their final results for
correctness. After they completed both tasks, we gave par-
ticipants an SUS usability questionnaire, similar to the one
we used in our survey. Since this experiment involved
interaction with our system, we included all 10 official SUS
questions [28].

6.3 Study Results

All of our 11 participants finished the interactive study. We
classified 7 of them as experts and 4 as novices. Only two
of the experts had previously used any robot programming
tools while the others had some other previous program-
ming experience.

A total of 10 participants (3 novices) correctly solved
Task 1 while 7 participants (2 novices) correctly solved
Task 2. Participants took 4 to 5 minutes on average for
each task, with the longest taking 11 minutes for one task.
Participants gave our system an average usability score of
76.8 which is corresponds to the 70th SUS percentile. There
was no substantial difference between the ratings of novices
and experts.

While most programs that participants wrote were cor-
rect, not all were as efficient as possible: For Task 1, many
participants added additional Barrier blocks around two-
armed Follow blocks. This suggests that participants did
not fully trust the synchronous behavior of these blocks.
Similarly, 2 participants solved Task 2 without running
any commands in parallel, as shown in Figure 12. We did
not instruct participants to focus on efficiency. Therefore,
they might have chosen this solution since it was easier to
comprehend for them than a more efficient alternative.

Task 2 had a lower success rate than Task 1. Most of
the incorrect solutions for Task 2 share a similar issue, as
shown in Figure 13: Instead of coordinating both robot arms,
participants tried to write two sequential, independent pro-
grams to solve this task. None of the participants with this
type of issue asked the study supervisor to simulate their
programs. Therefore they might have not been aware that
their solution is incorrect. We assume that all participants

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Fig. 12: A correct but inefficient solution for the handover
task of our interactive study. None of the commands are
executed in parallel, which adds unnecessary wait times but
does not affect the overall result.

would have tested their solution at least once if they had
a real robot available to them. Therefore this type of issue
might be more related to our study protocol than to the
evaluated prototype.

In summary, most participants were able to solve two
realistic coordinated robot programming tasks using our
prototype.

7 DISCUSSION

We believe this work can influence both end-user robot
programming and block-based language design. We also
believe that our design and evaluation methodology has
shown potential to be applied successfully to other software
engineering domains beyond robotics. In this Section we
discuss these implications of our work, and also assess some
of the limitations of our empirical results.

7.1 Complexity in End-User Robot Programming
Previous research has shown that end-users can learn to suc-
cessfully program industrial robots. Our own observations
seem to confirm these previous results. However, previous
work was limited to simple tasks that used only a single
robot arm. This paper shows that our novel designs can be
used by novice end-users to program non-trivial use cases
that involve the coordination of multiple robot arms.

Although we asked novices to solve more complex pro-
gramming tasks than previous work, we did not give them
substantially more guidance or learning time. This did not
seem to negatively impact their learning or performance. We
further found that end-users do not need to have mastered
single-armed programming before they can learn how to
write more complex programs. We therefore suspect that
previous work has not yet pushed novices to the limit of
their learning abilities.

We believe that future research should attempt to push
novice programming even further. End users might be able
to tackle even more complex tasks and larger programs.

Fig. 13: An incorrect solution for the handover task of our
interactive study. Instead of a single coordinated program,
this participant has written two independent programs sep-
arated by a Barrier block.

As our survey showed, powerful end-user tools can also
be attractive to experts. Areas we consider worth further
investigation are event and error handling, representing
more complex movement logic, and coordination beyond
two robot arms.

7.2 Richer Visualizations in Block-based Languages
The design candidate that we have implemented coordi-
nates robot arms explicitly through barriers. Barriers are an
established concept in traditional parallel programming to
synchronize threads. However, using barriers correctly in
parallel programs is usually considered to be a difficult task
that is too advanced to teach to novices.

Our experiments have shown that beginners were able
to understand barriers quickly and with minimal external
guidance. They were able to comprehend programs with
barriers just as fast as those that used implicit line-by-
line synchronization. This is surprising since implicit syn-
chronization is less expressive and therefore seems like it
should be easier to understand. Barriers also did not seem to
match the way that participants of our preliminary studies
intuitively read coordinated programs.

One explanation for our findings could be the way we
chose to visualize barriers: We showed the commands for
each arm side-by-side and visualized the barrier as a single
block that connects both arms. Unlike in traditional text-
based programs, novices therefore do not need to manually
find and align concurrent actions. We believe this to be a
powerful visual feature of our language that has not been
used as effectively in previous work.

We see barriers as just one example of how an effective
visualization can make advanced language features easier
to comprehend. Block-based languages could benefit from
using stronger visualizations that go beyond encapsulating
commands from text-based languages in blocks. This partic-
ularly applies to languages that do not aim to be similar to
a specific text-based language.

7.3 Design and Evaluation Methodology
Earlier in this work we have described our overall design
process: We started by conducting small-scale preliminary

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

studies and developing early design candidates based on
novice feedback. We then analyzed the potential strengths
and drawbacks of these designs by using the CDN as an
established cognitive framework. Based on the results of this
analysis, we then selected design candidates for a further
empirical evaluation.

Recent work has already demonstrated that the CDN can
be used to compare different block-based languages [30].
The CDN can reveal how design decisions can potentially
impact users and explain their trade-offs. It however cannot
tell if users prefer one of the resulting overall designs,
or can comprehend some designs easier than others. We
therefore believe that combining an empirical and analytical
evaluation leads to stronger and more useful results than
using only one approach.

7.4 Limitations
Participant population: Our comparative survey was open
to the general public. However, due to the channels through
which it was advertised, we expect the majority of our
participants to have a North American or European back-
ground. This may have introduced cultural biases, such as a
preferred reading direction for the mostly North American
or European participants. It is further likely that a dis-
proportionate number of participants are employees of the
same multi-national engineering company. The participants
we recruited for our interactive prototype study were also
employees of this company in a single location. This might
have caused our participants to be a more homogeneous
group than the general population.
User Training: Both our survey and our prototype evalua-
tion used training methods for our participants that were
practical but not necessarily realistic. For our survey we
had to limit the amount of time spent on introducing users
to our designs. This might have negatively affected their
comprehension. It might for example explain why users had
trouble solving Task 1 of our survey, even though it was
designed as a warm-up task. Despite the intended beginner-
friendliness of our designs, we would expect real industrial
end-users to be trained more thoroughly. In particular, we
would expect any real-world training to involve interactive
testing and experimentation due to fewer time constraints.
Task Choice: We have motivated our choice of tasks for each
experiment. We are however aware that they only cover
some of the potential usage scenarios for our designs. We
have verified that programs for other common tasks can be
implemented in our designs. Further studies in the field are
required to validate whether our findings can be generalized
to these tasks.
Attrition Bias: The survey results presented in Section 5
include the partial results of 81 participants who completed
some but not all tasks. Participants may have left the survey
because they were frustrated and found the survey tasks too
challenging. This might have led to the artificially inflated
comprehension scores or usability ratings for later tasks.
To test for this bias, we have examined the partial results
of participants who did not complete the survey. We did
not find a notable difference in their scores. We found
no correlation between the assigned designs and drop-out
rates. We therefore assume any bias caused by participants
who dropped out as negligible.

8 CONCLUSION

As robots become more powerful and accessible, the tools
used to program them must keep pace. For programming
environments that target end-users, it is even more impor-
tant to find a balance between usability and expressiveness
than for expert tools. In this work we have presented four
design alternatives that enriched a block-based program-
ming language with visual elements to enable novice users
to create coordinated programs. We have analyzed which of
their properties influence their usability and expressiveness
and evaluated the designs empirically on 110 professional
end-users to find the trade-off that works best for this
audience. Our results showed that novice end-users were
able to comprehend an expressive synchronization model
that coordinates robot arms through explicit barriers. The
data further showed that end-users prefer to read programs
that flow vertically over horizontal ones. An interactive
prototype study with 11 professional participants has con-
firmed that our top design led to a viable prototype that
allowed participants to solve realistic programming tasks.

Based on our findings, we believe that there is more
potential for designs that expand the expressiveness of end-
user robot programming. As our work has demonstrated,
end-users are able to tackle the traditionally challenging
problem of writing coordinated programs when given ap-
propriately designed programming language features.

ACKNOWLEDGMENT

The authors would like to thank ABB Inc. for generously
providing funding and hardware.

REFERENCES

[1] J. E. Colgate, J. Edward, M. A. Peshkin, and W. Wannasuphopra-
sit, “Cobots: Robots for collaboration with human operators,” in
Proceedings of the 1996 ASME International Mechanical Engineering
Congress and Exposition. ASME, 1996, pp. 433–439.

[2] P. J. Hinds, T. L. Roberts, and H. Jones, “Whose job is it anyway? a
study of human-robot interaction in a collaborative task,” Human-
Computer Interaction, vol. 19, no. 1, pp. 151–181, 2004.

[3] J. Krüger, T. K. Lien, and A. Verl, “Cooperation of human and
machines in assembly lines,” CIRP annals, vol. 58, no. 2, pp. 628–
646, 2009.

[4] S. Kock, T. Vittor, B. Matthias, H. Jerregard, M. Källman, I. Lund-
berg, R. Mellander, and M. Hedelind, “Robot concept for scalable,
flexible assembly automation: A technology study on a harmless
dual-armed robot,” in Proceedings of the 2011 International Sympo-
sium on Assembly and Manufacturing (ISAM). IEEE, 2011, pp. 1–5.

[5] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, “Recent
progress on programming methods for industrial robots,” in ISR
2010 (41st International Symposium on Robotics) and ROBOTIK 2010
(6th German Conference on Robotics). VDE, 2010, pp. 1–8.

[6] T. W. Price and T. Barnes, “Comparing textual and block interfaces
in a novice programming environment,” in Proceedings of the
eleventh annual international conference on international computing
education research. ACM, 2015, pp. 91–99.

[7] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd, and
D. Franklin, “Evaluating CoBlox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, 2018, pp. 366:1–366:12.

[8] G. Biggs and B. MacDonald, “A survey of robot programming
systems,” in Proceedings of the Australasian conference on robotics and
automation, 2003, pp. 1–3.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

[10] D. Benedetelli, Lego Mindstorms EV3 Laboratory: Build, Program, and
Experiment with Five Wicked Cool Robots. No Starch Press, 2013.

[11] R. Bischoff, A. Kazi, and M. Seyfarth, “The MORPHA style guide
for icon-based programming,” in Proceedings of the 11th Interna-
tional Workshop on Robot and Human Interactive Communication.
IEEE, 2002, pp. 482–487.

[12] Universal Robots, “PolyScope manual,” 2013.
[13] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,

“The Scratch programming language and environment,” Transac-
tions on Computing Education (TOCE), vol. 10, no. 4, p. 16, 2010.

[14] N. Fraser et al., “Blockly: A visual programming editor,” URL:
https://code.google.com/p/blockly, 2013.

[15] S. Grover and S. Basu, “Measuring student learning in intro-
ductory block-based programming: Examining misconceptions of
loops, variables, and boolean logic,” in Proceedings of the 2017
SIGCSE technical symposium on computer science education. ACM,
2017, pp. 267–272.

[16] J. M. R. Corral, I. Ruíz-Rube, A. C. Balcells, J. M. Mota-Macías,
A. Morgado-Estévez, and J. M. Dodero, “A study on the suitability
of visual languages for non-expert robot programmers,” IEEE
Access, vol. 7, pp. 17 535–17 550, 2019.

[17] D. Weintrop, “Block-based programming in computer science
education,” Communications of the ACM, vol. 62, no. 8, pp. 22–25,
2019.

[18] B. A. Myers, “Taxonomies of visual programming and program
visualization,” Journal of Visual Languages & Computing, vol. 1,
no. 1, pp. 97–123, 1990.

[19] M. M. Burnett, “Visual programming,” Wiley Encyclopedia of Elec-
trical and Electronics Engineering, 2001.

[20] J. H. Maloney and R. B. Smith, “Directness and liveness in the
morphic user interface construction environment,” in ACM Sym-
posium on User Interface Software and Technology, vol. 95, 1995, pp.
21–28.

[21] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable
programming: blocks and beyond,” Communications of the ACM,
vol. 60, no. 6, pp. 72–80, 2017.

[22] A. Feng, E. Tilevich, and W.-c. Feng, “Block-based programming
abstractions for explicit parallel computing,” in Proceedings of the
2015 Blocks and Beyond Workshop. IEEE, 2015, pp. 71–75.

[23] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3D tool for intro-
ductory programming concepts,” Journal of Computing Sciences in
Colleges, vol. 15, no. 5, pp. 107–116, 2000.

[24] S. L. Tanimoto, “VIVA: A visual language for image processing,”
Journal of Visual Languages & Computing, vol. 1, no. 2, pp. 127–139,
1990.

[25] J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, and P. Newton,
“Visual programming and debugging for parallel computing,”
Parallel & Distributed Technology: Systems & Applications, vol. 3,
no. 1, pp. 75–83, 1995.

[26] T. R. G. Green and M. Petre, “Usability analysis of visual program-
ming environments: a ’cognitive dimensions’ framework,” Journal
of Visual Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[27] S. Wiedenbeck, “The use of icons and labels in an end user ap-
plication program: an empirical study of learning and retention,”
Behaviour & Information Technology, vol. 18, no. 2, pp. 68–82, 1999.

[28] J. Brooke et al., “SUS - a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[29] J. R. Lewis and J. Sauro, “The factor structure of the system
usability scale,” in International conference on human centered design.
Springer, 2009, pp. 94–103.

[30] R. Holwerda and F. Hermans, “A usability analysis of blocks-
based programming editors using cognitive dimensions,” in Pro-
ceedings of the 2018 Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2018, pp. 217–225.

Nico Ritschel is a Ph.D. student in the De-
partment of Computer Science at the Univer-
sity of British Columbia, and part of the Soft-
ware Practices Lab. He is co-supervised by Reid
Holmes and Ronald Garcia. He is interested in
both the theoretical foundations of programming
but also the impact that programming languages
and tools have on people. Currently, his research
focuses on designing programming tools that
target novices and allow them to create com-
plex programs with minimal learning effort. He

received an M.Sc. and B.Sc. in Computer Science from the Technical
University of Darmstadt.

Vladimir Kovalenko is a Senior Researcher at
JetBrains Research in Amsterdam, The Nether-
lands. As of 2020, he is finishing a Ph.D. in
Software Engineering at Delft University of Tech-
nology, where he worked full-time for 3 years.
His academic work is supervised by Alberto
Bacchelli and Arie van Deursen. His interests
are centered around the idea of making soft-
ware development process more efficient with
smarter team collaboration tools, and designing
data-driven features for next-generation software

development team collaboration tools. Vladimir received a M.Sc. in Soft-
ware Engineering from Academic University of the Russian Academy of
Sciences, and a B.Sc. in Astrophysics from Saint Petersburg Polytechnic
University.

Reid Holmes is an Associate Professor in the
Department of Computer Science at the Univer-
sity of British Columbia. His research interests
include understanding how software engineers
build and maintain complex systems; this under-
standing is generally translated into tools and
techniques that can be validated in practice. He
was previously an Assistant Professor at the
University of Waterloo and a postdoctoral fellow
at the University of Washington. He earned his
Ph.D. at the University of Calgary, and his M.Sc.

and B.Sc. at the University of British Columbia.

Ronald Garcia is an Associate Professor of
Computer Science at the University of British
Columbia. His research investigates how fun-
damental concepts in the theory, implementa-
tion, and practice of programming languages
can improve the software development process.
His research has focused on static and dynamic
type-based reasoning, metaprogramming, and
generic programming. Prior to his appointment
at UBC, he was a Computing Innovation Fellow
at Carnegie Mellon University and Postdoctoral

Fellow at Rice University. He received a Ph.D. in Computer Science from
Indiana University, and an M.Sc. and B.Sc. in Electrical Engineering
from the University of Notre Dame.

David C. Shepherd is an Associate Professor in
the Department of Computer Science at Virginia
Commonwealth University. His current work fo-
cuses on enabling end-user programming for
industrial machines and increasing diversity in
computer science. He earned his Ph.D. and
M.S. in Computer Science at the University of
Delaware, and his B.S. in Computer Science
at Virginia Commonwealth University. David has
since worked as a postdoctoral fellow in the De-
partment of Computer Science at the University

of British Columbia, and as a Senior Principal Scientist at ABB Corpo-
rate Research.

	Introduction
	Related Work
	End-user Robot Programming
	Block-based and Visual Programming
	Parallelism in Block-based and Visual Languages

	Design Considerations
	Showing Coordinated Programs Side-By-Side
	Synchronous Coordinated Movements
	Timing and Synchronization of Asynchronous Movements
	Vertical vs. Horizontal Program Flow

	Comparative Survey
	Research Questions
	Recruitment
	Study Protocol
	Comprehension Tasks
	Usability and Preference Survey

	Survey Results
	RQ1: How well do novices comprehend our candidate designs?
	RQ2: Which design(s) do novices prefer?
	RQ3: Which factors influence the preference and overall opinion of novices?
	RQ4: Do experts have different preferences than novices?

	Interactive Prototype Study
	Implementation
	Study Protocol
	Study Results

	Discussion
	Complexity in End-User Robot Programming
	Richer Visualizations in Block-based Languages
	Design and Evaluation Methodology
	Limitations

	Conclusion
	References
	Biographies
	Nico Ritschel
	Vladimir Kovalenko
	Reid Holmes
	Ronald Garcia
	David C. Shepherd

