
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Method-Level Bug Prediction: Problems and Promises

SHAIFUL CHOWDHURY∗, University of Manitoba, Canada

GIAS UDDIN†, York University, Canada

HADI HEMMATI‡, York University, Canada

REID HOLMES, University of British Columbia, Canada

Fixing software bugs can be colossally expensive, especially if they are discovered in the later phases of the software development life
cycle. As such, bug prediction has been a classic problem for the research community. As of now, the Google Scholar site generates
∼113,000 hits if searched with the “bug prediction” phrase. Despite this staggering effort by the research community, bug prediction
research is criticized for not being decisively adopted in practice. A significant problem of the existing research is the granularity
level (i.e., class/file level) at which bug prediction is historically studied. Practitioners find it difficult and time-consuming to locate
bugs at the class/file level granularity. Consequently, method-level bug prediction has become popular in the last decade. We ask,
are these method-level bug prediction models ready for industry use? Unfortunately, the answer is no. The reported high accuracies of
these models dwindle significantly if we evaluate them in different realistic time-sensitive contexts. It may seem hopeless at first, but
encouragingly, we show that future method-level bug prediction can be improved significantly. In general, we show how to reliably
evaluate future method-level bug prediction models, and how to improve them by focusing on four different improvement avenues:
building noise-free bug data, addressing concept drift, selecting similar training projects, and developing a mixture of models. Our
findings are based on three publicly available method-level bug datasets, and a newly built bug dataset of 774, 051 Java methods
originating from 49 open-source software projects.

CCS Concepts: • Software and its engineering → Empirical software validation.

Additional Key Words and Phrases: method-level bug prediction, code metrics, maintenance, McCabe, code complexity

ACM Reference Format:
Shaiful Chowdhury, Gias Uddin, Hadi Hemmati, and Reid Holmes. 2023. Method-Level Bug Prediction: Problems and Promises. 1, 1
(January 2023), 30 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Modern software has become more complex and, thus, more bug-prone than ever. While billions of dollars are lost
due to software bugs [96], lives are lost too, including the recent incidents of the Boeing 737 Max aircrafts [34]. As
such, developers and testers spend significant time finding and fixing software bugs, which may account for 50 to 70%
of the whole development cost [115]. The cost of bug fixing, however, is much cheaper if accomplished in the early
∗Also with University of Calgary, Alberta, Canada.
†Also with University of Calgary, Alberta, Canada.
‡Also with University of Calgary, Alberta, Canada.

Authors’ addresses: Shaiful Chowdhury, shaiful.chowdhury@umanitoba.ca, University of Manitoba,Winnipeg, MB, Canada; Gias Uddin, guddin@yorku.ca,
York University, Toronto, ON, Canada; Hadi Hemmati, hemmati@yorku.ca, York University, Toronto, ON, Canada; Reid Holmes, rtholmes@cs.ubc.ca,
University of British Columbia, Vancouver, BC, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Chowdhury et al.

phase of the software development life cycle [15]. Accordingly, bug prediction has been a classic research problem to
the community [25, 35, 83, 87, 102, 115, 116]—so much so that it was even labelled as the “prince of empirical software
engineering research” [62]. The tragedy is, despite the hype and the effort by the SE research community, bug prediction
research lacks impact in industrial practice [62, 109]. This paper aims to reveal some of the root causes of this tragedy,
and proposes a set of guidelines to improve future bug prediction research.

A bug prediction model is supposed to detect the code fragments more likely to contain bugs in the future, which
should reduce the time and cost of the bug-finding process [54, 112]. Unfortunately, the majority of the bug research
(e.g., [9, 37, 122]) focused on predicting bugs at the class/file level source code granularity. Developers find class/file
level bug prediction too coarse to be practically useful [75, 83, 99], due to the infeasible time requirement for finding
bugs in an arbitrarily large file. Accordingly, method-level bug prediction (MLBP) has become one of the holy grails in SE
research, leading to significant research in recent years [33, 35, 44, 72, 74, 101]. Given their high prediction accuracy1 at
the practically useful method-level granularity, are not these models ready for industry practice? We do not know until
these models are evaluated in practically meaningful scenarios (described later). Unfortunately, all of these MLBP models
were evaluated using the time-insensitive k-fold cross validation approach, which is unrealistic in a time-sensitive
bug prediction problem [8, 83]. The time-sensitive accuracies of the MLBP models applicable to industry practices are,
therefore, unknown.

In this paper, we study the true effectiveness of the existing MLBP models, using scenarios that would be desired
by the practitioners. We show that all the existing models perform poorly when evaluated in such scenarios. MLBP
thus remains an open research problem, as was also claimed by Pascarella et al. [83]. With empirical evidence, we then
discuss a quartet of potential avenues that can significantly help future MLBP research. The contribution of this paper
is founded on the following five research questions.

To understand the effectiveness of the existing bug prediction models, we answer the following research question.
RQ1: Do the existing method-level bug prediction models perform well when evaluated in realistic scenarios?
Contribution 1: The k-fold cross validation approach forms training data by mixing both past and future data [8].

But in a real-world scenario, future data is unavailable, and that is the whole point for building a bug prediction model.
We, therefore, evaluate the prediction accuracy of bug prediction models in three realistic ways (described in Section 4).
The common approach in all three scenarios is not to use any future data during training. In all cases, the accuracy (e.g.,
precision) was significantly worse compared to the cross validation evaluation (e.g., 60% drop in precision).

Leveraging and exploiting the previous bug prediction studies (Section 2), we investigate how MLBP models can be
improved in the future. In that vein, we answer the following four research questions.

RQ2: How important is accurate bug labelling for the success of future MLBP models?
Contribution 2:We first identify several drawbacks with the current bug labelling approaches that lead to noisy

training data, and thus produce inaccurate prediction models [32]. For example, the keywords that are used to detect
bug-fixing commits are often inaccurate: the existence of the word issue does not always mean it was a bug-fixing
commit. Also, developers often commit unrelated changes together, known as tangled changes [49]. Tangled changes
make it difficult to understand which methods in a particular commit are related to bug-fix, and which are not. We
show that, due to the noise, the popular bug predictors (e.g., McCabe complexity) perform poorly in distinguishing
between buggy and not buggy methods. We then propose an accurate labelling approach to reduce the noise in training
data. Results suggest that our more precise labelling approach can help improve future MLBP models significantly.

1Unless otherwise stated, accuracy in this paper means precision, recall, and F-score.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Method-Level Bug Prediction: Problems and Promises 3

RQ3: Can a method’s age, as an explanatory variable, be a potential replacement for the expensive model retraining
approach?

Contribution 3: A common hypothesis adopted in all the previous MLBP models is that a method with high code
complexity and previous code churn history is more likely to have bugs in the future. This hypothesis, unfortunately,
does not hold in the long run, due to concept drift in software data [55]. We found that the bug-proneness of a method
decays consistently as it ages, regardless of its complexity and change history. This makes a method’s age a strong
candidate to model its time-varying bug-proneness. Therefore, future MLBP models should consider method ages for
accommodating concept drift without the expensive repeated retraining of the models.

RQ4: Should future MLBP research focus on an optimal project set selection?
Contribution 4: A common belief in training machine learning models is, more data is usually better. Refuting this

presumption, we show that less number of selected projects can often produce more accurate models. This suggests the
importance of future research on an optimal project set selection for a given test project, instead of building models
with an arbitrarily large number of projects.

RQ5: Should future MLBP research focus on a mixture of models?
Contribution 5:We have found that the accuracy of a bug prediction model highly depends on the method’s size

in which it is applied. The distribution of bug-prone methods is much more skewed in small methods than in large
methods. Consequently, the accuracy is always significantly lower in small methods than in large methods. These two
observations suggest that future research should build different models for different method sizes instead of a generic
model applied to all.

Replication: To enable replication and extension, we share all the datasets publicly.2

1.1 Paper organization

In Section 2, we discuss how the existing research on bug prediction has motivated this study. Section 3 discusses the
methodologies that are commonly followed across different research questions. Section 4 presents the accuracy of the
existing MLBP approaches in realistic scenarios (RQ1). The other four research questions, RQ2 to RQ5, are answered in
Section 5. In Section 6, we summarize our findings and discuss the potential future works along with the threats to
validity. Section 8 concludes this paper.

2 RELATEDWORK & MOTIVATION

In this section, we discuss the related studies on bug prediction, and how those studies motivated this paper.

2.1 Granularity

Historically, most of the bug prediction models were built for class/file level granularities (e.g., [3, 9, 11, 37, 77, 122, 124]).
Unfortunately, practitioners often find it difficult to locate bugs at this coarse level granularity [83, 99]. Finding bugs
at the class/file level granularity is inefficient because only around 17% of the methods in a bug-prone file are bug
related [74]. Studies have also found that larger files are generally more bug-prone [30, 37, 80], making it even more
difficult to find bugs. A reasonable solution is to develop bug prediction models at lower level granularity [57]. The
most efficient would be to build line-level bug prediction models. Such models, however, are inaccurate (e.g., [116]),
because tracking source code history is often required for building a bug prediction model. This is very difficult at

2https://github.com/shaifulcse/dataset-MLBP-2022

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Chowdhury et al.

the line level because many lines can be similar just by chance [40, 97, 106]. As such, method-level bug prediction has
become a hot research topic in the community [33, 35, 44, 72, 74, 83, 101]. A method, generally, is much smaller in size
than a class, which narrows down the search space. Also, if we can identify the group of more bug-prone methods, our
testing process can focus on those methods only (e.g., by adding and improving the unit tests for those methods). This
may dramatically optimize the allocation of limited resources during the testing and maintenance phases [66, 104].

2.2 Predictors

Models for bug prediction were built by using source code metrics [9, 33, 37, 78, 124], historical change metrics [38, 76,
102], and developer-related metrics [27]. Zimmerman et al. [124] studied the correlation between common complexity
metrics and bugs, and found that complex code leads to more bugs. Multiple studies (e.g., [9, 42]) have claimed that
the popular C&K metrics [19] are good bug predictors. Unfortunately, the true effectiveness of code metrics has been
debated. Research has shown that all the famous code metrics were found to be only as effective as their correlation
strength with size [30, 37]. Therefore, these code metrics provide no useful information if their correlation with the size
is neutralized. This criticism, however, is valid only at coarse-level granularities, such as class and module, but does not
hold for method-level granularity [22, 61].

Historical change metrics include the number of revisions, modification size, and modification type (#added lines,
#deleted lines) of a code component to understand its future change- or bug-proneness [22, 74]. Research has claimed
that change history can be a better bug predictor than source code metrics [38, 74]. Collecting change history at the
method level, however, has always been more challenging than file/class level granularity. Fortunately, the recent
state-of-the-art tool, CodeShovel [40], has solved this problem. It can return the complete change history of a given
method within a few seconds with high accuracy [39, 40].

2.3 Cross validation

Despite the potential of code metrics and change metrics as good predictors, MLBP is still considered an open research
problem [83]. All the MLBP models [33, 35, 44, 72, 74, 101] were evaluated with the time-insensitive k-fold cross-
validation approach [92], thus, incorrectly resulting in high accuracy. In a k-fold cross validation, the whole dataset is
divided into k different folds. There are k iterations, and in each iteration, a different fold is considered as the test data.
Training data is formed by using the remaining 𝑘 − 1 folds. This is unrealistic in bug prediction because the training
data would often contain information from the future, known as information leakage [8]. Consider a dataset with 10
consecutive releases of a software project. While the second fold (i.e., release 2) is the test data, the training data will be
formed by using release 1 data, and everything from release 3 to release 10. This is impractical because, in a realistic
scenario, only the release 1 data will be available for training while predicting bugs for release 2.

Motivation for RQ1. Pascarella et al. [83] reproduced the MLBP models of Giger et al. [35] with the unrealistic
cross validation approach. Similar to the original study, the accuracies of all the models were good. They then evaluated
the same models in a time-sensitive realistic scenario, where all the data from release 1 to release 𝑥 − 1 was used for
training while predicting bug-proneness at release 𝑥 . The prediction accuracies of all the models became extremely
poor and unacceptable for practice, which led them to call MLBP an open research problem. It is, however, rational to
argue that the poor performance of Pascarella et al. can be due to the lack of enough training data. Pascarella et al.
did not consider the potential benefit of enlarging the training dataset by adding external projects’ data. Also, their
conclusion was based on one single dataset that was built by themselves. Therefore, the findings of Pascarella et al.
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Method-Level Bug Prediction: Problems and Promises 5

might not be generalizable. In this research question, we reevaluate the findings of Pascarella et al., but instead of using
one dataset and one evaluation scenario, we use three different publicly available datasets and three realistic scenarios.

2.4 Bug labelling

Traditionally, a code component, such as a method, is considered bug-prone if it has been modified in a bug-fixing
commit [74, 89, 105]. For identifying the bug-fixing commits, the SSZ approach has been the most adopted [103], which
has been further improved in subsequent studies (e.g., [26, 58]). The core of these approaches is to use a set of keywords
and bug IDs; if a commit message contains any of these keywords or a bug ID that is also found in a bug report, that
commit message is considered to be bug-fixing. The SSZ-like approaches not only find a buggy code component, but
also can locate the bug-inducing commit. The accuracy of these SSZ-like approaches, however, has been criticized by a
recent study [94]. Considering all the SSZ variants, the highest precision was only 70% in identifying bug-inducing
commits.

The keywords that are used to detect bug-fix commit messages differ across studies [37, 89, 105]. These keywords-
based systems produce too many false positives and false negatives, and may lead to a noisy dataset [13]. This
problem intensifies when unrelated code changes are committed in a single transaction, known as tangled code
changes [28, 50, 59, 67]. Therefore, labelling all the modified methods in a bug-fixing commit as buggy methods is
inaccurate, and harms bug prediction models significantly [49].

Motivation for RQ2. None of the existing MLBP models attempted to alleviate this bug labelling problem while
building the training data. Therefore, the significance of the impact of noisy data on bug prediction accuracy is unclear.
Consequently, we are unsure if it is worthwhile for future MLBP research to invest in building a more accurate bug
labelling approach.

2.5 Concept drift

“Change is the only constant in software.” With the evolution of software, the distribution of their characteristics, such as
the distribution of buggy methods, will change. This phenomenon is known as concept drift [12, 29, 55, 113]. Research
has shown that bug prediction models should be updated continuously—otherwise, their prediction performance
degrades significantly due to the change in data [55, 113]. To our surprise, existing MLBP models have ignored the
impact of concept drift. The approaches (e.g., [35, 74]) are to build the model once and to use it forever. Although these
approaches can work at the beginning of the software development life cycle, they become less practical over time.

Updating a model with time, however, can be expensive, because it may involve repeatedly selecting similar training
data, and then retraining the model [113]. Concept drift in bug prediction was also observed in a study by a group
of Google practitioners [65]. Supporting the findings of Rahman et al. [86], they have initially observed that if a file
was involved with a large number of bug-fixing commits, that file should be flagged as a bug-prone file, and should be
inspected more. This theory, however, does not hold for a long time; a bug-prone file, with time and continuous fixing,
may become bug-free. Google has later improved the model by considering the age of the bug-fixing commits so that
their impact on bug-proneness decays over time. This can potentially capture concept drift, but without repeatedly
retraining the model.

Motivation for RQ3. We are interested to know if we can accommodate concept drift in the MLBP models without
the expensive repetitive model retraining approach. We can deduce from the literature that a method’s bug-proneness
should change as it ages, but does it follow a consistent pattern? If so, a method’s age can potentially be used to capture
its time-varying bug-proneness (i.e., concept drift).

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Chowdhury et al.

2.6 Project selection

A common hypothesis in machine learning is, the more the training data, the higher the prediction accuracy, leading to
significant research in artificial data augmentation [53, 118]. This hypothesis, however, does not necessarily hold in
software defect prediction. Characteristics of different software can be significantly different from each other [22, 36].
This is problematic because, in most modeling approaches, training and test data must come from similar distribu-
tions [68]. Therefore, it is often more useful to select training projects that are similar to a test project, than to arbitrarily
augment the training data by adding more and more dissimilar projects [6]. As such, recent bug prediction studies have
focused on defining and selecting similar projects [6, 107, 113], and showed that appropriate source project selection
can improve bug prediction accuracy very significantly.

Motivation for RQ4. Unfortunately, none of the existing MLBP research has considered similar source project
selection before training a model. Therefore, we investigate if future studies should focus on systematic project selection
algorithms to help MLBP models.

2.7 Multiple models

A single generic model does not perform well for a dataset that contains clusters of data with different distributions
from each other. In such cases, multiple models are built so that each model is associated with one particular cluster of
data [48, 108]. The diversity in software data [22] makes building multiple models a potential candidate to improve bug
prediction accuracy. Consequently, an array of bug prediction research [48, 63, 108, 114, 120] has focused on this area,
specifically in ensemble modeling. In ensemble modeling, a final outcome is generated from the outcomes of multiple
base models [53]. For example, a code component would be predicted as buggy only if the majority of the base models
predict it as buggy. Reportedly, bug prediction accuracy has improved significantly with different forms of ensemble
modeling [3, 7, 114].

Motivation for RQ5. According to a study by Chowdhury et al. [22], the characteristics of Java methods vary
based on their size. For example, the variability in code metrics distribution is very different between large and small
methods. This encourages us to investigate if future MLBP research should focus on building a mixture of models. More
specifically, should we build separate models for small and large methods?

3 METHODOLOGY

In this section, we describe the publicly available datasets, the need and the process to make a new dataset, and the
analysis approach that we follow to answer our research questions.

3.1 Available dataset

The objective of RQ1 is to evaluate the true effectiveness of the existing MLBP approaches in different realistic scenarios.
In particular, we want to know what is the accuracy of MLBP when evaluated in time-sensitive ways, in contrast to the
cross validation approaches that were followed previously. Unfortunately, only three of the method-level bug studies
have shared their dataset publicly: the dataset of Ferenc et al. [33], Shippey et al. [101], and Mo et al. [74]. The datasets
of Ferenc et al., and Shippey et al. contain only source code metrics, whereas the dataset of Mo et al. contains both
the source code and change history metrics. The dataset of Mo et al. was incomplete when we first accessed it, but
thankfully, the authors fixed it after we contacted them. Similarly, the link to download the dataset of Shippey et al. was
broken. The authors provided a new working link when we notified them about this problem. All the working links of
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Method-Level Bug Prediction: Problems and Promises 7

these three datasets are included with our replication package. Table 1 summarizes these three datasets. These datasets
are used to answer three of the five research questions: RQ1, RQ4, and RQ5.

Table 1. Statistics of the three publicly available datasets. All the projects were written in Java.

Dataset # Projects # Code metrics # Change metrics

Ferenc et al. [33] 15 37 0
Shippey et al. [101] 23 29 0

Mo et al. [74] 18 21 19

3.2 A new dataset

In RQ2, we investigate if a more accurate bug labelling approach can help the bug prediction models. Therefore, we
need to change how a method is labelled as either buggy or not buggy. Unfortunately, none of the available datasets,
described in Section 3.1, facilitates this experiment; they do not provide the raw data that was used to define a method’s
class: buggy or not buggy. Similarly, none of this datasets is suitable to answer RQ3, where we answer if a method’s age
and recent change history can be used to capture the concept drift involved in bug prediction models. To answer these
research questions, we built a new dataset that we describe as follows.

3.2.1 Project selection. Research based on mining software repositories often relies on aggregated data analysis, where
data from multiple projects are collected and merged to produce a single observation (e.g., [37, 74, 83, 105]). Aggregated
analysis, however, has been shown to be inaccurate [22], because the observation can be highly influenced by very
few large projects, masking observations from the smaller projects. As such, many research has focused on individual
project analysis [22, 23, 56, 93, 100, 122]. This approach, however, has its own drawbacks: researchers can intentionally
select projects that support their conclusion, which is known as selection or publication bias [37, 85].

We focused on individual project analysis, with an unbiased project selection approach, which was proposed by
Chowdhury et al. [23]. We selected all the 49 projects that we found after joining the project sets of five different
studies [37, 40, 82, 89, 105]. These are all Java projects, similar to the three publicly available dataset, thus alleviates the
threats related to analyzing projects with different programming languages [121]. Table 2 shows the 49 projects and
their number of methods. Approximately 19% of the collected methods are getters and setters, which may add noise to
the analysis [5, 47, 67]. None of the conclusions of this study, however, change if we exclude them from our analysis.
Therefore, for simplicity, they were included in our analysis. Our dataset still keeps the getters/setters information for
any future experiment that may need them.

3.2.2 Collecting data. We need the change history of a method to understand if the method was involved in a bug fixing
commit (RQ2), and if so, how old was the method during the bug fix (RQ3). To collect the change history of our 774,051
Java methods, we have used the state-of-the-art tool, CodeShovel [39, 40]. Unlike other method history collection tools,
such as Historage [43] and FinerGit [51], CodeShovel does not require any expensive repository pre-processing. Also,
CodeShovel exhibits much better accuracy compared to the leading research (e.g, FinerGit) and industry tools (e.g.,
IntelliJ / git log). For a given change commit of a method, CodeShovel captures who modified the method, what was
modified, when it was modified, and why it was modified (i.e, commit message). It also returns the two source code

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Chowdhury et al.

Table 2. Description of the 49 projects. In total, 774,051 methods were extracted, and 146,749 of them were simple getters and setters.
To enable reproducibility, snapshot SHAs are presented as well.

Repository # Methods # Getters-Setters Snapshot

hadoop 70,081 11,214 4c5cd7
elasticsearch 62,190 8,864 92be38
flink 38,081 6,764 261e72
lucene-solr 37,133 5,597 b457c2
presto 36,715 8,472 bb20eb
docx4j 36,514 19,951 36c378
hbase 36,274 5,743 3bd542
intellij-community 35,950 5,392 cdf2ef
weka 35,639 10,513 a22631
hazelcast 35,265 7,857 a59ad4
spring-framework 26,634 5,719 1984cf
hibernate-orm 24,800 5,647 2c12ca
eclipseJdt 22,124 2,093 475591
guava 20,757 499 e35207
sonarqube 20,627 4,152 6b806e
jclouds 20,358 3,533 7af4d8
wildfly 19,665 3,828 f21f5d
netty 16,908 631 662e0b
cassandra 15,953 1,005 7cdad3
argouml 12,755 1,789 fcbe6c
jetty 10,645 2,651 fc5dd8
voldemort 10,601 2,246 a7dbde
spring-boot 10,374 3,080 199cea
wicket 10,058 2,162 e3f370
ant 9,781 3,072 1ce1cc
jgit 9,548 1,476 855842
mongo-java-driver 9,467 1,576 8ab109
pmd 8,992 1,204 d115ca
xerces2-j 8,153 1,579 cf0c51
RxJava 8,145 59 880eed
openmrs-core 6,066 2,084 c5928a
javaparser 5,862 650 8f25c4
hibernate-search 5,345 912 5b7780
titan 4,590 485 ee226e
facebook-android-sdk 3,759 459 fb1b91
checkstyle 3,340 955 164a75
commons-lang 2,948 214 f69235
lombok 2,684 132 4fdcdd
atmosphere 2,659 328 fadfb0
jna 2,636 354 b8443b
Essentials 2,390 351 d36d80
junit5 2,085 203 be2aa2
hector 1,958 517 a302e6
okhttp 1,953 151 5224f3
mockito 1,498 144 077562
cucumber-jvm 1,146 169 b57b92
commons-io 1,145 85 11f0ab
vraptor4 926 132 593ce9
junit4 874 56 50a285

Total 774,051 146,749

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Method-Level Bug Prediction: Problems and Promises 9

versions of a change commit: a method’s code before the change and after the change. This facilitates us to calculate
different code metrics of a buggy method.

From the raw data provided by CodeShovel, we captured information related to RQ2, and RQ3. For this purpose, we
used our own tool—updated for this study—that was tested and used by multiple similar studies [1, 22, 23]. For source
code parsing and calculating different code metrics, our tool used the JavaParser library.3 Since an evolved method can
have multiple values for a given code metric, our tool collected and saved data for all the versions of a given method.
To make our work verifiable and reproducible, our replication package describes all the fields and their interpretations.
In particular, we have collected code metrics focusing on size, testability, readability, dependency, and maintainability.
Our objective (RQ2) is to observe how the ability of these code metrics improves in differentiating between buggy and
not buggy methods with more accurately labeled training data.

Size. Size of a code component has been reported as the most dominant maintenance predictor by many [23, 30, 37].
We consider size as the source lines of code without comments and blank lines, as was also defined by others [23, 61, 88].

Testability. If a method is difficult to test, the method could be more bug-prone [45]. The popular McCabe [2, 24, 61,
110, 122] is often used as an estimation of the complexity and testability of a method. McCabe [70] is the measurement
of the number of independent paths in a method, and the more independent paths a method has, the more difficult it is
to test.

Readability. Reading source code is one of the most crucial activities in software development and maintenance [95].
A difficult to read method is believed to be more bug-prone [83]. To measure the readability of source methods, we
have used the popular readability tool developed by Buse et al. [14].

Dependency. If a method (caller) relies on too many other methods (callees), the method would be more bug-prone,
because a bug in any of the callees would automatically propagate to the caller method. This measurement is generally
known as fanout [33, 74, 83], that we captured with our tool.

Maintainability. All the above code metrics capture some aspects of maintainability. However, to be more comprehen-
sive, a composite metric, known as maintainability index (MI) [81], is often used. This composite metric is also adopted
by different popular industry tools, such as Verifysoft technology [111], and Visual Studio [73].

3.3 Statistical tests

We randomly tested some of the distributions from our different datasets to verify if they are normally distributed.
After applying the Anderson-Darling normality test [90], we found that none of them followed a normal distribution.
Therefore, we adopted different non-parametric tests for our analysis. For example, to compare if two distributions are
statistically different, we use the non-parametric Wilcoxon rank sum test, also known as the Mann Whitney U Test [71].
Similarly, we used the non-parametric Cliff’s Delta calculator to calculate how significant is the difference between two
given distributions [69]. These two tests are commonly used in software engineering research (e.g., [8, 18, 20, 46, 52, 84]).

4 RESULTS: REVISITING THE PAST

In this section, we conduct an in-depth investigation of the effectiveness of the previous MPBP approaches. In particular,
we investigate if the existing MLBP models perform well when evaluated in realistic scenarios (RQ1).

Before evaluating the MLBP models in realistic scenarios on the datasets of Ferenc et al. [33], Shippey et al. [101],
and Mo et al. [74], we first need to verify if we are accurately using their dataset similar to their original studies. Both

3https://github.com/javaparser/javaparser

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Chowdhury et al.

Ferenc et al. [33] and Mo et al. [74] used Weka [117], a Java-based machine learning tool, for reporting their results with
the 10-fold cross validation approach. Therefore, with the help of the python-weka-wrapper4 library, we used Weka for
reproducing their results. Unfortunately, Shippey et al. [101] did not build any model, but only provided a dataset as a
benchmark for future MLBP research. Nevertheless, we use their dataset to see the accuracy with the cross validation
approach so that we can compare this accuracy with the accuracies in realistic scenarios.

Table 3 compares our results with the original results of Ferenc et al. [33]. We have selected the top five machine
learning algorithms, as mentioned in the original study. Although our reproduced results are similar to the original
study, in most cases the accuracy is a little higher in the reproduced results. We have contacted the authors about the
difference, and they found no problem with our approach, replying it could be due to an older Weka version that they
used. Unfortunately, the only author who knew about the exact Weka version was unavailable.

Table 4 shows the accuracy of the five machine learning algorithms for the dataset of Shippey et al. [101]. Clearly,
the observations are similar to the dataset of Ferenc et al. Unlike Ferenc et al., Mo et al. only used the Random Forrest
algorithm, and they reported the accuracy for each project separately. Also, the authors reported accuracy only in area

under roc curve (AUC). While we compare our AUC results with the original AUC, we also present results in other
accuracy metrics. Table 5 shows the detail. Our reproduced results (AUC score) are almost identical to the original
results.

Table 3. Reproducing the results for the dataset of Ferenc et al. [33] with 10-fold cross validation. O is for original, and R is for
reproduced.

Precision Recall F-measure
Algorithm O R O R O R

Random Forest 0.633 0.648 0.632 0.720 0.631 0.682
J48 0.614 0.617 0.613 0.738 0.611 0.672
Random Tree 0.611 0.650 0.611 0.674 0.611 0.662
SimpleLogistic 0.606 0.588 0.604 0.605 0.603 0.597
DecisionTable 0.613 0.583 0.607 0.759 0.598 0.659

Table 4. Results, with 10-fold cross validation, for the dataset of Shippey et al. [101]. No comparison can be made because Shippey et
al. [101] did not provide any accuracy result.

Algorithm Precision Recall F-measure

RandomForest 0.695 0.741 0.717
J48 0.680 0.664 0.672
RandomTree 0.662 0.669 0.665
SimpleLogistic 0.657 0.607 0.631
DecisionTable 0.658 0.625 0.641

As we are now confident that we are using the datasets as intended in the original studies, we now evaluate these
approaches and datasets in three realistic scenarios. The realistic scenarios are constructed as follows. When no history
data of a test project is available, practitioners can build a cross project defect prediction model. When history data is

4https://fracpete.github.io/python-weka-wrapper/

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Method-Level Bug Prediction: Problems and Promises 11

Table 5. Reproducing the results for the dataset of Mo et al. [74] with 10-fold cross validation.

AUC
Project Precision Recall F1 Original Reproduced

ActiveMQ 0.73 0.74 0.74 0.87 0.87
Ignite 0.61 0.32 0.42 0.90 0.90
Nutch 0.73 0.58 0.65 0.82 0.82
Camel 0.67 0.38 0.49 0.87 0.87
Flume 0.75 0.86 0.80 0.81 0.81
Struts 0.69 0.69 0.69 0.86 0.85
Maven 0.66 0.57 0.61 0.89 0.89
Kafka 0.6 0.46 0.52 0.83 0.83
Zookeeper 0.73 0.75 0.74 0.81 0.80
Avro 0.74 0.6 0.66 0.83 0.84
Drill 0.72 0.71 0.71 0.82 0.82
Wicket 0.68 0.65 0.66 0.89 0.89
Flink 0.65 0.43 0.52 0.79 0.80
Hbase 0.73 0.79 0.76 0.82 0.82
Calcite 0.64 0.67 0.66 0.74 0.74
CXF 0.66 0.45 0.53 0.88 0.87
Cassandra 0.7 0.75 0.73 0.83 0.82

available, practitioners have two more options for building the training data: they can mix the history data of the test
project with other projects’ data, or they can use only the history data of the test project.

• scenario i (cross project). No data from the test project is used in training.
• scenario ii (cross + past). Data from all projects and history data of the test project are used for training to predict

future bugs of the test project.
• scenario iii (only past). This is the same as ii, except only the history data of the test project is used for training.

Figure 1 shows the Cumulative Distribution Function (CDF) of different accuracy metrics for the dataset of Ferenc et
al. Although the original dataset does not contain the time information required for the accuracy evaluation in scenario
ii (cross + past) and iii (only past), we have collected this information by a python script that used the SHAs available
with the dataset. In all three scenarios, the precisions and the F1 scores are significantly lower than the original results
with the cross validation approach (Table 3). For example, for the scenario i (cross project) prediction (Figure 1 (a)),
precision was within only ∼0.37 for 80% of the projects, considering all the machine learning algorithms. The F1 score
was within ∼0.50 (Figure 1 (c)) for 80% of the projects, even with the most accurate Decision Table algorithm. This
degraded performance does not improve for the other two scenarios.

Figure 2 shows the results for the dataset of Shippey et al. [101]. Unlike the dataset of Ferenc et al., this dataset
contains the release numbers. Therefore, for scenarios ii (cross + past), and iii (only past), all the release versions before
the release version x were used in training, when the release version x was used for testing. The performance in
precision and F1 is now even worse. For example, in scenario i (cross project), the precision and F1 were within ∼0.13
and ∼0.25, respectively. Although the performance improve in scenarios ii (cross + past) and iii (only past), they are still
low compared to the results with the cross validation approach (Table 4).

Figure 3 shows the results for the dataset of Mo et al. Unfortunately, this dataset does not contain any timing
information, which obstructed our analysis for scenarios ii (cross + past) and iii (only past). The results, at the first glance,

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Chowdhury et al.

0.1 0.2 0.3 0.4
Precision

0.2

0.4

0.6

0.8

1.0
CD

F
J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(a) Scenario i

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(b) Scenario i

0.0 0.1 0.2 0.3 0.4 0.5
F1

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(c) Scenario i

0.1 0.2 0.3 0.4
Precision

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(d) Scenario ii

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Recall

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(e) Scenario ii

0.1 0.2 0.3 0.4 0.5
F1

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(f) Scenario ii

0.1 0.2 0.3 0.4 0.5
Precision

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

(g) Scenario iii

0.1 0.3 0.5 0.7 0.9
Recall

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(h) Scenario iii

0.1 0.2 0.3 0.4 0.5
F1

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(i) Scenario iii

Fig. 1. Results for the dataset of Ferenc et al. in three realistic scenarios. For graph readability, the number of markers is kept less
than the number of data points. The first row shows the cross project prediction results, where nothing was used from test projects
during training (scenario i). The second and third rows show the results for scenarios ii (cross + past) and iii (past only), respectively.
For these two scenarios, data from the first half of the test project’s lifetime was used in training, and the last half was used for
testing. We tried few other time splits with no noticeable change in our observation.

are encouraging. Although the accuracies are generally lower compared to the cross validation approach (Table 5), this
dataset produces significantly better accuracies than the other two datasets. Unfortunately, we found some crucial
problems with the construction of the dataset itself, which unduly boosted the accuracy. The authors have collected the
change history of a method from its whole lifetime, and then defined the method either as buggy or not buggy. In the
real world, we do not have access to the future change information when we predict the future bug-proneness of a
method; we have to predict the future only by using the past. Consider the independent variable number of changes

used by the study. If a method’s number of changes is zero in its whole lifetime, then the method was definitely labelled
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Method-Level Bug Prediction: Problems and Promises 13

0.0 0.1
Precision

0.0

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

(a) Scenario i

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

(b) Scenario i

0.0 0.1 0.2
F1

0.0

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

(c) Scenario i

0.0 0.1 0.2
Precision

0.0

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

(d) Scenario ii

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.2

0.4

0.6

0.8

1.0
CD

F J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(e) Scenario ii

0.0 0.1 0.2 0.3
F1

0.0

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

(f) Scenario ii

0.0 0.1 0.2
Precision

0.0

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

(g) Scenario iii

0.1 0.3 0.5 0.7 0.9
Recall

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(h) Scenario iii

0.0 0.1 0.2 0.3
F1

0.0

0.2

0.4

0.6

0.8

1.0
CD

F J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

(i) Scenario iii

Fig. 2. Results for the dataset of Shippey et al. [101] in three realistic scenarios. The first row shows the results for the scenario i
(cross project). The second and third rows show the results for scenarios ii (cross + past) and iii (past only), respectively.

as not buggy in the dataset, because it was never associated with a change commit, let alone with a bug-fixing commit.
Problem is, to make it work, we have to time travel in the future to know if a method will have zero change in its
lifetime. Also, building models where a method is labelled as buggy for eternity is impractical, because it may become
not buggy after one or more bug-fixing processes [65]. These kinds of incorrect approaches were reported to be the root
cause of the failure of bug prediction models in industrial practice [62].
Summary: Previous MLBP models were evaluated with the unrealistic cross validation approach. In some cases,
training data was constructed using information from the future that would be unavailable in any realistic scenario.
When evaluated with different practical scenarios, the performance of MLBP is extremely poor. Our conclusion,
based on robust analysis, confirms earlier findings [83] that method-level bug prediction is an open research problem.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Chowdhury et al.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Precision

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

0.4 0.5 0.6 0.7
F1

0.2

0.4

0.6

0.8

1.0

CD
F J48

RandomForest
RandomTree
SimpleLogistic
DecisionTable

0.5 0.6 0.7 0.8
AUC

0.2

0.4

0.6

0.8

1.0

CD
F

J48
RandomForest
RandomTree
SimpleLogistic
DecisionTable

Fig. 3. Results for the dataset of Mo et al. for scenario i. Result for AUC is also added to be consistent with the original study. This
dataset contains no time information, thus preventing us to perform the evaluations for scenarios ii and iii.

5 RESULTS: POTENTIAL IMPROVEMENT AVENUES

The futility of the existing approaches led us to explore some potential improvement avenues for future MLBP models.
In this section, we discuss a quartet of such avenues by answering RQ2 to RQ5.

5.1 RQ2: How important is accurate bug labelling for the success of future MLBP models?

Machine learning models perform poorly when trained on a noisy dataset [41]. While there are several types of
noises [123], such as providing inaccurate values for different attributes, noisy data due to mislabelled instances
has been the most crucial [41]. Removing mislabelled classes from the training data improves prediction accuracy
significantly [91, 123]. As we have mentioned in Section 2.4, bug prediction datasets are susceptible to noise, due to
their unconditional credence in finding bug-fix keywords in the commit messages, and due to the developers induced
tangled changes.

Problems with Keywords. Let us consider the bug-fix keywords used in the study of Ray et al. [89]. The authors
have used different forms of nine keywords—error, bug, fix, issue, mistake, incorrect, fault, defect, and flaw—such that
if a commit message contains any of these keywords, that commit is considered as a bug-fix commit. Our manual
analysis, with 500 randomly selected commits, reveals some problems with this keyword set. For example, the word
issue in a commit message does not necessarily mean it is a bug-fix commit. It may mean a quality improvement (e.g.,
jcloud, commit hash 4c83585, commit message: fixed some quality issues), or even an enhancement (e.g., hazelcast,
commit hash 51675d81, commit message: issues/13540: Transaction Propagation support implementation (15141)). As
such, all the methods that were changed in these commits will incorrectly be labelled as buggy methods. This problem
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Method-Level Bug Prediction: Problems and Promises 15

is common for other keywords as well. For example, although the commit message Add default /error view for HTML

clients (Spring-boot, commit sha 5211747) contains the word error, this commit was for an enhancement, not for a bug
fix.

Problems with tangled Changes. From our dataset, described in Section 3.2, we calculate how many methods are
modified in each bug-fix commit, and show the cumulative distribution function in Figure 4. In ∼40% of the bug-fix
commits, only one method was modified, which is good for producing a less noisy bug training dataset; if only one
method is modified in a true bug-fix commit, that method is definitely buggy. However, in more than ∼15% of the
bug-fix commits, at least 10 methods were modified. There are commits that even modified more than 100 methods
(or even more than 1000 methods in extreme cases). If a bug-fix commit modifies 100 methods, and only 10 of them
were actually buggy, 90 methods would be mislabelled as buggy methods. Our CDF graph shows that in ∼60% of the
commits, more than one method was modified, and we do not know how many of the methods were actually modified
for bug-fix. Therefore, the probability of having too many mislabelled buggy methods in the previously built datasets
(e.g., [33, 74, 83]) is high.

100 101 102 103 104

#methods changed

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Fig. 4. Cumulative distribution function of the number of methods modified in a bug-fix commit.

Problems with not buggy methods. Traditionally, if a method was never modified with a bug-fix commit, that
method is labelled as not buggy [35, 74]. This approach is unreliable in at least two scenarios. i) If a method was
introduced just before the data collection process, that method would automatically be labelled as not buggy, although
there was no time to observe this method’s evolution. ii) Consider that a complex method was committed to a system.
However, after just one week, a developer noticed the method, then refactored and improved its quality. Due to the
reduced complexity, the method was never associated with a bug-fix commit, therefore would be labelled as not buggy.
The problem is, this method now has two versions. It is acceptable to label the refactored version as not buggy, but
labelling the first version of the method as not buggy could be problematic. Similar to scenario i, the first version did
not have enough time to be labelled as buggy, in case it was indeed a buggy method.

Can these too many sources of noise in bug data explain the poor performance of the previous bug prediction
models (RQ2-1)? Can a more accurate approach to building bug data improve bug prediction (RQ2-2)? To answer these
questions, we built two datasets: i) Traditional, and ii) Accurate.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Chowdhury et al.

Traditional dataset. Similar to earlier studies, a method is buggy if it was modified in a bug-fix commit. To identify
a bug-fix commit, we adopt the keywords used by Ray et al. [89]. Likewise, a method is not buggy if it was never
modified in a bug-fix commit.

Accurate dataset. To build an accurate dataset, we focused on the precision for labelling a method either as buggy
or not buggy. Our developed approach is based on our manual inspection on 500 randomly selected potential bug-fix
commits. We label a method as buggy, if it is the only method that was modified in a commit containing a bug and a fix

related keyword in the same sentence of the commit message. The details are as follows.

• Bug words. We deleted the keyword issue from the keyword set of Ray et al., because it produces too many false
positives. Instead, we added the word misfeature to the list, as suggested by Rosa et al. [94].

• Fix words. The presence of a bug word alone is not sufficient for detecting bug-fix commits [94]. To achieve high
precision, the same sentence containing a bug-related word must contain a fix-related word as well. Leveraging
our manual analysis and the existing research, we selected different forms of five fix related words: fix, solve,
resolve, repair, and address.

• If multiple methods were modified in a single commit, we do not know which methods are related to bug-fix,
and which are the results of tangled changes. Therefore, we discarded such commits from our dataset.

• If a method has multiple versions, only the modified version in a bug-fix commit is buggy.

A method’s version is labelled as not buggy, if it was unchanged at least for two years, and none of the future versions
was associated with a change commit containing any of the bug or fix related keywords we mentioned in this paper. The
rationales are as follows.

• We cannot label a method as not buggy, just because it was never associated with a bug-fix commit. Perhaps, it
is a new method, and its bug will be revealed in the future. Therefore, a method has to be unchanged at least for
two years. Chowdhury et al. [22] showed that if a method is unchanged for two years, the probability of its
future change is low.

• If a specific version of a method was not associated with a bug-fix commit, but a later version was, we cannot
guarantee the previous version was bug-free, because the bug may have propagated to the later version.

• While the existence of a single bug or fix related keywords in a commit message does not always indicate a
bug-fix process, in many cases they do. Therefore, we can not label any method as bug-free that was associated
with a commit containing any of these potentially bug or fix-related keywords, including the word issue.

Let us now consider the sonarqube project (Table 2) as an example. For this project, Figure 5 shows the distribution
of the five code metrics, discussed in Section 3.2.2, after grouping them for the buggy and the not buggy methods.
In the traditional noisy dataset (Figure (a)), all the distribution differences are statistically significant, according to
the Wilcoxon rank sum test. However, all of these differences have small effect sizes according to the Cliff’s delta
calculator. For the accurate dataset (Figure (b)), however, all the differences have large effect sizes, not to mention that
the differences are statically significant as well. Do these observations generalize for all 49 projects? Table 6 shows the
results. We had to exclude six projects from our analysis because they did not have enough samples (i.e., at least 10
samples) for the buggy class when calculated for the accurate dataset.

For the traditional noisy dataset, the distribution differences are mostly within negligible or small effect sizes. This
means, even the popular explanatory variables struggle to distinguish between the buggy and not buggy methods. This
clearly explains the poor performance of the previous MLBP approaches (RQ2-1), because this is how their datasets
were constructed.
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Method-Level Bug Prediction: Problems and Promises 17

(a) Traditional dataset

(b) Accurate dataset

Fig. 5. Distribution of different code metrics in the buggy and not buggy Java methods from the Sonarqube project. The distributions
are significantly more different in the accurate dataset than in the traditional dataset.

In contrast, most of the differences have large effect sizes in the accurate dataset. For example, in the traditional
dataset, in 30.61% of the projects (15 projects), the Cliff’s delta effect size is negligible between the size distributions of
buggy and not buggy methods. This effect size is large for 97.67% of the projects in the accurate dataset. This significantly
different behaviour between the two datasets is true for other code metrics as well. This implies that future MLBP
models can be improved significantly with our conservative accurate labelling approach (RQ2-2).

Summary: The impact of accurate bug labelling on the future MLBP models can be enormous. Previous MLBP
models were trained on inaccurate noisy datasets, leading to poor prediction performance. We showed that future
bug prediction models can be improved significantly by a more careful bug labelling approach.

5.2 RQ3: Can a method’s age capture the inevitable concept drift in bug prediction?

Previous studies have observed a positive correlation between change- and bug-proneness [10, 11, 76, 77, 87]. We first
investigate if this observation is true at the method-level granularity. To understand the change history of a method, we
captured four different change-proneness indicators from the first five years of a method’s lifetime. We then captured if
the method was buggy or not, in the next five years. The four indicators are, i) number of revisions, ii) diff size, iii)

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Chowdhury et al.

Table 6. Cliff’s Delta Effect sizes for the difference in code metrics distribution between the not buggy and buggy methods. N refers
to Negligible, S refers to Small, M refers to Medium, and L refers to Large effect size. For example, 30.61 for N means, in 30.61% of the
projects the cliff’s delta is negligible.

Traditional Accurate
Metrics N S M L N S M L

Size 30.61 57.14 12.24 0.0 0.0 2.33 0.0 97.67
Readability 44.9 48.98 4.08 2.04 0.0 2.33 4.65 93.02
McCabe 42.86 48.98 8.16 0.0 0.0 2.33 0.0 97.67
FanOut 32.65 57.14 10.2 0.0 0.0 2.33 0.0 97.67
MI 24.49 61.22 14.29 0.0 0.0 2.33 0.0 97.67

number of added lines only, and iv) Levenshtein edit distance [64]. Chowdhury et al. [22] observed that these four
change indicators together can provide a comprehensive view of a method’s true change history.

Figure 6 shows that the buggy methods are more change-prone than the not-buggy methods. For all four change
indicators, the distribution differences are statistically significant according to the Wilcoxon rank sum test, and the
effect sizes are large according to the Cliff’s delta calculator. Therefore, change history is indeed a good predictor for
method-level bug prediction, as was also claimed in other studies [74, 83].

Fig. 6. Distribution of different change metrics in the buggy and not buggy methods in the accurate dataset. Change metrics were
captured from the first 5 years, whereas bug information was captured in the next five years. Data was aggregated from all 49 projects.
Methods that are not at least 10 years old were excluded from this analysis. Observations are similar for individual project analysis as
well.

The problem is, due to concept drift [12, 29, 55, 113], the correlation between change- and bug-proneness fluctuates
with time [65], inducing unstable bug prediction performances [8]. This problem can be alleviated by retraining the
model each time a concept drift occurs [113], which is, of course, laborious and time-consuming. A cheaper alternative
would be to use one or more variables that can guide the time-varying prediction of a model. According to a Google
study [65], bug-proneness is better modelled with the recent change history than with the complete change history.
This makes recent change history a potential candidate to model concept drift. Unfortunately, the differences in Figure 6
between buggy and not buggy methods reduce if we collect the change history from recent times (e.g., from the last
three years), instead of collecting it from the whole five years. The Cliff’s delta effect sizes become medium from large.

We have also experimented with other scenarios. For example, we have captured bug information between the eighth
and the tenth year of a method’s life. We then captured the last two years’ change history (i.e., changes between years
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Method-Level Bug Prediction: Problems and Promises 19

six to eight), and the total change history. For all four change indicators, the effect sizes between the buggy and the not
buggy methods were lower with the recent change history compared to the complete change history. Is it surprising
that recent change history was helpful at Google (File level), but not in our study (method level)? Perhaps not. Previous
studies have reported about these contradictory observations between file/class and method-level granularity [22, 61].

Given that recent change history does not help us capture concept drift at the method level, we now focus on method
age. What if a method’s age can explain its time-varying bug-proneness? Perhaps, a complex old method is less (or
more) bug prone than a complex new method. Probably, if a method is old, its bug-proneness is low although it has
undergone massive changes in its early life stages. To investigate this, we have captured how old was a method during
its involvement with bug-fix commits. If a method was modified with multiple bug-fix commits, we recorded all the
corresponding ages. The relevant threats with this analysis are discussed in Section 7.

Figure 7 shows that a method’s bug-proneness indeed decays over time. The decaying patterns are so consistent that
they can be modelled by a power law distribution, such as the Zipf’s law [79]. This is encouraging because future MLBP
models can consider a method’s age to potentially address concept drift, without the laborious and time-consuming
model retraining.

A valid skepticism of using method age. The complexity of a method reduces over time, due to the regular perfective
and preventive maintenance activities [16, 17]. Since code complexity is a good bug predictor (Section 2.4), the decaying
bug-proneness over time is probably due to the reduced code complexity. In that case, method age would not be a good
predictor to understand concept drift. A more complex method would be more bug-prone regardless of its age. To verify
this, we captured the McCabe complexities of all the methods in three different times: when the methods were 1 year,
5 years, and 10 years old. Figure 8 shows that the complexity distributions did not change over time. According to
the Wilcoxon rank sum test, none of these distributions are statistically different from each other. This validates the
usefulness of using a method’s age in capturing its concept drift.

2 4 6 8 10
Method age (Year)

0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
op

or
tio

n
(B

ug
 fi

x) All Projects
Zipf (a = 1)

(a) Accurate dataset

2 4 6 8 10
Method age (Year)

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n
(B

ug
 fi

x) All Projects
Zipf (a = 0.75)

(b) Traditional dataset

2 4 6 8 10
Method age (Year)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
op

or
tio

n
(B

ug
 fi

x) xerces2-j
wicket
argouml
Zipf (a = 1.25)

(c) Individual projects

Fig. 7. The bug proneness of a method dwindles as it gets older. Figure (a) is for the accurate dataset, and figure (b) is for the traditional
noisy dataset. The little zigzag pattern in Figure (a) is due to the less number of data points than in Figure (b). As bug-related data in
each year for each project individually is rare, Figure (a) and (b) show results for the aggregated data. However, in (c), results are
shown separately for three individual projects that had much more year-by-year bug data than the other projects. In all cases, the
decay patterns can be modelled with the Zipf’s Law equation.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Chowdhury et al.

100 101 102

McCabe

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

CD
F

1 Year
5 Years
10 Years

(a) All projects

100 101 102

McCabe

0.6

0.7

0.8

0.9

1.0

CD
F

1 Year
5 Years
10 Years

(b) Xerces2-j

100 101

McCabe

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

CD
F

1 Year
5 Years
10 Years

(c) Wicket

Fig. 8. McCabe distribution over time. Figure (a) is for the aggregated data. The results are similar for each of the individual projects.
For brevity, we show results for two of them in Figure (b) and Figure (c).

Summary: A method’s bug-proneness decays continuously as the method ages. A long-lived buggy method has
probably undergone enough bug-fixing processes and become a bug-free method. Therefore, bug-proneness cannot
be explained just by using the code complexity and change history of a method. A method’s age must be used to
capture the concept drift necessary for a realistic and accurate bug prediction model.

5.3 RQ4: Should future MLBP research focus on an optimal project set selection?

Studies, at higher than the method-level granularity, observed that judicious selection of training projects (or project
versions) can significantly improve the accuracy of bug prediction models [6, 107, 113]. This judicious selection is
commonly based on some similarity scores between the test project and the training projects. We investigate if this
approach can indeed benefit MLBP models so that researchers can build and evaluate such similarity functions for the
method-level granularity.

Our hypothesis is that, if using only a subset of the training projects produces a more accurate prediction model than

using all the training projects, then this indicates that optimal project set selection should improve MLBP accuracy. To
better understand our hypothesis, let us consider a test project 𝑝𝑡 and two sets of training projects 𝐴 = 𝑝1, 𝑝3, 𝑝5, and
𝐵 = 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5. Here, 𝐴 is a subset of 𝐵. Now, if the bug prediction accuracy on 𝑝𝑡 is higher with 𝐴 than with 𝐵,
this means adding 𝑝2 and 𝑝4 in the training set did more harm than good. This clearly implies that adding more projects
to the training data does not necessarily improve prediction accuracy, and optimal project selection can indeed help
MLBP models.

For our experiments, we used all three public datasets, described in Section 3.1. We followed the cross-project bug
prediction approach, where the base model uses all the training projects. For experimenting with the subset projects,
we randomly selected 𝑥 number of training projects, such that 𝑥 = 1, 3, 5, 7, 10. For example, when 𝑥 = 5, we randomly
sampled five training projects, without replacement. We then trained a model with these five projects and compared its
accuracy with the base model. This experiment was repeated three times so that three different sets of five projects
were evaluated. The same approach was followed for all the 𝑥 values.

For most of the subsets, in all three datasets, the accuracy was significantly lower than the base model. This supports
the traditional presumption that more training projects generally lead to more prediction accuracy. However, for all the
test projects from all three datasets, there was always one or more subsets that had higher accuracy than the base model.
This observation is presented in Figure 9. Clearly, all the accuracy scores (precision, recall, and F1) have improved
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Method-Level Bug Prediction: Problems and Promises 21

0 10 20 30 40 50
Improvement (%)

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(a) Ferenc et al.

0 5 10 15 20 25 30
Improvement (%)

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(b) Shippey et al.

0 5 10 15 20 25 30
Improvement (%)

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(c) Mo et al.

Fig. 9. Improvement results for all three datasets. For each test project, there is at least one smaller set of training projects that
leads to better accuracy than using all the training projects. When there are multiple subsets with improved accuracy, the maximum
improvement was selected. For simplicity, results are shown only for the Random Forest algorithm, but the observations are the same
as the other algorithms.

significantly for all the projects. For example, for the dataset of Ferenc et al., the recall has improved by at least 10% for
60% of the projects. For the dataset of Shippey et al., all the scores have improved by at least 10% for 20% of the projects.
These improvements can potentially be higher if we test with more subsets. A potential approach to select optimal
training projects is discussed in Section 6.

Summary: Future MLBP models should take advantage of optimal project set selection, because this may signifi-
cantly improve bug prediction performance. However, finding optimal training projects for a given test project is an
open research problem for MLBP. In Section 6, we provide a potential layout in this direction.

5.4 RQ5: Should future MLBP research focus on a mixture of models?

As we have discussed in Section 2.7, a mixture of models improves prediction accuracy when there are multiple distinct
populations (or clusters) in a single dataset. It is inaccurate to model such a dataset with a single set of parameters. In
this RQ, we investigate if future research should model bug proneness separately for small and large methods.

Chowdhury et al. [23] followed the six steps procedure of Alves et al. [4] for empirically deriving and evaluating
the size boundaries of small (𝑆𝑖𝑧𝑒 ≤ 24), medium (25 ≤ 𝑆𝑖𝑧𝑒 ≤ 36), large (37 ≤ 𝑆𝑖𝑧𝑒 ≤ 63), and very large methods
(𝑆𝑖𝑧𝑒 ≥ 63). Alves et al. [4]’s approach does not depend on intuition or expert opinions (which are generally debatable),
and is robust to outlier projects. The three public datasets for our analysis, however, do not have enough buggy methods
in each size category. Therefore, we considered any method with 𝑆𝑖𝑧𝑒 ≤ 36 and 𝑆𝑖𝑧𝑒 ≥ 37 as a small and large method,
respectively.

We first investigate if the ratios of the buggy and not buggy methods in a project (i.e., # of buggy methods /# not
buggy methods) are different in small and large methods. If so, then small and large methods should be treated as two
different clusters, and we should not model them together. Figure 10 shows the results for all three datasets. The group
of small methods has a much less number of buggy methods than not buggy methods. For example, in the dataset of
Ferenc et al., the ratios for the small methods are ≤ 0.4 for ∼80% of the projects. But for large methods, the ratios are
≤ 0.4 for only ∼20% of the projects. Evidently, the class imbalance issue is much more prevalent in small methods than
in large methods. Therefore, applying the over-sampling or the under-sampling approach on the whole dataset, as

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Chowdhury et al.

followed by the previous studies [33, 83], would not solve the problem. Most of the buggy methods would be drawn
from the set of large methods, and the not buggy methods would be drawn from the set of small methods.

0.0 0.2 0.4 0.6 0.8
Ratio

0.2

0.4

0.6

0.8

1.0

CD
F

Small
Large

(a) Ferenc et al.

0.0 0.1 0.2 0.3
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Small
Large

(b) Shippey et al.

0 1 2 3 4
Ratio

0.2

0.4

0.6

0.8

1.0

CD
F

Small
Large

(c) Mo et al.

Fig. 10. Cumulative distribution functions of the ratios of the buggy and not buggy methods for all three public datasets.

According to our observation, accurate bug prediction should be much more difficult in small methods. To verify
this, we captured the prediction accuracy on small methods and large methods separately, and then calculated the
accuracy gain (or loss) compared with the prediction accuracy on the whole dataset (base accuracy). For example, if
precision is 0.3 on the whole dataset, but 0.5 when evaluated on the large methods only, that is a 66.66% improvement in
precision. Figure 11 shows the results. Clearly, compared to the base accuracy, the prediction accuracy is always lower
for small methods, and higher for large methods. For example, when evaluated only on the small methods in the dataset
of Ferenc et al. (Figure 11 (a)), precision and F1 scores dropped more than 10% for 40% of the projects. In contrast, all the
scores improved by at least 10% for 80% of the projects when evaluated on large methods only (Figure 11 (b)).
Summary: Characteristics of small and large methods are significantly different from each other: they are different
in their code metrics variability [22], and in their bug-proneness distributions. Future MLBP research should group
them into two different clusters so that both the pre-processing (e.g., under-sampling) and model training are done
separately.

6 DISCUSSION

We have established that the reported high accuracies of previous method-level bug prediction research are inaccurate
(RQ1). The accuracies were unduly boosted through information leakage, as future data was used during the model
training phase (or even during the data construction phase). In realistic scenarios, the performances of those models and
approaches are extremely poor. Method-level bug prediction thus remains an open research problem. We then studied
and provided four potential guidelines (RQ2 to RQ5) that can benefit future method-level bug prediction research. The
guidelines are as follows.

• Future method-level bug prediction should focus on accurate bug labelling. They can adopt our conservative
labelling approach (RQ2), or improve it even further.

• They must adapt to concept drift, and can use a method’s age (RQ3) that captures the continually decaying
bug-proneness of the method.

• Instead of solely focusing on how to enlarge training data, future research should focus on selecting training
projects that are similar to a given test project (RQ4).

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Method-Level Bug Prediction: Problems and Promises 23

30 25 20 15 10 5 0
Improvement (%)

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(a) Small methods

10 20 30 40 50 60 70
Improvement (%)

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(b) Large methods

40 30 20 10 0
Improvement (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(c) Small methods

0 100 200 300 400 500
Improvement (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(d) Large methods

12 10 8 6 4 2
Improvement (%)

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(e) Small methods

20 30 40 50 60 70 80
Improvement (%)

0.2

0.4

0.6

0.8

1.0

CD
F

Precision
Recall
F1

(f) Large methods

Fig. 11. The first row shows the results for the dataset of Ferenc et al. The second and the third rows are for the datasets of Shippey
et al. and Mo et al., respectively. For all the datasets, prediction accuracy is much weaker in small methods. Results are shown only
for the Random Forest algorithm, but the observations are similar for all of them.

• Due to their distinct characteristics, small and large methods should be grouped and treated separately (RQ5).
For example, instead of one single generic model, at least two different models should be built—one for each
size group.

Our conservative bug labelling approach (RQ2), however, reduces the number of samples in both classes. But, for
accurate model training, a small accurate dataset is often better than a large noisy dataset [31, 41, 119]. In addition, by
leveraging different open-source platforms, such as GitHub, and tools like CodeShovel [40], we can collect as many

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Chowdhury et al.

accurate samples as required. One other challenge to follow our guidelines is not knowing how to select similar projects
(RQ4). Recent research has investigated the effectiveness of the bandit algorithms [6], distribution of bug prediction
data [113], and collaborative filtering [107] for selecting similar training projects. However, due to the different code
granularity, the effectiveness of these approaches is unknown in method-level bug prediction.

We envision a dedicated future study solely on similar training project selection—selecting a set of training projects
that are similar to the test project in a way that produces higher bug prediction accuracy. The challenge is to find a
metric (or a set of metrics) that can be used as a proxy for project similarity. We can consider two projects as similar
if most of their source methods are similar according to code clone analysis. However, this requires comparing each
method of a project with every method from the other project, which would be extremely time-consuming especially
when we require a significant number of training projects for building a robust model. Also, even if two projects
share many similar methods, the number of bugs and their fix patterns can still be substantially different based on the
number and expertise of the contributors of those two projects. Therefore, future studies can investigate if developer-
centric information can be used for selecting similar training projects. None of our datasets contains developer-related
information, restricting us from such an analysis. Another potential approach to define similarity is to use different
code quality indicators—if two projects have similar code quality, perhaps they have similar numbers and types of
bugs. To investigate if such an approach can be useful, we consider three source code metrics: LOC (source lines of
code), McCabe (cyclomatic complexity), and HCPL (Halstead calculated program length). These three metrics are widely
used in software quality and maintenance research [2, 22, 24]. For this analysis, we selected the dataset of Ferenc et al.,
because its model performs much better than the dataset of Shippey et al., and unlike the dataset of Mo et al., it does
not contain any unrealistic future information.

We want to investigate cases where we see substantially different accuracy when two different training project
sets are used, although other settings are identical. In that vein, we found that the accuracy in bug prediction for
the Android-Universal-Image-Loader project is significantly higher with training projects titan, mct, oryx, hazelcast,

and MapDB than with projects elasticsearch, JUnit, ceylon-ide-eclipse, antlr4, and mcMMO, although in both cases the
RandomForest algorithm was used. Figure 12 (a) compares the code metric distributions (HCPL) between the test project
Android-Universal-Image-Loader and the higher accuracy-producing training projects (titan, mct, oryx, hazelcast, and

MapDB). Figure 12 (b) does the same, except it compares the test project with the worst accuracy-producing training
projects. Clearly, the HCPL code metric distribution of the test project is much more similar to the training projects with
higher accuracy (Figure a) than the training projects with lower accuracy (Figure b). We also observed a similar case
when the mct project was the test project—two different training sets produced two subsantially different accuracies for
mct. Figure 12 (c) and Figure 12 (d) draw the same conclusion—training projects with similar HCPL distribution to the
test project produce better accuracy. Encouragingly, this conclusion does not change for the other two code metrics:
LOC, and McCabe. This implies that similarity in the distribution of code metrics can be used as a proxy to select similar
training projects for improving future MLBP models. We plan to evaluate this more rigorously in the future.

We also observed that all the previous research considered method-level bug prediction as a static problem; a method
was either considered buggy or not buggy for its whole lifetime. These models are impractical because they can not
adapt to the change of state after a method undergoes one or more bug-fixing processes. Future research, therefore,
should consider method-level bug prediction as a time-series problem.

7 THREATS TO VALIDITY

Several threats can harm the validity of our findings.
Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Method-Level Bug Prediction: Problems and Promises 25

100 101 102 103

HCPL
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Test Project

(a) Android-Universal-Image-Loader (best set of train-
ing projects)

100 101 102 103

HCPL
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Test Project

(b) Android-Universal-Image-Loader (worst set of
training projects)

100 101 102 103

HCPL
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Test Project

(c) mct (best set of training projects)

100 101 102 103

HCPL
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Test Project

(d) mct (worst set of training projects)

Fig. 12. Comparison between the HCPL metric distributions between the test and the training projects. The first row shows the
results for the Android-Universal-Image-Loader project with the best (a) and the worst (b) training projects. The second row shows
the same for the mct project. The distribution of code quality indicator HCPL for the test project is more similar to the higher
accuracy-producing training projects (Figures (a) and (c)) than the lower accuracy-producing training projects (Figures (b) and (d)).
This observation remains the same if we replace HCPL with other quality indicators (LOC, and McCabe).

External validity is impacted by the selection of the three datasets. To the best of our knowledge, these are, unfor-
tunately, the only publicly available datasets designed for method-level bug prediction. We have contacted the first
author of [83] asking about the availability of their dataset. Their suggestion was to follow their posted data collection
process which may unfortunately require a few months. Our new dataset used 49 open-source Java projects. As such,
our results might not generalize for closed-source projects, or for projects written in different programming languages.

Internal validity is hampered by our choice of the two statistical tests: Wilcoxon rank sum, and Cliff’s delta. These
two tests, however, are widely adopted in software engineering research (e.g., [8, 20, 21, 40, 60, 98]). In addition, we
have also analyzed our results with data visualization—e.g., the cumulative distribution function and box-plots.

Construct validity is affected by our selection of bug- and fix-related keywords. Also, for tracing a method’s change
history, we relied on CodeShovel [40]. CodeShovel uses string similarity to decide if two given methods are similar. This
approach can be inaccurate in method overloading, which can be common in Java-based projects. In RQ3, to understand
the decay in bug-proneness, we have captured the age of a method during its bug fix. A bug, however, can be much
older than its bug-fix time, but exactly when a method became buggy is difficult to capture. However, if we see that
bug-fix happens less as a method gets older, it is not an unreasonable assumption that bug-proneness decays over time
too.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Chowdhury et al.

Conclusion validity of our findings can be impacted by any of the above mentioned threats.

8 CONCLUSION

In this paper, we have established that existing method-level bug prediction models are not suitable for realistic scenarios
applicable to industry practices. We have shown three time-sensitive realistic scenarios that future models should be
evaluated with. We then discussed four potential research avenues that may improve method-level bug prediction
significantly.

Through our findings, the extremely poor performance of the existing models became unsurprising, given that they
were trained on noisy datasets. An accurate bug labeling approach, such as the one we have presented, should be used
in the future. In addition, the bug-proneness of a method decays over time, due to concept drift. This observation
was neglected in the earlier studies, which also partly explains their poor performance. In those models, a complex
bug-prone method would always be considered buggy, even if the method has undergone several bug-fixing processes.
We have also shown that method-level bug prediction accuracy can be improved by selecting similar training projects
and building separate models based on method sizes.

We hope that our findings and guidelines would excite and encourage the research community for producing ever
more accurate method-level bug prediction models that are also suitable for industry practice.

9 ACKNOWLEDGMENTS

This research was partly supported by the NSERC Alliance (ALLRP/556396-2020) - Alberta Innovates CASBE Program
(Grant #202102242), and Eyes High Postdoctoral Match-Funding Program, while Dr. Chowdhury and Dr Hemmati were
at the University of Calgary.

REFERENCES
[1] Syed Ishtiaque Ahmad. 2021. Investigating the impact of methodological choices on source code maintenance analyses. Master’s thesis. University of

British Columbia.
[2] M. Alfadel, A. Kobilica, and J. Hassine. 2017. Evaluation of Halstead and Cyclomatic Complexity Metrics in Measuring Defect Density. In 2017 9th

IEEE-GCC Conference and Exhibition. 1–9.
[3] H. Alsolai, M. Roper, and D. Nassar. 2018. Predicting Software Maintainability in Object-Oriented Systems Using Ensemble Techniques. In 2018

IEEE International Conference on Software Maintenance and Evolution. 716–721.
[4] T. L. Alves, C. Ypma, and J. Visser. 2010. Deriving metric thresholds from benchmark data. In IEEE International Conference on Software Maintenance.

1–10.
[5] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Aiko Yamashita. 2015. Automatic Metric Thresholds Derivation for Code Smell

Detection. In 2015 IEEE/ACM 6th International Workshop on Emerging Trends in Software Metrics. 44–53.
[6] Takuya Asano, Masateru Tsunoda, Koji Toda, Amjed Tahir, Kwabena Ebo Bennin, Keitaro Nakasai, Akito Monden, and Kenichi Matsumoto. 2021.

Using Bandit Algorithms for Project Selection in Cross-Project Defect Prediction. In 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 649–653.

[7] Abdullateef O Balogun, Babajide J Odejide, Amos O Bajeh, Zubair O Alanamu, Fatima E Usman-Hamza, Hammid O Adeleke, Modinat A Mabayoje,
and Shakirat R Yusuff. 2022. Empirical Analysis of Data Sampling-Based Ensemble Methods in Software Defect Prediction. In International
Conference on Computational Science and Its Applications. 363–379.

[8] Abdul Ali Bangash, Hareem Sahar, Abram Hindle, and Karim Ali. 2020. On the Time-Based Conclusion Stability of Cross-Project Defect Prediction
Models. Empirical Softw. Engg. 25, 6 (2020).

[9] V.R. Basili, L.C. Briand, and W.L. Melo. 1996. A validation of object-oriented design metrics as quality indicators. IEEE Transactions on Software
Engineering 22, 10 (1996), 751–761.

[10] Gabriele Bavota, Mario Linares-Vásquez, Carlos Eduardo Bernal-Cárdenas, Massimiliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2015.
The Impact of API Change- and Fault-Proneness on the User Ratings of Android Apps. IEEE Transactions on Software Engineering 41, 4 (2015),
384–407.

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Method-Level Bug Prediction: Problems and Promises 27

[11] Robert M. Bell, Thomas J. Ostrand, and Elaine J. Weyuker. 2011. Does Measuring Code Change Improve Fault Prediction?. In Proceedings of the 7th
International Conference on Predictive Models in Software Engineering (Banff, Alberta, Canada) (Promise ’11). Article 2, 8 pages.

[12] Kwabena E Bennin, Nauman bin Ali, Jürgen Börstler, and Xiao Yu. 2020. Revisiting the Impact of Concept Drift on Just-in-Time Quality Assurance.
In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). 53–59.

[13] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein, Vladimir Filkov, and Premkumar Devanbu. 2009. Fair and Balanced?
Bias in Bug-Fix Datasets. 121–130.

[14] Raymond P. L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code Readability. IEEE Trans. Softw. Eng. 36, 4 (July 2010), 546–558.
[15] Celerity. [n.d.]. The True Cost of a Software Bug: Part One. https://www.celerity.com/insights/the-true-cost-of-a-software-bug. [Online; last

accessed 01-Sep-2022].
[16] Ned Chapin. 2000. Do we know what preventive maintenance is?. In International Conference on Software Maintenance. 15–17.
[17] Jiachi Chen, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2021. Maintenance-related concerns for post-deployed Ethereum smart contract

development: issues, techniques, and future challenges. Empirical Software Engineering 26, 6 (2021), 1–44.
[18] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang, Tao Wei, and Long Lu. 2020. Savior: Towards bug-driven hybrid

testing. In 2020 IEEE Symposium on Security and Privacy (SP). 1580–1596.
[19] S. R. Chidamber and C. F. Kemerer. 1994. A metrics suite for object oriented design. IEEE Transactions on Software Engineering 20, 6 (1994),

476–493.
[20] Shaiful Chowdhury, Stephanie Borle, Stephen Romansky, and Abram Hindle. 2019. GreenScaler: training software energy models with automatic

test generation. Empirical software engineering : an international journal 24, 4 (2019), 1649–1692.
[21] Shaiful Chowdhury, Silvia Di Nardo, Abram Hindle, and Zhen Ming Jack Jiang. 2018. An exploratory study on assessing the energy impact of

logging on android applications. Empirical Software Engineering 23, 3 (2018), 1422–1456.
[22] Shaiful Chowdhury, Reid Holmes, Andy Zaidman, and Rick Kazman. 2022. Revisiting the Debate: Are Code Metrics Useful for Measuring

Maintenance Effort? Empirical Software Engineering (EMSE) 27, 6 (2022), 31 pages.
[23] Shaiful Chowdhury, Gias Uddin, and Reid Holmes. 2022. An Empirical Study on Maintainable Method Size in Java. In Proceedings of the International

Conference on Mining Software Repositories (MSR). 252–264.
[24] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love. 1979. Measuring the Psychological Complexity of Software Maintenance Tasks

with the Halstead and McCabe Metrics. IEEE Transactions on Software Engineering SE-5, 2 (1979), 96–104.
[25] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive comparison of bug prediction approaches. In 2010 7th IEEE working

conference on mining software repositories (MSR 2010). IEEE, 31–41.
[26] Steven Davies, Marc Roper, and Murray Wood. 2014. Comparing text-based and dependence-based approaches for determining the origins of bugs.

Journal of Software: Evolution and Process 26, 1 (2014), 107–139.
[27] Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto, and Andrea De Lucia. 2018. A Developer Centered Bug

Prediction Model. IEEE Transactions on Software Engineering 44, 1 (2018), 5–24.
[28] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane Ducasse. 2015. Untangling fine-grained code changes. In 2015

IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER). 341–350.
[29] Jayalath Ekanayake, Jonas Tappolet, Harald C Gall, and Abraham Bernstein. 2009. Tracking concept drift of software projects using defect

prediction quality. In 2009 6th IEEE International Working Conference on Mining Software Repositories. 51–60.
[30] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. 2001. The confounding effect of class size on the validity of object-oriented metrics. IEEE

Transactions on Software Engineering 27, 7 (2001), 630–650.
[31] Farzaneh S Fard, Paul Hollensen, Stuart Mcilory, and Thomas Trappenberg. 2017. Impact of biased mislabeling on learning with deep networks. In

2017 International Joint Conference on Neural Networks (IJCNN). 2652–2657.
[32] Norman E Fenton and Martin Neil. 1999. A critique of software defect prediction models. IEEE Transactions on software engineering 25, 5 (1999),

675–689.
[33] Rudolf Ferenc, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor Gyimóthy. 2020. An automatically created novel bug dataset and its validation

in bug prediction. Journal of Systems and Software 169 (2020).
[34] Christine Fisher. [n.d.]. Boeing found another software bug on the 737 Max. https://www.engadget.com/2020-02-06-boeing-737-max-software-

bug.html. [Online; last accessed 01-Sep-2022].
[35] Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C. Gall. 2012. Method-level bug prediction. In Proceedings of the 2012 ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement. 171–180.
[36] Yossi Gil and Gal Lalouche. 2016. When do Software Complexity Metrics Mean Nothing? – When Examined out of Context. Journal of Object

Technology 15, 1 (Feb. 2016), 2:1–25.
[37] Yossi Gil and Gal Lalouche. 2017. On the Correlation between Size and Metric Validity. Empirical Software Engineering 22, 5 (Oct. 2017), 2585–2611.
[38] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy. 2000. Predicting fault incidence using software change history. IEEE Transactions on Software

Engineering 26, 7 (2000), 653–661.
[39] Felix Grund, Shaiful Chowdhury, Nick C. Bradley, Braxton Hall, and Reid Holmes. 2021. CodeShovel: A Reusable and Available Tool for Extracting

Source Code Histories. In Proceedings of the International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). 221–222.

Manuscript submitted to ACM

https://www.celerity.com/insights/the-true-cost-of-a-software-bug
https://www.engadget.com/2020-02-06-boeing-737-max-software-bug.html
https://www.engadget.com/2020-02-06-boeing-737-max-software-bug.html

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Chowdhury et al.

[40] Felix Grund, Shaiful Chowdhury, Nick C. Bradley, Braxton Hall, and Reid Holmes. 2021. CodeShovel: Constructing Method-Level Source Code
Histories. In Proceedings of the International Conference on Software Engineering (ICSE). 1510–1522.

[41] Shivani Gupta and Atul Gupta. 2019. Dealing with Noise Problem in Machine Learning Data-sets: A Systematic Review. Procedia Computer Science
161 (2019), 466–474. The Fifth Information Systems International Conference, 23-24 July 2019, Surabaya, Indonesia.

[42] T. Gyimothy, R. Ferenc, and I. Siket. 2005. Empirical validation of object-oriented metrics on open source software for fault prediction. IEEE
Transactions on Software Engineering 31, 10 (2005), 897–910.

[43] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. 2011. Historage: Fine-grained Version Control System for Java. In Proc. International Workshop
on Principles of Software Evolution and ERCIM Workshop on Software Evolution. 96–100.

[44] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. 2012. Bug Prediction Based on Fine-Grained Module Histories. 200–210.
[45] Mark Hays and Jane Hayes. 2012. The Effect of Testability on Fault Proneness: A Case Study of the Apache HTTP Server. In 2012 IEEE 23rd

International Symposium on Software Reliability Engineering Workshops. 153–158.
[46] Peng He, Bing Li, Xiao Liu, Jun Chen, and Yutao Ma. 2015. An empirical study on software defect prediction with a simplified metric set. Information

and Software Technology 59 (2015), 170–190.
[47] Ilja Heitlager, Tobias Kuipers, and Joost Visser. 2007. A Practical Model for Measuring Maintainability. In Proceedings of the 6th International

Conference on Quality of Information and Communications Technology. 30–39.
[48] Steffen Herbold, Alexander Trautsch, and Jens Grabowski. 2017. Global vs. local models for cross-project defect prediction. Empirical software

engineering 22, 4 (2017), 1866–1902.
[49] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The impact of tangled code changes on defect prediction models. Empirical Software Engineering

21, 2 (2016), 303–336.
[50] K. Herzig and A. Zeller. 2013. The impact of tangled code changes. In 2013 10th Working Conference on Mining Software Repositories. 121–130.
[51] Yoshiki Higo, Shinpei Hayashi, and Shinji Kusumoto. 2020. On tracking Java methods with Git mechanisms. Journal of Systems and Software 165

(2020), 110571.
[52] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. 2017. A systematic literature review and meta-analysis on cross project defect

prediction. IEEE Transactions on Software Engineering 45, 2 (2017), 111–147.
[53] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An introduction to statistical learning. Vol. 112.
[54] Jirayus Jiarpakdee, Chakkrit Kla Tantithamthavorn, and John Grundy. 2021. Practitioners’ Perceptions of the Goals and Visual Explanations of

Defect Prediction Models. In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 432–443.
[55] Md Alamgir Kabir, Jacky W Keung, Kwabena E Bennin, and Miao Zhang. 2019. Assessing the significant impact of concept drift in software defect

prediction. In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. 53–58.
[56] D. Kafura and G. R. Reddy. 1987. The Use of Software Complexity Metrics in Software Maintenance. IEEE Transactions on Software Engineering

SE-13, 3 (1987), 335–343.
[57] Yasutaka Kamei and Emad Shihab. 2016. Defect Prediction: Accomplishments and Future Challenges. In 2016 IEEE 23rd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), Vol. 5. 33–45.
[58] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. Whitehead. 2006. Automatic Identification of Bug-Introducing Changes. In 21st

IEEE/ACM International Conference on Automated Software Engineering (ASE’06). 81–90.
[59] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2014. Hey! are you committing tangled changes?. In Proceedings of the 22nd

International Conference on Program Comprehension. 262–265.
[60] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton, Stuart Charters, Shirley Gibbs, and Amnart Pohthong. 2017.

Robust statistical methods for empirical software engineering. Empirical Software Engineering 22, 2 (2017), 579–630.
[61] D. Landman, A. Serebrenik, and J. Vinju. 2014. Empirical Analysis of the Relationship between CC and SLOC in a Large Corpus of Java Methods.

In IEEE International Conference on Software Maintenance and Evolution. 221–230.
[62] Michele Lanza, Andrea Mocci, and Luca Ponzanelli. 2016. The Tragedy of Defect Prediction, Prince of Empirical Software Engineering Research.

IEEE Software 33, 6 (2016), 102–105.
[63] Issam H Laradji, Mohammad Alshayeb, and Lahouari Ghouti. 2015. Software defect prediction using ensemble learning on selected features.

Information and Software Technology 58 (2015), 388–402.
[64] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.
[65] C. Lewis and R. Ou. [n.d.]. Bug prediction at Google. http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html. [Online; last

accessed 01-Sep-2022].
[66] Zhiqiang Li, Xiao-Yuan Jing, and Xiaoke Zhu. 2018. Progress on approaches to software defect prediction. Iet Software 12, 3 (2018), 161–175.
[67] Xiaoyu Liu, LiGuo Huang, Chuanyi Li, and Vincent Ng. 2018. Linking Source Code to Untangled Change Intents. In 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME). 393–403.
[68] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. 2012. Transfer learning for cross-company software defect prediction. Information and

Software Technology 54, 3 (2012), 248–256.
[69] Guillermo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. 2011. Cliff’s Delta Calculator: A non-parametric effect size program for

two groups of observations. Universitas Psychologica 10, 2 (2011), 545–555.
[70] T. J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software Engineering SE-2, 4 (1976), 308–320.
Manuscript submitted to ACM

http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Method-Level Bug Prediction: Problems and Promises 29

[71] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini encyclopedia of psychology (2010).
[72] T. Menzies, J. Greenwald, and A. Frank. 2007. Data Mining Static Code Attributes to Learn Defect Predictors. IEEE Transactions on Software

Engineering 33, 1 (2007), 2–13.
[73] Microsoft. 2022. Code Metrics Maintainability Index. https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-

index-range-and-meaning?view=vs-2022. [Online; last accessed 06-Jan-2022].
[74] Ran Mo, Shaozhi Wei, Qiong Feng, and Zengyang Li. 2022. An Exploratory Study of Bug Prediction at the Method Level. Inf. Softw. Technol. 144, C

(apr 2022).
[75] Manishankar Mondal, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. 2019. Investigating the Relationship between Evolutionary Coupling

and Software Bug-Proneness. 173–182.
[76] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. Analysis of the Reliability of a Subset of Change Metrics for Defect Prediction. In

Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (Kaiserslautern, Germany)
(ESEM ’08). 309–311.

[77] N. Nagappan and T. Ball. 2005. Use of relative code churn measures to predict system defect density. In Proceedings. 27th International Conference
on Software Engineering. 284–292.

[78] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining Metrics to Predict Component Failures. 452–461.
[79] Mark EJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Contemporary physics 46, 5 (2005), 323–351.
[80] Steffen M. Olbrich, Daniela S. Cruzes, and Dag I.K. Sjøberg. 2010. Are all code smells harmful? A study of God Classes and Brain Classes in the

evolution of three open source systems. In 2010 IEEE International Conference on Software Maintenance. 1–10.
[81] P. Oman and J. Hagemeister. 1992. Metrics for assessing a software system’s maintainability. In Proceedings Conference on Software Maintenance

1992. 337–344.
[82] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An Exploratory Study on the Relationship between Changes and

Refactoring. In Proceedings of the 25th International Conference on Program Comprehension (Buenos Aires, Argentina). 176–185.
[83] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2020. On the performance of method-level bug prediction: A negative result. Journal of

Systems and Software 161 (2020).
[84] Fabiano Pecorelli, Gemma Catolino, Filomena Ferrucci, Andrea De Lucia, and Fabio Palomba. [n.d.]. Testing of mobile applications in the wild: A

large-scale empirical study on android apps. In Proceedings of the 28th international conference on program comprehension. 296–307.
[85] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. 2013. Software fault prediction metrics: A systematic literature review.

Information and Software Technology 55, 8 (2013), 1397 – 1418.
[86] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premkumar Devanbu. 2011. BugCache for Inspections: Hit or Miss? 322–331.
[87] Md Saidur Rahman and Chanchal K. Roy. 2017. On the Relationships Between Stability and Bug-Proneness of Code Clones: An Empirical Study. In

2017 IEEE 17th International Working Conference on Source Code Analysis and Manipulation (SCAM). 131–140.
[88] Paul Ralph and Ewan Tempero. 2018. Construct Validity in Software Engineering Research and Software Metrics. In Proceedings of the 22nd

International Conference on Evaluation and Assessment in Software Engineering 2018 (Christchurch, New Zealand). 13–23.
[89] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and Premkumar Devanbu. 2016. On the "Naturalness" of

Buggy Code. In Proceedings of the 38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16). 428–439.
[90] Nornadiah Mohd Razali, Yap Bee Wah, et al. 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests.

Journal of statistical modeling and analytics 2, 1 (2011), 21–33.
[91] Umaa Rebbapragada and Carla E Brodley. 2007. Class noise mitigation through instance weighting. In European conference on machine learning.

708–715.
[92] Payam Refaeilzadeh, Lei Tang, and Huan Liu. 2009. Cross-validation. Encyclopedia of database systems 5 (2009), 532–538.
[93] D. Romano and M. Pinzger. 2011. Using source code metrics to predict change-prone Java interfaces. In 2011 27th IEEE International Conference on

Software Maintenance. 303–312.
[94] Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano, Gabriele Bavota, Michele Lanza, and Rocco Oliveto. 2021. Evaluating SZZ

Implementations Through a Developer-Informed Oracle. In Proceedings of the 43rd International Conference on Software Engineering (Madrid,
Spain). 436–447.

[95] S. Scalabrino, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto. 2016. Improving code readability models with textual features. In IEEE 24th
International Conference on Program Comprehension. 1–10.

[96] Matteson Scott. [n.d.]. Report: Software failure caused $1.7 trillion in financial losses in 2017. https://www.techrepublic.com/article/report-
software-failure-caused-1-7-trillion-in-financial-losses-in-2017/. [Online; last accessed 01-Sep-2022].

[97] Francisco Servant and James A. Jones. 2017. Fuzzy Fine-Grained Code-History Analysis. In Proceedings of the International Conference on Software
Engineering (ICSE). 746–757.

[98] Martin Shepperd, Michelle Cartwright, and Gada Kadoda. 2000. On building prediction systems for software engineers. Empirical Software
Engineering 5, 3 (2000), 175–182.

[99] Emad Shihab, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang. 2012. An Industrial Study on the Risk of Software Changes. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering (Cary, North Carolina).

Manuscript submitted to ACM

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Chowdhury et al.

[100] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. 2011. Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of
Software Vulnerabilities. IEEE Transactions on Software Engineering 37, 6 (2011), 772–787.

[101] Thomas Shippey, Tracy Hall, Steve Counsell, and David Bowes. 2016. So You Need More Method Level Datasets for Your Software Defect
Prediction? Voilà! (ESEM ’16).

[102] Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim. 2012. Reducing features to improve code change-based bug prediction.
IEEE Transactions on Software Engineering 39, 4 (2012), 552–569.

[103] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do changes induce fixes? ACM sigsoft software engineering notes 30, 4
(2005), 1–5.

[104] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu. 2011. A General Software Defect-Proneness Prediction Framework. IEEE
Transactions on Software Engineering 37, 3 (2011), 356–370.

[105] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli. 2018. On the Relation of Test Smells to Software Code Quality. In 2018 IEEE
International Conference on Software Maintenance and Evolution. 1–12.

[106] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2014. Incremental Origin Analysis of Source Code Files. In Proceedings Working Conference
on Mining Software Repositories (MSR). 42—-51.

[107] Zhongbin Sun, Junqi Li, Heli Sun, and Liang He. 2021. CFPS: Collaborative filtering based source projects selection for cross-project defect
prediction. Applied Soft Computing 99 (2021), 106940.

[108] Zhongbin Sun, Qinbao Song, and Xiaoyan Zhu. 2012. Using coding-based ensemble learning to improve software defect prediction. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, 6 (2012), 1806–1817.

[109] Chakkrit Tantithamthavorn and Ahmed E. Hassan. 2018. An Experience Report on Defect Modelling in Practice: Pitfalls and Challenges. In
Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice (Gothenburg, Sweden). 286–295.

[110] Umesh Tiwari and Santosh Kumar. 2014. Cyclomatic Complexity Metric for Component Based Software. SIGSOFT Softw. Eng. Notes 39, 1 (Feb.
2014), 1–6.

[111] VerifySoft. 2022. VerifySoft Maintainability Index. https://verifysoft.com/en_maintainability.html. [Online; last accessed 06-Jan-2022].
[112] Zhiyuan Wan, Xin Xia, Ahmed E. Hassan, David Lo, Jianwei Yin, and Xiaohu Yang. 2020. Perceptions, Expectations, and Challenges in Defect

Prediction. IEEE Transactions on Software Engineering 46, 11 (2020), 1241–1266.
[113] Song Wang, Junjie Wang, Jaechang Nam, and Nachiappan Nagappan. 2021. Continuous Software Bug Prediction. Article 14, 12 pages.
[114] Tiejian Wang, Zhiwu Zhang, Xiaoyuan Jing, and Liqiang Zhang. 2016. Multiple kernel ensemble learning for software defect prediction. Automated

Software Engineering 23, 4 (2016), 569–590.
[115] Zixu Wang, Weiyuan Tong, Peng Li, Guixin Ye, Hao Chen, Xiaoqing Gong, and Zhanyong Tang. 2022. BugPre: an intelligent software version-to-

version bug prediction system using graph convolutional neural networks. Complex & Intelligent Systems (2022), 1–21.
[116] S. Wattanakriengkrai, P. Thongtanunam, C. Tantithamthavorn, H. Hata, and K. Matsumoto. 2022. Predicting Defective Lines Using a Model-Agnostic

Technique. IEEE Transactions on Software Engineering 48, 05 (may 2022), 1480–1496.
[117] Ian H Witten, Eibe Frank, Mark A Hall, Christopher J Pal, and MINING DATA. 2005. Practical machine learning tools and techniques. In Data

Mining, Vol. 2.
[118] Sebastien C. Wong, Adam Gatt, Victor Stamatescu, and Mark D. McDonnell. 2016. Understanding Data Augmentation for Classification: When to

Warp?. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA). 1–6.
[119] Mahama Yahaya, Wenbo Fan, Chuanyun Fu, Xiang Li, Yue Su, and Xinguo Jiang. 2020. A machine-learning method for improving crash injury

severity analysis: a case study of work zone crashes in Cairo, Egypt. International journal of injury control and safety promotion 27, 3 (2020),
266–275.

[120] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. 2017. TLEL: A two-layer ensemble learning approach for just-in-time defect prediction. Information
and Software Technology 87 (2017), 206–220.

[121] F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan. 2013. How Does Context Affect the Distribution of Software Maintainability Metrics?. In
IEEE International Conference on Software Maintenance. 350–359.

[122] Yuming Zhou, Baowen Xu, and Hareton Leung. 2010. On the ability of complexity metrics to predict fault-prone classes in object-oriented systems.
Journal of Systems and Software 83, 4 (2010), 660 – 674.

[123] Xingquan Zhu, Xindong Wu, and Qijun Chen. 2003. Eliminating class noise in large datasets. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03). 920–927.

[124] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predicting Defects for Eclipse. In Proceedings of the Third International Workshop
on Predictor Models in Software Engineering. 7 pages.

Manuscript submitted to ACM

https://verifysoft.com/en_maintainability.html

	Abstract
	1 Introduction
	1.1 Paper organization

	2 Related work & Motivation
	2.1 Granularity
	2.2 Predictors
	2.3 Cross validation
	2.4 Bug labelling
	2.5 Concept drift
	2.6 Project selection
	2.7 Multiple models

	3 Methodology
	3.1 Available dataset
	3.2 A new dataset
	3.3 Statistical tests

	4 Results: Revisiting the past
	5 Results: Potential improvement avenues
	5.1 RQ2: How important is accurate bug labelling for the success of future MLBP models?
	5.2 RQ3: Can a method's age capture the inevitable concept drift in bug prediction?
	5.3 RQ4: Should future MLBP research focus on an optimal project set selection?
	5.4 RQ5: Should future MLBP research focus on a mixture of models?

	6 Discussion
	7 Threats to validity
	8 Conclusion
	9 Acknowledgments
	References

