
UNIVERSITY OF CALGARY

Pragmatic Soware Reuse

by

Reid Holmes

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

NOVEMBER, 

© Reid Holmes 

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

e undersigned certify that they have read, and recommend to the Faculty of Graduate Studies

for acceptance, a thesis entitled “Pragmatic Soware Reuse” submitted by Reid Holmes in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Dr. Robert J. Walker
Supervisor

Department of Computer Science

Dr. Jörg Denzinger
Department of Computer Science

Dr. Saul Greenberg
Department of Computer Science

Dr. Chad Saunders
Haskayne School of Business

Dr. Susan E. Sim
External Examiner

Department of Informatics
University of California, Irvine

Date

ii

Abstract

Many soware reuse tasks involve reusing source code that was not designed in a reusable manner.

ese pragmatic reuse tasks arise for a variety of organizational and technical reasons. To investigate

a pragmatic reuse task, a developer must navigate through, and reason about, unfamiliar source code

in order to identify those program elements that are relevant to his reuse task and to decide how they

should be reused. Once these elements have been identified, the developer must convert his mental

model of the task into a set of actions he can perform. ese tasks are poorly supported by modern

development tools and practices.

e thesis of this dissertation is that by providing developers with a mechanism to create prag-

matic reuse plans in a structured way, and a methodology to semi-automatically perform the prag-

matic reuse task using this plan, we can enable developers to perform pragmatic reuse tasks more

quickly and with greater confidence.

To validate these claims we have created a model that captures the program elements involved

in a pragmatic reuse task, along with annotations that correspond to the developer’s decisions about

how an element should be treated in a reuse task; the model explicitly enumerates each of the actions

required to perform a pragmatic reuse task. We have created a tool, called Gilligan, that allows devel-

opers to create pragmatic reuse plans by navigating through unfamiliar source code and annotating

its structural elements corresponding to how they should be treated in a reuse task. Using this plan,

Gilligan can semi-automatically transform the source code from its originating system and integrate

it into the developer’s system.

We have evaluatedGilligan using a series of case studies and experiments using a variety of source

systems and tasks. e results show that pragmatic reuse plans are a robust metaphor for capturing

pragmatic reuse intent and that Gilligan can significantly decrease the amount of time developers

require to perform pragmatic reuse tasks.

iii

iv

Table of Contents

Abstract . iii

List of Tables . xi

List of Figures . xiii

Acknowledgments . xv

Dedication . xvii

 Introduction . 
. Pragmatic reuse . 
. Why pragmatic reuse is difficult . 

.. How pragmatic reuse difficulties relate to task categories 
. Enabling pragmatic reuse . 
. esis statement and contributions . 
. Organization . 

 Motivation . 
. Alternative to pragmatic reuse . 
. Summary . 

 Related Work . 
. Soware reuse . 

.. Black-box reuse . 
.. White-box reuse . 
.. Code clones . 

. Program understanding . 
. Program transformation . 
. Soware visualization . 
. Cognitive aspects of reuse . 
. Summary . 

v

 Industrial Applicability Survey . 
. Survey Results . 
. Other Findings . 

.. Selected Questionnaire Responses . 
. Survey Limitations . 
. Summary . 

 Pragmatic reuse model . 
. Model requirements . 
. Concrete model implementation . 

.. Relationships that exist between structural elements 
.. Decisions a developer can make about a structural element 

. Pragmatic reuse plans as lightweight specifications 
. Relationship to the concern graph model . 
. Structural analysis . 
. Summary . 

 Graph-based pragmatic reuse planning . 
. Design goals . 
. First Gilligan prototype . 

.. Using the graph-based Gilligan prototype 
.. Evaluating the reuse plan . 
.. Application to motivational scenario . 

. Evaluation . 
.. Case study  . 
.. Case study  . 
.. Case study  . 
.. Case study  . 

. Discussion . 
.. Limitations . 

. Summary . 

 Tree-based pragmatic reuse planning . 
. Design goals . 
. Second Gilligan prototype . 

.. Application to the motivational scenario . 
. Evaluation . 

.. Experimental tasks . 
.. Results . 

vi

.. Observations . 
. Discussion . 

.. Limitations . 
. Summary . 

 Pragmatic reuse plan enactment . 
. Design goals . 
. ird Gilligan prototype . 

.. Extraction . 
.. Integration . 
.. Supporting iterative planning and enactment 

. Evaluation . 
.. Task descriptions . 
.. Analysis of minimum required effort . 
.. Task effectiveness experiment . 

. Discussion . 
.. Limitations . 

. Summary . 

 Holistic evaluation . 
. Hypotheses . 
. Participants . 
. Tasks . 

.. Phase  . 
.. Phase  . 

. Experimental procedure . 
.. Performing a trial . 
.. Data collection . 

. Experimental design . 
. Quantitative results . 

.. - analysis . 
.. - analysis . 
.. - analysis . 
.. Other quantitative analyses . 

. Qualitative results . 
.. Organic concept categories . 
.. Interesting themes and quotes . 
.. Prompted concept categories . 

vii

. Discussion . 
.. Characterization of good tasks as bad ones 
.. Giving up on bad tasks . 
.. Gilligan improvements . 
.. Limitations . 

. Summary . 

 Discussion . 
. Alternative reuse strategies . 
. Limitations of approach . 
. Evaluation . 
. Future work . 

 Conclusion . 
. Contributions . 

Bibliography . 

A Industrial Pragmatic Reuse Survey . 
A. Industrial Pragmatic Reuse Questionnaire . 
A. Industrial Pragmatic Reuse Case Study Questionnaire 

B Sample Graph Layout Algorithms . 

C Planning evaluation . 
C. Planning Case Study Instructions . 

D Visualization evaluation . 

E Enactment evaluation . 
E. Effort . 

E.. Extracting the Metrics Lines-of-Code Calculator 
E.. Extracting the Azureus Network roughput View 

E. Enactment Experiment Instructions . 

F Full evaluation . 
F. QIF test file . 
F. Entrance questionnaire . 
F. Mid task questionnaire . 
F. Post task questionnaire . 
F. Exit questionnaire . 

viii

G Final Experiment: Card Sort Data . 
G. Organic Concept Categories . 

G.. Dependency Identification . 
G.. Understanding . 
G.. Mental Models . 
G.. Hypothesis Testing . 
G.. Performing Pragmatic Reuse Tasks . 

G. Prompted Concept Categories . 
G.. Pragmatic Reuse: Rationale, Impediments, and Frequency 
G.. Gilligan: Suggestions for Improvement . 
G.. Observations . 

H Calgary Research Ethics Board Approval . 
H. Ethics Approval  . 
H. Ethics Approval  . 

ix

x

List of Tables

. Scope of the Azureus network throughput graph reuse task. 

. Likert-scale questions from industrial questionnaire. 
. Selected industrial pragmatic reuse survey results. 

. Standard Eclipse icons used by Gilligan. 
. Kinds of edges used by the Gilligan graph-based representation. 
. Gilligan colour scheme for encoding pragmatic reuse intent. 

. Icon overlays used by Gilligan to show additional information. 
. Size of the correct solutions. 

. Compilation errors for each task and treatment. 
. “Edits” required for each task and treatment. 

. Overview of participant experience. 
. Four blocks for the first phase of the experiment. 
. Contingency table for success and failure compared to treatment. 
. Overview of the organic concept categories. 
. Frequency that participants perform pragmatic reuse tasks 
. Participant’s rationale for performing pragmatic reuse tasks 
. Impediments to pragmatic reuse tasks identified by participants 
. Suggested improvements for Gilligan . 
. Gilligan user interface shortcomings . 
.  of participants who felt the task was good or bad. 

A. Pragmatic reuse industrial survey responses. 
A. Pragmatic reuse industrial survey aggregate responses. 

D. Answer key for assessing precision and recall for Task . 
D. Answer key for assessing precision and recall for Task . 
D. Answer key for assessing precision and recall for Task  

xi

D. Answer key for assessing precision and recall for Task  
D. Data table for second prototype evaluation . 

G. Overview of the organic concept categories. 
G. Frequency that participants perform pragmatic reuse tasks. 
G. Participant’s rationale for performing pragmatic reuse tasks. 
G. Impediments to pragmatic reuse tasks identified by participants. 
G. Suggested improvements for Gilligan. 
G. Gilligan user interface shortcomings. 
G.  of participants who felt the task was good or bad. 
G.  of participants who felt the scale of dependencies was problematic. 

xii

List of Figures

. e UltiGPX application . 
. Mockup submitted by the bug submitter . 
. Network throughput view in the Azureus BitTorrent client 
. Mockup of UltiGPX reusing the Azureus view . 
. Simplified class diagram for the Azureus reuse task 
. UltiGPX successfully reusing the Azureus view . 

. Gilligan’s role in the pragmatic reuse process. 
. Screen capture of the graph-based Gilligan prototype 
. Azureus graphics feature reuse plan. 

. Initial Gilligan dialog for starting a pragmatic reuse task. 
. Gilligan dialog for selecting the initial starting point. 
. Initial view presented by the second Gilligan prototype. 
. Expanded screen capture of a Gilligan Structural View 
. Screen captures demonstrating Gilligan’s selection behaviour. 
. Gilligan source code view before and aer decisions were made. 
. Screen capture while working on the motivational scenario. 
. Recall for the four tasks. 
. Average recall and time. 

. Gilligan’s role in the pragmatic reuse process. 
. Example of how Gilligan rejects structural elements. 
. Screen captures of the third Gilligan prototype . 
. Updated problem view aer accepting COConfigurationManager 
. Snippet to resolve mismatch in Metrics task. 
. Productivity differences afforded by Gilligan’s semi-automation 

. Block  time to completion by treatment . 
. Block  time to completion by treatment . 
. Peak open editors by task–treatment . 

xiii

B. Tree layout. 
B. Tree layout enforcing a depth hierarchy. 
B. Box-style tree layout. 
B. Radial layout. 

E. Gilligan enactment error for nested elements . 
E. Error caused by Gilligan not considering field ordering. 
E. Pragmatic reuse plan for the Metrics task. 
E. Pragmatic reuse plan for the Azureus task. 

F. Pragmatic reuse plan for the QIF Parser task. 
F. Pragmatic reuse plan for the Related Artists task. 
F. Test harness for the QIF parser task. 
F. Test harness for the related artists task. 
F. Test harness for the torrent downloader task. 

xiv

Acknowledgments

Graduate school has been an unexpected and exciting journey for me. For eight months in the third
year of my undergrad I was sucked into the land of the SPL at UBC under the guidance of Gail
Murphy. Before this point I hadn’t really given much thought to grad school or what research was
all about, but Gail and the SPL crew gave me a fantastic sense of what the academic lifestyle was
like. Without Gail’s early encouragement I would not be here today, and my life would be less full
for it. ank-you. e SPL was also full of great people who always knew how to help. Martin,
Jonathan, and John, thanks for all of your advice. Brian, I have been seeking your advice since I was
an undergrad and I will continue to do so in the future; thanks for all of your council.

Aer finishing my MSc with Gail at UBC, the next stop on this crazy train was at U of C with
Rob Walker. Rob pitied the foo (that’s me), obviously deciding I would be pliant enough for him
to experiment on as his first PhD student. Being Rob’s first “subject” was a fantastic experience;
whenever I needed some advice, direction, encouragement, or a kick in the pants, Rob was there,
keeping me on track, grounded, and focused. Rob taught me a great deal about how to design and
perform an effective research program, and the importance of understanding the big picture; I aim to
build on these lessons for the remainder of my career. I will miss randomly dropping by Rob’s office
for hours of conversation most of all.

ICT : I have outlasted all of you. Mark, Bhavya, and Punneet, thanks for the camaraderie.
Kevin, you sure know how to make industry look good in a short period of time. Rylan and Brad,
you guys continually surprise me by finding new ways to jump even further beyond the line of good
taste than your previous foray (you were pretty good at reviewing papers too). Tom, thanks for all
your advice; whenever I need the euro-perspective, you’re the guy to get it from. To all in the LSMR,
I look forward to reading many great papers in the future. Keep them coming.

Mark, I’m glad you made the trip out from UBC at the same time I did, it was nice to have some
continuity in the department. Andrea and Mark deserve special recognition for helping me make
the penultimate evaluation of this dissertation cogent. Morgan and Dan: thanks for the good times
climbing, scrambling and at the games table; I’m not done with the Rockies yet, you’ll be hearing
from me for a while to come. Chris, I will never forget that you convinced me to start telemarking
and then promptly abandoned it; this document must hurt you more than most: you won’t be able
to ridicule my student status any longer.

xv

I would be remiss not tomention two specific troublemakers who convincedme that climbing 
days outside was the normal grad student summer quota. To Steph and Brown: many good pitches
were climbed, turnsmade, and peaks bagged. ree trips stand out tome: deciding that my first time
on touring skis ever should be the Columbia Icefields in February, heading into the Bugaboos for the
first time without having even heard of them or knowing what they really were, and finally the trip
to the Tantalus where everything just went right. I know we all have some lists that will need ticking
over the next decade or two.

Most of all, I would like to thank my family for being so supportive over the last .(!) years.
Laura, without your support this journey would have been meaningless; thanks for always helping
me up when I’ve been down, giving me perspective, and most of all for your love. We’ve moved
through four cities so far, lets hope we only have to do it one more time. Zoe, you might not really
know what has been going on for the past  days, but your smiles always made my time at work a
little more fun, and thinking of your big hugs made me bike home faster each night. Dawn and Brett,
thanks for always helping us with Zoe when the crunch was on. To my parents and brothers, thanks
for all the support. I can rest easy now, knowing that I will be the last Holmes boy to get a real job.

As this document technically concludes the  years I have spent on the pupil side of the educa-
tional equation, I will be reluctant to give up using ‘but I’m just a student’ as an excuse for anything
I don’t want to do, or pay for; however, I will steadfastly refuse any effort to get me to wear pants of
appropriate length, stop evaluating the value of any foodstuff in terms of calories per dollar, replace
the one bike shirt I have worn daily for the past  years, or make me feel self-conscious while stuffing
free food into my pockets at every opportunity.

R H

University of Calgary
December, 

xvi

To my ladies: Laura for getting me started, and Zoe for getting me finished.

Zoe Mae Holmes

A busy day on the NE Face of Mount Garibaldi

Zoe and Laura

Chapter 

Introduction

Soware reuse approaches encourage the development of soware systems using pre-existing arti-
facts instead of creating them from scratch [Krueger, ]. Reuse has long been advocated as a
mechanism to reduce development time, to increase developer productivity, and to decrease defect
density [Mcilroy, ; Standish, ; Brooks, ; Krueger, ; Poulin et al., ; Boehm,
]. Subsequent studies have been performed to provide initial validation of these claims [Basili
et al., ; Succi et al., ; Frakes and Succi, ; Ajila and Wu, ]. While several classi-
fications of reuse approaches have been compiled [Krueger, ; Prieto-Díaz, ; Rothenberger
et al., ], the majority of soware reuse research has focused on black-box reuse approaches, such
as soware components [Mcilroy, ; Meyer, ; Szyperski, ; Ravichandran and Rothen-
berger, ], and program families or soware product lines [Dijkstra, ; Parnas, ; Krueger,
].

Both reusable component approaches and soware product lines suffer from three main draw-
backs: () predicting the future— to know which pieces of soware should be built in a reusable
fashion— is notoriously difficult in practice [Tracz, ; Gaffney and Cruickshank, ; van Gurp
andBosch, ]; () developing all soware in a reusable fashion is economically infeasible [Gaffney
and Cruickshank, ; Cordy, ]; and () even soware designed in a reusable fashion embeds
a set of assumptions about how it is to be reused that can hamper its ability to be deployed in many
contexts [Biggerstaff, ; Garlan et al., ].

In contrast to the controlled reuse scenarios with which reusable components and soware prod-
uct lines are associated, developers oen find themselves in a position where a development task they
are performing is familiar to them: either they have implemented the functionality in the past that
their task requires or they have access to existing source code that provides the functionality. As
reusable code is expensive to create, it is likely that the source code they are interested in reusing is
not designed in a way that facilitates black-box reuse [Garlan et al., ].

In these situations, the developer has three main options: () to re-implement the functionality;
() to refactor the original source code; or () to reuse the source code in an ad hoc, copy-and-

modify manner. ere are numerous drawbacks to each of these options. Re-implementing the
functionality is expensive and does not leverage any testing or other positive attributes associated
with mature source code. Refactoring the original source code is oen not feasible for a number
of organizational and technical reasons: the developer may not own the existing code, the existing
code may already be deployed and cannot be modified, the developer may be unwilling to introduce
defects into the system the code resides in by refactoring something that is known to work already,
and the developer may be unwilling to accept the security implications associated with shared source
code. Reusing source code in a copy-and-modify approach can cause the developer to make poor
decisions and the lack of tool support for these tasks makes them error-prone [Garnett and Mariani,
; Krueger, ]; however, this latter type of reuse is oen the pragmatic choice in industrial
scenarios.

. Pragmatic reuse

“To write a really good invisible avatar from scratch would
take a long time, but he puts one together in several hours
by recycling bits and pieces of old projects le behind in
his computer. Which is how hackers usually do it.”

Hiro Protagonist [Stephenson, , Chapter ]

Reusing source code that was not designed in a reusable fashion has been known bymanymonik-
ers: code scavenging [Krueger, ], ad hoc reuse [Prieto-Díaz, ], opportunistic reuse [Rosson
and Carroll, ], and copy-and-paste reuse¹ [Lange andMoher, ]. We choose to introduce the
term pragmatic reuse because each of these previous labels are associated with negative connotations,
while we believe that pragmatic reuse tasks can be appropriate and effective. Indeed, non-black-box
reuse tasks are not atypical; a recent study found that  of the reused source code within NASA,
an organization committed to reuse, was reused in a non-black-box manner [Selby, ].

While research has stated that pragmatic reuse can be effective [Krueger, ; Frakes and Fox,
], little research has been performed to identify how industrial developers reason about and
perform these tasks. Krueger states that, “In practice, the overall effectiveness of [pragmatic soware
reuse] is severely restricted by its informality” [Krueger, ]. Frakes and Kang [] identify two
impediments to pragmatic reuse tasks: first, they state that development tools may not be effective
at promoting reuse; second, they note that the lack of process associated with these hampers reuse
efforts. Other researchers have identified similar shortcomings [Krueger, ; Sen, ; Morisio
et al., ; Ravichandran and Rothenberger, ]. While these two impediments (informality and
lack of tool support) may not constitute all of the shortcomings of pragmatic reuse approaches, they
are the drawbacks most prominently mentioned in the literature. is dissertation investigates each

¹Also known as cut-and-paste or copy-and-modify.



of these impediments by creating a model of pragmatic reuse tasks and accompanying tool support
to make their performance more systematic, less error prone, and less time consuming.

Krueger [] states that reuse takes place in three stages: () the entity to be reused is selected;
() the entity is adapted to fit its context of reuse; and finally () the entity is integrated into the
target system. e selection portion of a pragmatic reuse task is generally undertaken informally:
the developer knows of some appropriate source code they can reuse, or learn about it from their
colleagues; while alternatives exist, we do not further address selection within this dissertation. Once
the developer has identified a system containing the functionality they want to reuse, they must then
delineate those portions of the source that are relevant to their functionality of interest from those
that are not. During adaptation the relevant source code is removed from its originating systemwhile
integration is the process of inserting the reused codewithin the developer’s system. ese three steps
can be overwhelming and complex for large pragmatic reuse tasks as they involve navigating through,
and reasoning about, large amounts of unfamiliar source code.

Before any source code can be reused pragmatically, the extent to which the functionality is
spread throughout its system, and the scope of its dependencies upon the system, must be under-
stood [Garlan et al., ]. Understanding the structural dependencies—that is how the function-
ality calls, references, and is involved in the type hierarchies of its system—is central to assessing
the suitability of a pragmatic reuse task. If the functionality is self-contained and only references
other structural elements that are relevant or complement the developer’s system, the reuse task will
likely be easy. Alternatively, if the functionality is tightly coupled with large swaths of the originating
system, it may be difficult to only reuse those relevant portions of the source code. Understanding
these dependencies is essential to making an accurate assessment of the difficulty, and suitability, of
a pragmatic reuse task.

. Why pragmatic reuse is difficult
Pragmatic reuse tasks require the developer to navigate through a large amount of unfamiliar code,
understand how it works, interpret how it relates to their task, determine which mechanical steps are
necessary to perform the task, and then actually perform those steps. Upon observing developers
performing pragmatic reuse tasks (as described inChapter ), we identified five conceptual categories
that are pertinent to developers performing pragmatic reuse tasks. Many aspects of our approachwill
be related to these conceptual categories.

. Identifying structural dependencies: Locating all of the relevant structural elements, and deter-
mining how they are related to one another, is of key importance to evaluating the suitability
and assessing the potential difficulty that a pragmatic reuse task may entail. Developers spend
much of their time while performing pragmatic reuse tasks trying to identify and to follow
the structural relationships in the system; while this may sound conceptually straightforward,
doing this manually is error-prone and time consuming.



. Understanding the source code: While they are investigating the structural dependencies within
the source code, the developer is trying to understand what role the source code under inves-
tigation has in the functionality they want to reuse. is understanding has two dimensions:
() understanding what each structural element in the code actually does; and () understand-
ing how each structural element should be managed in the reuse task (e.g., whether it should
be reused or not). Ultimately, the role of the understanding task is to relate the low-level struc-
tural elements to the higher-level functional concepts relevant to the reuse task.

. Maintaining a mental model of the source code: Concurrently to identifying the structural el-
ements and their relationships within the source code and understanding what role they play
in the reused functionality, the developer must remember all of the facts they have discovered
and decisions they have made. Maintaining an accurate mental model of the reuse task is dif-
ficult because the source code that the developer is investigating is unfamiliar to them; trying
to keep track of many new identifiers, how they are related, and what they should do with each
when reused, can be overwhelming. Because of the burden this entails, the likelihood of the
developer either forgetting something or remembering something incorrectly is high. ese
errors increase the chances of a developer investigating the same segment of code more than
once or introducing inconsistencies into their mental model of the task.

. Testing alternative reuse hypotheses: Naturally, the developer would like to perform their reuse
task as near-optimally as possible: they would prefer that the source code they reuse represent
the perfect balance between the amount of code they have reused and the amount of work
they need to perform to successfully complete the reuse task. Unfortunately, the probability
that the developer will make at least one poor decision while investigating unfamiliar source
code is high. While they would like to know the effects that alternative decisions may have
on their reuse task, the expense, in terms of manual labour and confusing their mental model,
is so high that they avoid investigating alternative decisions, even if they would like to know
their effects. Being able to investigate alternative reuse scenarios is essential to the developer
gaining confidence in their solution and avoiding undertaking an unsuitable reuse task.

. Mechanical reuse operations: Actually performing a pragmatic reuse task is a largely manual,
mechanical operation. If the developer has built up an effective mental model of all the steps
required to perform the task, they then have to locate each structural element they wish to
reuse, copy it out of the source system, place it in their own system, and modify it as necessary
to satisfy any differences between what the reused code expected of its originating system and
what is provided by the developer’s system. Of course, simply building up themental model by
traversing the structural dependencies within the system was a manual process in itself as the
developer read the source code and manually followed the dependencies between methods,
fields, classes, and files. Pragmatic reuse tasks involve a lot of low-level work that is largely



tedious for the developer, but duringwhich it is easy to introduce errors and to forget important
details.

.. How pragmatic reuse difficulties relate to task categories

e difficulties in performing pragmatic reuse tasks can be directly mapped to the five conceptual
task categories. Identifying all the relevant structural dependencies without manually examining the
source code in detail is error-prone. Understanding how each portion of the source code is related
to the others, and what exactly the source code does, is complicated by having to deal with so many
low-level structural dependencies in the process. Trying to systematically work through unfamiliar
code, andmaintaining amentalmodel of which structural elements are relevant and how they should
be managed in a pragmatic reuse task, puts an inordinate cognitive burden on the developer. When
working with unfamiliar source code it is hard to make the right decision the first time, every time.
For this reason, a developer performing a pragmatic reuse task would like to investigate alternative
reuse hypotheses in order to avoid unsuitable decisions and gain confidence in the decisions they
have made; however, the amount of work required to investigate one hypothesis, let alone many,
make it prohibitively expensive to investigate alternative reuse strategies. Finally, actually performing
a pragmatic reuse task is a complicated mixture of the four previous issues; the developer has to
manually navigate through the source code, understand what it does, remember all of the details,
try to identify the best options without becoming overwhelmed, and then manually extract, copy,
and integrate the relevant source code into their system. And they need to do this without forgetting
details or making errors.

. Enabling pragmatic reuse
All five of the conceptual categories are negatively affected by the lack of tool support for pragmatic
reuse tasks and their unsystematic, ad hoc nature. To counter these two major inhibiting factors we
propose a framework to make pragmatic reuse tasks more systematic, more scalable, easier to reason
about, and easier to perform. We introduce the concept of a pragmatic reuse plan as a model for cap-
turing a developer’s intent in a pragmatic reuse task. A pragmatic reuse plan is a graph wherein the
nodes are structural elements (classes, methods, and fields) and the edges are the statically derivable
relationships between them (inheritance, calling, and referencing relationships). e nodes are fur-
ther annotated withmetadata that captures how they should be treated within a reuse task (see Chap-
ter ). e pragmatic reuse plan serves as a central repository for the facts and decisions relevant to
a reuse task.

Pragmatic reuse tasks are typically performed piecemeal, one decision at a time, while a devel-
oper debugs the code they are reusing into existence [Rosson and Carroll, ]. Our framework for
enabling pragmatic reuse tasks makes planning an explicit, top-level task. We hypothesize that, by
explicitly planning a pragmatic reuse task, a developer can spend more time thinking conceptually



about the high-level impediments to their task and less time managing low-level details. e con-
ceptually difficult problems oen arise from architectural mismatches between the source and target
systems [Garlan et al., ]; by planning the reuse task, we hope that the developer can identify
these problems earlier in the process, before they invest much time in reusing the source code.

e pragmatic reuse plan acts as an explicit codification of the developer’s mental model of their
reuse task; they can glance at the plan at any time to get a high level overview of all of the structural
elements they have visited, and the decisions they have made about each. Using the plan, they can
see what decisions they have made and what decisions remain. e plan can help developers to
keep on track; ultimately, this helps them to investigate the dependencies within the system more
systematically. Another major benefit of a pragmatic reuse plan is that, by having all the decisions
explicitly and consistently unified, the plan can be transformed into a set of directions describing how
the task should actually be performed. While the developer couldmanually perform these steps,most
of them can be automated, relieving the developer of large amounts of tedious, error-prone manual
effort.

We have created a suite of tools, called Gilligan, that help developers plan and perform pragmatic
reuse tasks. Gilligan provides an abstract view of the structural dependencies within a system and
assists the developer in navigating between the dependencies while recording their decisions about
how each structural element should be treated when the task is performed. Gilligan can also validate
the completeness of a reuse plan, identifying decisions that should be made to complete the reuse
plan. Gilligan enables developers to have a more abstract representation of the source code they
want to reuse at their disposal; while they can still view the source code at any time, Gilligan strives
to enable the developers to step back from the lowest-level details in order to gain a broader overview
of their reuse task. Finally, Gilligan automatically enacts the reuse plan; the relevant source code
for the task is extracted, transformed as necessary, and integrated into the developer’s system. is
process of planning and enactment can be performed iteratively, if required, to allow the developer
to experiment with alternative reuse plans to converge on a solution that meets their needs.

We have evaluated our pragmatic reuse framework and model by testing several hypotheses us-
ing a suite of exploratory studies and controlled experiments using experienced graduate students
and industrial developers. Our findings demonstrate that Gilligan significantly improves developer
effectiveness while performing pragmatic reuse tasks.

. esis statement and contributions

e thesis of this dissertation is that by providing developers with a mechanism to create pragmatic
reuse plans in a structured way, and a methodology to semi-automatically perform the pragmatic
reuse task using this plan, we can enable developers to perform pragmatic reuse tasks more quickly
and with greater confidence.



e major contributions of this dissertation include:

• a model for capturing developer intent while planning a pragmatic reuse task (the pragmatic
reuse plan);

• the Gilligan prototype tool that provides a visual representation of a pragmatic reuse plan and
a mechanism to help developers explore and triage the dependencies within the source code
they are investigating for reuse;

• evidence that developers can much more accurately identify structural dependencies using
Gilligan than standard tools;

• a methodology to drastically reduce the amount of work a developer must expend while per-
forming a pragmatic reuse task by automatically transforming the reused code according to a
pragmatic reuse plan;

• evidence that Gilligan greatly reduces the number of decisions the developer must make while
performing the enactment of a pragmatic reuse plan;

• evidence that developers can be significantly more effective using Gilligan to both plan and
enact a pragmatic reuse task; and,

• a categorization of the key cognitive aspects facing developers as they are performing a prag-
matic reuse task.

. Organization
is dissertation has been written to maximize the readability of the main text by deferring many of
the less important details to the appendices (see Appendix A through Appendix H). References to
the relevant appendix will be given in any section in the main body of the dissertation that contains
further related content in the appendices.

Chapter  starts with a motivating example of a pragmatic reuse task. Related work is discussed
inChapter . An initial survey of industrial developers’ attitudes to pragmatic reuse tasks is presented
in Chapter . Chapter  describes the pragmatic reuse plan, and the model that underpins it.

Gilligan, our prototype tool for supporting pragmatic reuse tasks, was iteratively developed and
evaluated through three prototypes. Our first prototype pragmatic reuse planning tool was based
on a visual, graph-based, literal representation of the pragmatic reuse plan (Chapter ). Our second
prototype supported pragmatic reuse planning using a tree-based representation of the pragmatic
reuse plan (Chapter ). Finally, our last prototype concentrated on supporting the enactment of
pragmatic reuse plans (Chapter ).



Each of these prototypes were evaluated immediately and the results of each evaluation, and the
feedback from our participants, were heavily used to design the subsequent iteration of the tool. e
evaluations given for each prototype are described along with the prototype itself (Chapters ., .,
and . respectively). Finally, a comprehensive final evaluation of our prototype’s ability to support
the end-to-end pragmatic reuse planning and enactment process is described in Chapter .

Chapter  includes a discussion and an overview of future work. Chapter  concludes the
dissertation.



Chapter 

Motivation

Consider a developer working on a Global Positioning System (GPS) visualization system called
UltiGPX. UltiGPX provides a visual representation of data collected by hikers and other outdoors-
people while they are on excursions. UltiGPX provides a simple visualization of the latitude/longi-
tude co-ordinates of a hikers’ route.

Figure . shows theUltiGPX interface; small black points represent individual co-ordinate points,
larger red circles are waypoints, representing track points of interest, entered by the hiker. UltiGPX
only provides a two-dimensional plan view of a hiker’s track; the tool does not display the hiker’s
changes in elevation (an “elevation profile”). One of the hikers who uses UltiGPX considers that an
elevation profile would be a useful feature and files a request for enhancement (RFE) on the UltiGPX
system, asking for it to be added. With this request, the reporter includes a simple screen shot show-
ing what such a view could look like (see Figure .).

Aer considering the request, the UltiGPX developer decides that it would be worth adding this
new feature to the system; unfortunately, the developer does not know how to construct such a view.
Fortunately, the developer realizes that he knows of a visualization, within another system, that seems
like it does exactly what he wants. Figure . shows a screen shot of the Azureus BitTorrent client.¹
Azureus is a peer-to-peer file transfer client that happens to have a network throughput visualization
that is similar to the initial feature request. e visualization provides an attractive graph view that
uses gradients, has a trend line, and provides additional information on its axes. e UltiGPX devel-
oper decides that the Azureus view provides much of the functionality he would like to have within
his program and decides to investigate reusing this view instead of writing one himself from scratch.

e UltiGPX developer realizes that while the network throughput graph is visually similar to
what he requires, he does not know if it will be technically feasible to perform the reuse task, al-
though he envisions that the final result could look something like the mock-up shown in Figure ..
A significant hurdle haunts the developer: Azureus was designed to support peer-to-peer file down-

¹http://Azureus.sf.net v...

Figure .: e UltiGPX application. e developer has le space for an alternative data view
in the lower right corner.

loading, not to visualize GPS track points or to provide reusable APIs for its user interface widgets.
Visually, the Azureus feature looks exactly like how the developer would like the feature to look; how-
ever, it seems unlikely that a feature providing real-time network visualization would be appropriate
to use within a static GPS-data viewing application.

e developer wants evidence that he could successfully reuse the functionality fromAzureus; he
does not want to rely on high-level intuition. Ultimately, he wants to understand how dependent the
graph visualization feature is on the rest of the Azureus system. If the source code he wants to reuse is
tightly coupled with those aspects of Azureus that are irrelevant for his task, reusing the code may be
more difficult thanwriting the feature from scratch or finding another alternative to reuse. In order to
do determine how coupled the code is, he investigates the source code manually within an integrated
development environment (IDE). First, he uses the IDE search features to locate a part of Azureus



Figure .: e user who filed the request for enhancement provided this mock-up of the type
of view they would like to see UltiGPX provide.

involved in network visualization; this search quickly leads him to the org.gudy.azureus2.ui.-
swt.components.graphics package, in which SpeedGraphic seems likely to be the most relevant
class. e developer starts by scrolling through the -line class, trying to identify which portions
of the class are relevant to his reuse task.

e drawChart(..) method sounds to the developer like the most relevant method within
SpeedGraphic so he begins his exploration task there. To investigate the implications of each de-
pendency in this -line method, the developer must examine each statement to determine which
types are used, fields are referenced, and methods are called. He then needs to look at each type
to determine its dependencies and to decide whether or not to reuse those types in addition to
SpeedGraphic. In the drawChart(..) method,  different types are referenced. Aer navigating
through  different files corresponding to these types, he determines that  of the types are common



Figure .: e network throughput view in the Azureus BitTorrent program. e developer
remembers this view as being visually similar to what he would like to provide including
axes, gradients, and a smoothing line.

to both UltiGPX and Azureus (they both use the SWT framework) which means that these depen-
dencies are already satisfied within UltiGPX and do not need to be reused; however, the developer
must look more critically at the  remaining types to determine their relevance to his task.

SpeedGraphic.drawChart(..) makes one call to both the enter() method and the exit()
method from the AEMonitor class. inking that these calls are related to his task, the developer
decides that he should reuse the methods but decides to investigate AEMonitor further, just to be
sure. e AEMonitor class seems simple enough but when the developer looks at the class it ex-
tends (AEMonSem) the developer finds more than  lines of threading code that does not seem very
relevant to his task. Instead of reusing the AEMonitor class, the developer decides that he will re-
move the method calls to try to avoid reusing dependencies that are heavily coupled with the core of
Azureus. Similar situations arise for COConfigurationManager and ParameterListener which
are involved with the Azureus preferences architecture (and like AEMonitor are tightly integrated
with scores of other classes within Azureus). e developer does decide to maintain the dependen-
cies to the Scale class as well as SpeedGraphic’s supertypes, ScaledGraphic and Background-

Graphic.

As the developer is investigating the code, he notices many references to constants in the Colors
class. ese references roughly duplicate functionality he already has in UltiGPX: he defines his own
colour constants. Instead of reusing the  fields in the Colors class, he remaps the  references to
the  colour constants the code he wants to reuse references to his own colour constant fields within
UltiGPX.



Figure .: A mock-up simulating how UltiGPX could look if the Azureus network throughput
view reuse task was successful.

Figure . provides a simplified class diagram corresponding to the developer’s mental model of
the reuse task (the final size of the task is given in Table .). Green structural elements represent
those elements that the developer wants to reuse. Red elements represent those elements that the
developer does not want to reuse. Blue elements represent those elements that are analogous between
UltiGPX and Azureus (namely the colour constants for this task) that the developer would like to
remap. e yellow nodes represent common functionality between the two systems (due to shared
libraries, in this case). e developer will have to make modifications to the source code to remove
any red nodes, and on any edge between a green node and red or blue nodes; the class diagram does
not capture the extent of work this could entail: if the developer had rejected a commonly-called
method he could potentially have to make hundreds of edits throughout the system.

While the class diagram representing the reuse task is relatively simple, the developer had to



GC

Scrollable

Widget

Color

Image

Canvas

Rectangle

<<interface>>
Graphic

Scale
7 fields
6 methods

ValueFormatter

format()

this_mon

ScaledGraphic
scale
formatter
bufferScale

drawScale(...)

lastMax

2 more methods

COConfigurationManager

addParameterListener()parameterChanged()

ParameterListener
<<interface>>

AEMonitor
4 fields
AEMonitor()
enter()
exit()
2 more methods

Colors
black
white
red
grey
blue
DARKEST
midnight
middark
blues
class_mon
22 more fields
15 methods

parameterChanged()

drawChart()

SpeedGraphic

addIntsValue(...)

getInstance()

drawCanvas
bufferedBackground
lightGrey
lightGrey2

6 methods

this_mon

15 fields

SpeedGraphic(...)

BackgroundGraphic

Figure .: Simplified class diagram for the Azureus reuse task. e green represents structural
elements the developer will reuse, yellow represents common elements, blue represents
elements that are similar to those the developer already has in there system, while red rep-
resents functionality the developer does not want to reuse.

Element Count
Classes 
Fields 

Methods 
Lines of Code (LOC) 

Table .: Scope of the Azureus network throughput graph pragmatic reuse task aer the extra-
neous functionality has been removed.

investigate more than  different source files to make decisions about the importance of each of
them. Tracking these decisions while negotiating unfamiliar source code can be daunting. While he
may not be able to enumerate every decision he hasmade as the class diagram suggests, he has a sense



that the task should be manageable and begins to carry it out. To actually perform the task he has to
copy those relevant classes from Azureus to UltiGPX, modify the copied files as necessary to remove
rejected elements and calls and references to these rejected elements, and to update any remapped
elements to elements within UlitGPX. While carrying out the task is conceptually straightforward,
it is difficult for the developer to remember all of the decisions he made while navigating between
these various source files. Indeed, when he started to do the task, he had to revisit several files to
remember what decisions he had made. One problem that the developer had while investigating
the code is that he never actually knew if he was “done” his investigation; he may have missed an
important dependency when he was navigating the various files and may not have found out about
it until he actually attempted the reuse task. e main problems with this task are that it would be
easy to dismiss it out of hand due to the domain differences between Azureus and UltiGPX, and the
fact that it required a lot of manual effort on the developer’s part; this effort was an act of faith on his
part as he did not know if the task would successful until he had completed it.

e SpeedGraphic functionality has been widely tested and deployed and can be considered
mature. It has existed for more than  years and has undergone more than  revisions. e code has
also been widely deployed as Azureus has been downloaded more than  million times. While the
task only ended up reusing  lines of code (LOC)², reusing the code took significantly less time than
writing it from scratch; additionally, the fact that the code was of high quality made the developer
feel more comfortable than he would with his own first attempt at such functionality. Figure .
provides a final screen shot of UltiGPX with the profile feature added by reusing the Azureus code.
e gradients, smoothing line, and axes all combine to provide a visually-appealing and functional
addition to the UltiGPX system.

Ultimately, this reuse task was successful; the developer was able to add the elevation profile
feature to UltiGPX without having to write the code from scratch. At the same time, he did not
reuse the code in a black box manner, the code was reused pragmatically by copying it from Azureus,
pasting it within UltiGPX and modifying it to suit its new context. Refactoring the original code was
not an option here: the UltiGPX developer is not also a member of the Azureus project. Even if he
were, it would be unlikely that a patch to Azureus to provide a reusable version of the SpeedGraphic
functionality would be accepted as the goal of Azureus is to be a BitTorrent client, not to be the source
of reusable graphic widgets. By reusing the source code from Azureus the developer was able to add
new functionality that leveraged code that had been widely deployed for several years; this saved him
time and ensured that the new feature was of high quality.

²All of the LOC counts presented in this dissertation are computed by counting non-comment source lines (NCSL);
this was performed by the EclipseMetrics Plug-in v. .. according to the standards outlined byHenderson-Sellers [].



Figure .: e final result of reusing the Azureus network throughput view within Azureus.
e developer has chosen to remap several of the colours to better match those already in
UltiGPX.

. Alternative to pragmatic reuse
e main alternative approach for completing this task without pragmatically reusing an existing
feature would be to write the source code from scratch. As the reused code is of reasonably high
quality, the LOC count () does not seem excessive. While measuring productivity in terms of
LOC per unit of time has been generally disregarded as an effective measure (e.g., [Lawrence, ;
Berg et al., ]) we use it illustratively here.

If you consider that the  LOC in the existing solution contained on average  words, a devel-
oper typing  words per minute would take over  minutes to write this code from scratch. is of
course ignores the fact that developers cannot be expected to write code as fast as they can type and
that the likelihood of there being defects with code written at that speed is high.



Alternatively, we can consider that developers have been recorded as averaging between  and 
LOC per day (e.g., [Drake, ; Prechelt, ;McConnell, ]). At this rate, assuming an -hour
work day, this feature would take between  and  days to complete. In my personal estimation, I
believe this feature would take at least two days: one full day to write it initially and one full day to
debug and refine it. For small, well-understood features, a developer may be able to quickly write
the code from scratch, but for larger features the risks and costs associated with writing source code
from scratch quickly grow. e intent of this simple estimate is not to show that pragmatic reuse is
always faster than writing source code from scratch, but to remain aware of the high costs associated
with creating new soware.

In either case, this functionality can be completed pragmatically in less than  minutes by
reusing code that is of high quality and has been used by millions of people; thus, pragmatic reuse is
apparently more productive than creating the code from scratch, although empirical evidence is still
needed.

. Summary
In this reuse task, a developer wanted to add a specific piece of functionality to his system. He knew
of an existing system, from another domain, that provided functionality similar to what hewanted, so
he decided to investigate the source code associated with this feature as a potential reuse candidate.
His primary investigative goal was to identify how coupled the feature he wanted to reuse was on
the rest of its system; to perform this investigation he manually navigated through many files in the
system, tracing the structural dependencies from file to file to build up a mental model of his task.

Aer a highly-manual investigation he decided to proceed with the task, copying the code asso-
ciated with the feature into his own project, then modifying it to work within its new context. is
copy-and-modify process was time consuming but resulted in the functionality being successfully
added to the developer’s system. Even though the reuse task may have seemed ill-advised initially
due to the domain mismatch of the systems, and investigating the task and performing it required
a lot of manual and mental effort on his part, the reuse task ended up taking much less time than
writing the feature from scratch.

Pragmatic reuse provides developers with a mechanism that enables them to leverage existing
high-quality code from existing systems within their own projects. ese tasks can be completed
significantly faster compared to creating the functionality from scratch; by most measures, reusing
validated, deployed, source code is preferable to writing new source code.





Chapter 

Related Work

Soware reuse has a well-established history in both the research literature and industrial prac-
tice [for example, Mcilroy, ; Poulin et al., ]. Due to the broad scope of soware reuse,
relevant research is found inmany different fields including soware engineering, programming lan-
guages, information retrieval, information visualization, andmany fields that utilize domain-specific
reuse mechanisms. e diversity of these fields reflects the variety of issues surrounding the three
primary phases of a soware reuse task (locating an artifact for reuse, specializing it for the reuse
context, and performing the reuse task).

Research efforts relevant to this dissertation have been categorized into five primary categories:
soware reuse (Section .), source code transformations (Section .), program understanding
(Section .), soware visualization (Section .), and cognitive aspects pertinent to reuse (Sec-
tion .). is chapter outlines relevant related work and differentiates the research in this disserta-
tion from previous research efforts.

. Soware reuse
Soware can be reused in either a black-box or white-box manner.¹ is high-level categorization
differentiates approaches that enable the developer to modify the internal operation of a reusable
artifact (white-box reuse) and those that do not permit the internals of the artifact to be changed
(black-box reuse).

At a high-level, each of these approaches have general strengths andweaknesses. Black-box reuse
enables developers to reuse an artifact without requiring the developer to consider how the artifact
works; the main downsides of this approach are that black-box reuse tends to be less flexible as the
developer cannot modify the artifact to suit their specific needs. In contrast, white-box reuse enables
the developer to modify an artifact to suit their specific needs at the expense of the additional effort
required to understand and modify the reused artifact.

¹A third category, grey-box reuse, is sometimes mentioned; in this dissertation it is considered a form of white-box
reuse.

.. Black-box reuse

e majority of reuse literature emphasizes designing soware in a reusable fashion, for example, in
object-oriented programming [Johnson andFoote, ], frame-based reuse [Bassett, ], domain-
specific language-based approaches [Neighbors, ], component-based approaches [Mcilroy, ;
Meyer, ; Szyperski, ; Mezini and Ostermann, ; Ravichandran and Rothenberger, ;
Estublier andVega, ], and in soware families and soware product lines [Dijkstra, ; Parnas,
; Krueger, ].

Black-box reuse approaches rely on the systematic application of a soware reuse policywithin an
organization. is is due to the large cost associated with these approaches and the potentially large
payoffs that can be gained by applying them. To enact a black-box reuse program, an organization
requires a large library of reusable soware assets and oen must also make an investment in adding
their own assets to the repository as they create them. Much of the effort in black-box reuse is a
result of populating, maintaining, and searching the library of reusable artifacts. e scope of the
reused asset tends to be bimodal for black-box reuse. e reuse usually involves small assets, such as
individual functions [Kim et al., ], or very large assets such as whole components [Weide et al.,
].

Other systems have looked at creating reusable components from existing code. CARE [Caldiera
and Basili, ] takes a metrics-based approach to identifying reusable components. Component
rank attempts to locate themost relevant components to reuse for a particular query using aweighted-
graph model approach that considers structural edges and component usage patterns [Inoue et al.,
]. Lanubile and Vissagio [] have also investigated extracting reusable code from existing
systems using a program slicing approach, although it is unclear if this approach has been imple-
mented.

CodeGenie [Lemos et al., ] extracts code slices from existing systems based on test cases
selected by the developer. While the developer cannot influence specific aspects of the slice, they can
consider the output of several different slices to determine which best provides the functionality they
would like to reuse.

In contrast, pragmatic reuse tasks are more opportunistic; they arise when an organization has
notmade the investment in a systematic reuse policy—or even if they have [Selby, ]. A developer
simply decides that they want to reuse some existing functionality, regardless of whether it has been
designed in a reusable fashion or not, and performs the reuse task manually. Pragmatic reuse tasks
do not require a library of reusable assets but are highly dependent on developer experience and
their social networks to identify situations where similar code may exist. Pragmatic reuse tasks can
be of any size, but are typically limited by the developer’s ability to fully understand their reuse task;
as such, they tend not to be as large as the largest black-box tasks, and are particularly suited for
medium-scale reuse tasks.



.. White-box reuse

Selby [] analyzed  projects at NASA and discovered that  of the modules within those
projects were reused from prior projects. Of these reused modules,  required modification from
their original form, while  required no modification. is study showed that a significant pro-
portion of reuse instances involve source code modification; this further motivates supporting these
types of reuse tasks.

Parsons and Saunders [] determined that developerswere able to perform tasks by anchoring
their understanding to existing code and adjusting the code tomeet their needs. While this evaluation
was only tested for one small case (albeit with many developers), it is an encouraging endorsement
for the white-box reuse paradigm.

Several approaches have investigated small-scale white-box reuse. Toomim et al. [] argue
that there are cognitive costs associated with abstraction and that copy and paste development pro-
vides a mechanism to avoid some of these costs. eir linked editing approach allows developers
to copy artifacts while enabling the copied versions to be synchronously edited by changing only a
single instance of the copied code. e CReN tool [Jablonski and Hou, ] provides tracking and
identifier renaming support when code is reused through copy and paste; the primary intent of CReN
is to alleviate defects caused by inconsistent identifier names. ese approaches are both designed
to address the issue of copying code within a single system; the intent of pragmatic reuse tasks is
not to clone small-scale functionality within a system but to enable developers to reuse larger-scale
functionality from external systems more effectively.

Cottrell et al. have developed the Jigsaw tool that allows one method to be copied and integrated
into another existing method [Cottrell et al., a; Cottrell, ; Cottrell et al., b]. eir ap-
proach effectively integrates methods, properly identifying the commonalities between a source and
target method and ordering the elements within the target method. Jigsaw provides more compre-
hensive support for the integration of one method into another than Gilligan does; however, Jigsaw
is heavily reliant on contextual information provided by the developer regarding where the reused
code should be placed. In addition, Jigsaw operates on a smaller-scale than our approach as it only
integrates individual methods; it does not integrate whole classes or features.

eStrathconaExampleRecommendation Systemwas developed as ameans to locate structurally-
relevant source code examples for a developer based on some fragment of source code they had
selected [Holmes and Murphy, ; Holmes et al., ]. e intent of the system was for a de-
veloper to locate an example that provided the functionality they wanted from which they could
then copy the source code into their own system. Other example recommendation systems such as
ParseWEB [ummalapenta and Xie, ] have similar intent to Strathcona. ese systems are dif-
ferent from the work presented in this dissertation as they only locate examples; they do not help the
developer investigate or reuse the source code.



.. Code clones

Pragmatic reuse can be perceived as a means to easily create clones within a system; while this is
true, the intent of pragmatic reuse is to reuse functionality from external systems rather than intro-
duce clones throughout a single system. Kapser and Godfrey have created a taxonomy [] of the
different kinds of cloning encountered in their study of several large soware systems. One type of
cloning they identify as “replicate and specialize”; is essentially white-box reuse.

While clones have been perceived negatively in the past, research has found that they are fre-
quently short-lived, and when they are long-lived they are not easily refactored [Kim et al., ].
Short-lived clones are those that are reused and then modified to meet the new system’s require-
ments. Non-refactorable clones indicate that the original API could not be refactored to meet the
requirements of both the old and new usage. ese cases are no worse than implementing the fea-
tures from scratch but the developers still get the added benefit of having reused code. One problem
with reusing code in this manner, however, is that when bugs are fixed in the original source they
are not automatically propagated to the reused versions; support for this type of process is an active
research topic [Kim and Notkin, ; Duala-Ekoko and Robillard, ].

Cordy [] provides many reasons by which industrial organizations rationalize reusing code
via clones instead of refactoring. Two primary rationales are raised. First, refactoring does not di-
rectly contribute to an organization’s financial situation; while refactoring source code may have
future benefits, these are not realized immediately and can be difficult to make a sound business
case for. Secondly, the risk associated with refactoring a system may not be acceptable. is risk is
manifested in both the changes to the system itself, but also by exposing multiple parts of a system
to a single module, instead of each part having its own that it can change independently, isolating
subsystems from one another as much as possible. Cordy argues that the decision to reuse source
code via clones is well rationalized by the developers who perform those tasks and that they use this
technique to ensure specific properties hold for their systems.

. Program understanding
An essential aspect of performing a pragmatic reuse task is locating and understanding the source
code that is to be reused. Feature location approaches help developers locate these portions of the
source code.

ese approaches can use static information gleaned from the source code, dynamic execution
information, or a hybrid combination of the two. To reduce the overhead required to plan a pragmatic
reuse task, only static approaches will be considered here. Ciao [Chen et al., ] and Rigi [Müller
and Klashinsky, ] both statically analyze the source code of a system and allow a developer to
navigate the structural dependencies contained therein. Chen [] investigated feature location
using a graph-based technique, although this approach was purely a generic program understanding
tool.



Many approaches have appeared in recent years that automatically or semi-automatically identify
the extent of features in source code (e.g., [Eisenbarth et al., ]). Such approaches could be used
as a starting point in a pragmatic reuse task; however, given that features of interest are oen not well-
encapsulated, an intricate and inexact decision-making process is still needed to draw the boundary
between the feature and the rest of the system. Previous work on feature location does not aid in that
task.

e FEAT [Robillard and Murphy, ] tool helps developers create descriptions of scattered
soware, called concerns. A concern in FEAT is a graph where the nodes are soware elements and
the edges are the relationships between them. A pragmatic reuse plan is also a graph, but extends
the nodes to include triaging information that capture how the structural element should be man-
aged when the pragmatic reuse task is performed. Recent work by Robillard [] has investigated
providing tool support that can recommend relevant program elements to the developer based on
the elements they have previously investigated. is technique could be directly applicable to the
planning aspect of pragmatic reuse tasks.

One major difference between Gilligan and each of these program understanding approaches
is that Gilligan was not developed as a generic program understanding tool; each design decision
considered while constructing Gilligan was made to enhance the process of creating a pragmatic
reuse plan. is task specificity is an essential component to Gilligan’s effectiveness.

. Program transformation
Transformation-based approaches to reuse were prevalent in the s, for example, that of Feather
[]. Such approaches were based on the notion of formally correct refinement, thus requiring
compilable programs and (usually) formal specifications; neither is available in the context of prag-
matic reuse. Likewise, metaprogramming [Kiczales et al., ] and most generative programming
techniques, such as aspect-orientation [Lieberherr et al., ; Kiczales et al., ], require com-
plete and compilable source code prior to transformation. Lower-level transformation approaches
(lexically- or syntactically-based), such as DMS [Baxter, ] or TXL [Cordy, ], could be used
to avoid the difficulties in dealing with uncompilable code; however, a tool like Gilligan would still
need to augment them to perform the semantically-aware operations needed for the enactment of
reuse plans.

Various approaches attempt to adapt code for use in a novel context. eAdapter object-oriented
design pattern [Gamma et al., ] adapts classes or objects to conform to a required interface, but
maintains all the dependencies of the original classes or objects; to enact a pragmatic reuse plan,
dependencies sometimes need to be eliminated or replaced. Approaches like that of Gouda and Her-
man [] and of Yellin and Strom [] automatically adapt components to new contexts; how-
ever, they require complete, formal specifications to operate that are not applicable to the lightweight
process inherent in pragmatic reuse tasks.



Automated support for program restructuring [Griswold andNotkin, ] (also known as refac-
toring [Opdyke, ; Henkel and Diwan, ]) is either limited to meaning-preserving transfor-
mations that require compilable source code to operate correctly, or simple operations like replacing
the name in a declaration and its corresponding references within a method body (the Eclipse IDE²
provides such support).

While many approaches have advocated refactoring code into reusable application programming
interfaces (APIs), this is not always possible. e original code may no longer be maintained or
its maintainers may not be willing to refactor the code to meet the new requirements. Indeed it
has been shown that reused code must be frequently modified in some way to work within its new
context [Selby, ]. Frakes and Kang [] note that dedicated reuse strategies within companies
require a large up-front cost that must be justified in terms of business goals. ey also found that
most soware systems are variants on pre-existing systems. As new systems are extensions of the
old, it is natural that pragmatic reuse will take place in situations where the new requirements do not
align perfectly with the old.

. Soware visualization
A variety of program comprehension approaches are based on graph visualization (e.g., [Müller and
Klashinsky, ]). In attempting to be as general-purpose as possible, they tend to be ill-suited for
specific tasks [Schafer et al., ]. ey also tend to ignore the particular needs of industrial develop-
ers [Reiss, ] in investigating pragmatic reuse tasks and quickly deciding whether or how to pur-
sue them. We impose a particular process model and its related navigational strategy on developers
using our approach; despite the fact that this would not be a good design choice for a general-purpose
program understanding tool [Storey et al., ], we believe that the narrowly targeted application
eliminates the need to permit a range of navigational strategies.

Several visual techniques exist to view graph structures as trees, e.g., TreePlus [Lee et al., ].
TreePlus advocates the Plant a seed, watch it grow metaphor for graph visualization, starting from a
point and working outwards—essentially, propagational navigation. It is unclear how the learning
burden required to learn how to interact with this visualization approach would affect developers
performing a pragmatic reuse task. While initial prototypes of Gilligan used a visual graph-based
metaphor, later versions changed to representations using standard tree user interface (UI) widgets
in order to reduce the overhead required to learn how to use the tool.

. Cognitive aspects of reuse
Many of the problems impeding the successful reuse of soware are cognitive [Fischer, ]. In
order to overcome these cognitive impediments, Fischer argues that more information is not needed,

²http://eclipse.org



but that the current information must be structured more effectively. He further argues that tools
must support the developer in safely investigating alternative reuse scenarios. In terms of pragmatic
reuse tasks, these observations are especially pertinent: manually experimenting with alternative
reuse solutions is prohibitively expensive; we believe that adequate tool support can help reduce this
burden and encourage developers tomake better decisions by understanding the differences between
different alternatives.

Parsons and Saunders [] determined that developerswere able to perform tasks by anchoring
their understanding to existing code and adjusting the code tomeet their needs. While this evaluation
was only tested for one small case (albeit withmany developers), it is an encouraging endorsement for
white box reuse approaches. By helping developers create a concrete reuse plan, we want developers
to anchor their reuse activity within the existing system so they can better understand how the code
needs to be adjusted without being overwhelmed by all of the low-level details the task requires.

de Alwis and Murphy [] cite three key shortcomings of current IDEs that can contribute
to disorientation amongst expert developers: () the lack of connecting context when switching be-
tween files; () the inability of the developer to see all of the information pertinent to their task at
once; and () the absence of support for diverging from a main task to pursue sub-tasks. We believe
that these three shortcomings are strongly related to the central focus of development activities on
the source code editor. Sen [] also notes that determining the order of the steps in a reuse task
a priori is not possible; this further supports de Alwis’ findings for the support of sub-tasks. Our
approaches will leverage abstractions of the source code to reduce the disorientation caused by these
three problems.

Two issues that can impede a developer’s understanding of a tool are its internal complexity,
that is, the difficulty to understand what the tool is doing to determine how to best utilize it, and its
deployability [Sim and Storey, ]. To address these issues, we aim to tailor our tools to supporting
only pragmatic reuse tasks: by supporting only one specific type of task we hope to make it simpler
and easier to understand. We will address interoperability of our tool with existing environments
and deployability by integrating our tools into the Eclipse IDE as much as possible.

. Summary
e related work demonstrates that industrial developers perform pragmatic reuse tasks. Developers
perform these tasks both opportunistically, and as an explicit mechanism to provide specific benefits
for their systems. Pragmatic reuse tasks are performed in an unsystematic, ad hoc fashion; thismakes
them error-prone and limits howwell these tasks scale to larger pieces of functionality. Soware reuse
tasks are complex enough without the developer having to additionally reason about and understand
the unfamiliar source code they are trying to delineate from its system and reuse. e literature
provides scant evidence pertaining to how developers actually perform pragmatic reuse tasks.





Chapter 

Industrial Applicability Survey

Before investigating the concept of pragmatic reuse further, we wished to verify that industrial de-
velopers were reusing code in practice. To do so, we surveyed industrial developers from several
different organizations. e primary research question the survey sought to answer was, “Do devel-
opers actually perform pragmatic reuse tasks?” e secondary research goal was to gain a greater
understanding about how they thought about and performed these tasks and to identify any barriers
they experienced when performing these tasks.

We surveyed  developers from different companies, each of whichwas in a different industrial
domain. Each respondent was employed full-time in an active development role; their experience
ranged between two and twelve years of industrial soware development (with an average of over .
years). is survey investigated howdevelopers think about, and perform, pragmatic reuse tasks. e
survey consisted of two parts: () a set of  questions that the developers answered using a seven-
segment Likert scale; and () a set of  open-ended questions to which developers were encouraged
to freely state their opinions about soware reuse in general, and pragmatic reuse in particular.

e Likert scale questions can be found in Table .; the complete text of the questionnaire is
included in Section A. (p. ). All the responses to the Likert-scale questions can be found in
Table A. with a summary of the responses given in Table A.. e results of this survey have been
previously published [Holmes and Walker, a].

ID Question

Development

D I primarily develop new features.
D I primarily maintain existing features.
D I have flexibility in choosing how to complete my development tasks.
D Creating reusable soware is encouraged in my organization.
D Reusing soware is encouraged in my organization.
D My organization has a large amount of code available to be reused.
D Portions of features I amdeveloping already exist in other soware systems (and

I have access to the source code).
Environment

E I use an IDE (while working with code).
E I use advanced IDE tools (e.g., refactoring support, type hierarchy navigation).
E My primary development environment is Eclipse.
E My primary development language is Java.
E I use program understanding tools (beyond those provided by Eclipse itself) to

help me complete my tasks.
E I prefer using a suite of general purpose tools that I can apply to many tasks.
E I prefer targeted tools that are designed to help me accomplish specific tasks.



Reuse

R I have reused source code (any scope).
R I have reused whole classes.
R I have reused whole features.
R e reuse process as outlined on page one is similar to how I think about the

reuse process.
R When I reuse source code I am careful to only reuse exactly those portions that

are relevant to the task I am completing.
R When reusing source code I worry about not fully understanding the code I am

reusing.
R I rely on IDE tools to help me complete reuse tasks.
R I reuse source code to save myself time.
R I reuse source code to increase the reliability of my code.
R I reuse source code to increase the robustness of my code.
R Given the choice of implementing a feature or reusing one from an existing

system, I would choose to roll my own (aka. not reuse).
R e size of the feature I am working on would influence my decision to try to

reuse it or to re-implement it from scratch.
R Keeping track of the relevant details of a piece of source code while navigating

its text can be difficult.
R Understanding what dependencies a feature has on its context is important for

me to determine whether I should reuse it.
R I am more inclined to reuse smaller features about which I can have a complete

understanding, than larger features that are harder to reason about.
R I prefer reusing smaller features because it is difficult to both build an under-

standing of a complex reuse task, and carry it out.
R Reusing smaller features provides less benefit to me than reusing large features.
R e definition of reuse outlined on page one is reasonable to me.

Table .: Likert-scale questions from industrial questionnaire.

. Survey Results

Upon analyzing the survey results, four main themes were identified. ese themes mainly arose
from the Likert-scale questions; the developers’ responses to the open-ended questions were used to
support them. Some selected statements and responses from the Likert scale questions are summa-



rized in Table ., while the histograms corresponding to them have also been included (p. ).

. Developers perform pragmatic reuse tasks. Developers agreed that they had reused source code
(Table ., R) and that these reuse tasks frequently encompassed whole classes (Table .,
R). In the long answer section the developers indicated that their reuse tasks usually ranged
from  lines to  (several methods or a portion of a class), but sometimes included whole
classes (up to  lines). eir comments also indicated that reuse of this nature frequently
occurred while prototyping new features, or in the early stages of a project when functionality
was incorporated from existing products. Developers generally agreed they would rather reuse
a feature than re-implement it themselves (Table ., R).

. Developers have access to large amounts of code. Our respondents strongly agreed that their
organizations had large repositories of source code available to them to reuse (Table ., D).
Additionally, they reported that portions of the features they developed were available in other
systems for which they had access to the source code (Table ., D). Several respondents
listed porting activities (making source code that works on one platform function properly
on another) as a frequent rationale for performing pragmatic reuse tasks; for these tasks the
respondents generally had access to the source code for one platform and had to pragmatically
reuse it on another.

. Developers reuse code to save time and improve quality. e most popular reason for reusing
source codewas to save time (Table ., R). iswas repeatedly supported in thewritten ques-
tions with comments such as “reusing code is quicker and easier than [starting from scratch]”.
Several developers stated that they wanted to “leverage existing testing”. Source code wasmore
desirable as a candidate to reuse if tests existed for it, as these tests increased the developers’
trust in the quality of that code. Other popular reasons for performing this type of reuse task
included, “When I need the functionality but cannot call it directly”, “code represents intricate
functionality that cannot be written from the ground up without introducing errors”, “grand-
father[ing] old features into new versions of an application”, “UI [User Interface] consistency”,
and to “gain insight into what parts can be abstracted into reusable components.”

. Developers want to understand a feature’s dependencies. Reasoning about source code, espe-
cially code someone else has written, can be very difficult. Our subjects agreed that keeping
track of the facts relevant to a reuse task while navigating the source code was difficult (Ta-
ble ., R). Specifically, identifying the dependencies of the code they wanted to reuse on its
original system was of importance (Table ., R). One respondent indicated that they were
“less likely to reuse code that is tightly coupled to its context”; the rationale for this was that
tight coupling makes the code “difficult to understand; it is hard to reduce the dependencies
[on the rest of the system]”. is was echoed by other respondents: “what are the dependencies



on other libraries?”, “what other libraries will I have to pull in to use this code?”, and “I need
to know the dependencies; can I accept them into my project?”.

While attempting to understand a particular piece of code, many developers stated that they
would sketch out its structure visually on paper. Several others wrote notes either on paper or
as annotations within the code itself. Other developers would copy the source code from of
its original context and into their system to see how it would “bleeds” (compilation errors are
shown in red in many IDEs) in order to get a feel for how compatible the code fragment might
be with their system, and how dependent the fragment was on its originating system.

Key Average StdDev Statement

D . . Developers have access to a large amount of source code to reuse.
D . . Developers are frequently working on features that partially exist.
R . . Developers are reusing source code.
R . . Developers are reusing whole classes.
R . . Developers reuse code to save time.
R . . Developers would prefer to write source code from scratch than

reuse it.
R . . Developers find it difficult to keep track of all of the relevant details

while navigating a program’s source code.
R . . Developers want to understand a feature’s dependencies before

reusing it.

Table .: Selected industrial pragmatic reuse survey results.

. Other Findings
e respondents made several other interesting observations, in addition to those that support the
four categories listed above. One respondent noted that “we glue pieces together, we don’t write sys-
tems from the ground up (it’s not the ’s anymore)”. Another respondent mentioned that by reusing
some source code, “the original author can improve their code in future iterations starting a mutu-
ally fulfilling cycle.” Dependency understanding issues were clearly paramount to the respondents,
“I must understand the dependencies”, “visualizing the degree and exact relationships would be use-
ful”, “it would be nice to identify any dependent elements during cut and paste”, and “highlight what’s
local and what’s out of context when I paste.” e respondents also offered several rationalizations
for performing pragmatic reuse tasks, “quicker and easier to rewrite than to start from scratch”, “if
the API is not visible to me”, “to leverage existing work (and testing)”, “to reuse functionality between
different applications”, “to port between platforms”.



Strongly Disagree

Disagreee

Somewhat Disagree

No Opinion

Somewhat Agree

Agree

Strongly Agree

Number of Responses

0 2 4 6 8 10 12

Developers have access to a large amount of source code to reuse.

D6

Strongly Disagree

Disagreee

Somewhat Disagree

No Opinion

Somewhat Agree

Agree

Strongly Agree

Number of Responses

0 2 4 6 8 10 12

Developers are frequently working on features that partially exist.

D7

Strongly Disagree

Disagreee

Somewhat Disagree

No Opinion

Somewhat Agree

Agree

Strongly Agree

Number of Responses

0 2 4 6 8 10 12

Developers are reusing source code.

R1

Strongly Disagree

Disagreee

Somewhat Disagree

No Opinion

Somewhat Agree

Agree

Strongly Agree

Number of Responses

0 2 4 6 8 10 12

Developers are reusing whole classes.

R2



Strongly Disagree

Disagreee

Somewhat Disagree

No Opinion

Somewhat Agree

Agree

Strongly Agree

Number of Responses

0 2 4 6 8 10 12

Developers reuse code to save time.

R8

Strongly Disagree

Disagreee

Somewhat Disagree

No Opinion

Somewhat Agree

Agree

Strongly Agree

Number of Responses

0 2 4 6 8 10 12

Developers would prefer to write source
code from scratch than reuse it.

R11

Strongly Disagree

Disagreee

Somewhat Disagree

No Opinion

Somewhat Agree

Agree

Strongly Agree

Number of Responses

0 2 4 6 8 10 12

Developers find it difficult to keep track of all of the relevant
details while navigating a program's source code.

R13

Strongly Disagree

Disagreee

Somewhat Disagree

No Opinion

Somewhat Agree

Agree

Strongly Agree

Number of Responses

0 2 4 6 8 10 12

Developers want to understand a feature's
 dependencies before reusing it.

R14



. Survey Limitations
Only  developers responded to our questionnaire; due to the limited sample size, the study does
not indicate that all developers perform pragmatic reuse tasks but instead provides evidence that at
least some developers do. As the number of developers who indicated in our study that they perform
these tasks was high, we took this as enough validation to warrant further investigation.

One downside of performing a questionnaire-based study is that we did not have the opportunity
to interview our respondents. ismeant that the amount of information provided in response to the
open-ended questions was somewhat less than we would have preferred. Because of this we resolved
to ensure that future studies involved an in-person or telephone-based exit interview in order to get
more comprehensive details from our participants.

. Summary
e results of the survey confirmed for us that developers are performing pragmatic reuse tasks. It
also confirmed our suspicion that the structural dependencies, within the source code that the devel-
operwanted to reuse, played an important role in performing pragmatic reuse tasks. One higher-level
observation that arose from the study was that while navigating the source code and trying to under-
stand its dependencies, what the developer was really trying to do is gain an understanding of how
hard the reuse task would be: would it be an easy  minute activity or would they have to invest
several days in getting the code to work? is cost estimation was crucial for them to determine
whether their time would be best spent performing the reuse task or creating their own version of
the functionality.

e majority of the respondents had performed pragmatic reuse tasks in their industrial con-
text; while they undertook these tasks for a variety of reasons, they ultimately believed that these
reuse tasks were effective for their context. e wealth of interest in understanding the dependen-
cies involved in pragmatic reuse tasks led us to further examine tool support for both understanding
pragmatic reuse tasks as well as support for performing them.



Chapter 

Pragmatic reuse model

At its simplest level, a pragmatic reuse task involves locating a set of structural elements from one
system, extracting them, and reusing them within another system. ese tasks embed within them-
selves a certain set of requirements; a model to encode these tasks must be able to describe the set
of elements a developer wants to reuse and capture how they should be treated in a pragmatic reuse
task. is section describes the requirements of a pragmatic reuse model as well as specific details
pertaining to our concrete implementation of this model.

. Model requirements
In order to encode a pragmatic reuse task, a pragmatic reusemodel must support two primary design
requirements. e model must be able to:

. Describe the elements involved in the reuse task. e developer requires a mechanism to track
the structural elements he has investigated while he is exploring unfamiliar source code. e
model must be able to record any set of structural elements and the relationships between
them.

. Capture the intent of the developer. Describing the structural elements on their own is not very
useful; being able to capture what the developer intends to do with these elements when he
reuses them is of paramount importance. is requirement aims to transform a pragmatic
reuse plan from a set of structural elements into a lightweight specification of a reuse task. By
intent we mean that the developer must be able to tag a structural element with a specific
decision relating to how the element should be treated in a reuse task. ese decisions can be
further augmented by additional pieces of metadata, as required. Each structural element can
have only one decision associated.

In addition to these primary requirements, pragmatic reuse models have five secondary require-
ments; the model must be:

. Consistent. Decisions associated with structural elements must be applied consistently across
the entire model. For example, if the developer chooses to apply a specific decision to a field,
every reference to that field must be treated equivalently; special cases must not be permitted.
By being consistent the model is simpler to understand and encourages the developer to make
system-level decisions, rather than instance-level decisions.

. Lightweight. Development tools in general are fairly simplistic in their operation: most activ-
ities performed by developers in IDEs are transparent in their operation and simple in their
goals. e model must not be overly complex; this requirement seeks to minimize developer
frustration and learning curves. e model’s contents must map to concepts developers al-
ready understand and interact with regularly.

. Precise. It must be possible to traverse from the model’s representation of any structural ele-
ment to its declaration in the source code from which the model was populated. Furthermore,
every location in the source code that is relates two structural elements must also be derivable
from the model.

. Language independent. e model should not be tied to specific language features of any par-
ticular language. is requirement ensures that the assumptions embedded in the pragmatic
reuse model do not hamper the future applicability of the model to other languages. at said,
the model can, and does, require the language to be object-oriented.

. Amenable to automated interaction. e goal of the model is to capture the structural elements
and their reuse intent both to help the developer plan a reuse task, but also to help them per-
form it. e model must be programmatically accessible to enable tools to interact with the
model and the source code the model was generated from.

e primary design requirements are descriptive; they aim to help the developer describe the
nature, extent, and intent of a pragmatic reuse task. In this way, the pragmatic reuse model is a blend
of the developer’smentalmodel, their understanding of the code they are trying to reuse, and amodel
of the task.

Some of the secondary design requirements are prescriptive; they aim to constrain how the de-
veloper can perform the task. In particular, the constraint that the reuse plan be consistent reduces
the amount of flexibility a plan can have. Additionally, the lightweight nature of the plans limits the
scope of the decisions a plan can encode. Both of these requirements were added for comprehensi-
bility of the pragmatic reuse plan: we wanted to make it easier for a developer to understand their
pragmatic reuse plan without having to consider scores of special cases and exceptions.



. Concrete model implementation
is section details our concrete implementation of a pragmatic reuse model that meets the require-
ments listed above; the only exception is that our implementation of the model has only been val-
idated with Java-based pragmatic reuse tasks. We call our implementation of the pragmatic reuse
model a pragmatic reuse plan. is implementation of the pragmatic reuse model aims to encode
as few direct facts as possible, enabling additional information, if it is needed, to be derived from
the existing model. Our pragmatic reuse model maintains a list of zero or more structural elements
that have zero or more pieces of additional metadata associated with each of them. Each structural
element can have zero or more relationships to other structural elements; additionally, each struc-
tural element can be tagged with zero or one reuse intent decision. Pragmatic reuse plans describe
three kinds of structural elements: classes, fields, and methods. Each element is identified by its fully
qualified name. Each class has an additional attribute corresponding to its originating system; as Java
does not permit namespace collisions within packages, the plan uses the fully-qualified name as a key
to uniquely identify any structural element. Pragmatic reuse plans are encoded in a graph structure:
each of the structural elements is represented a node in the graph. ese nodes are linked by edges
corresponding to the relationships between them.

.. Relationships that exist between structural elements

Pragmatic reuse plans encode five kinds of relationships between structural elements:

• Inherits. Inheritance relationships are recorded between classes and interfaces. A class can
extend zero or one other class and can implement zero or more interfaces. An interface can
implement zero or more other interfaces. Inherits relationships are represented as an edge
between two classes or interfaces.

• Calls. Method call relationships are recorded whenever a method is referenced within a pro-
gram. Method calls include calls to type constructors (e.g. new Foo()), static calls (e.g.,
Foo.bar()), and super calls (e.g., super()). Method calls generally involve by one method
invoking another, although two special cases exist: () a field can instantiate a type, thus calling
its constructor; () static initializers can both instantiate types and invoke methods on those
types. A call is represented by an edge from the originating method to the target method; in
the case of field initializers or static initializers, a placeholder class initializer method is syn-
thesized to act as the originating method.

• References. Field references are recorded whenever a field is referenced in a program. Field
references can occur both within methods and within static initializers and when fields are
referenced. Like calls relationships, references relationships are represented by an edge be-
tween an originating method where the reference takes place to the target field.



• Has-Type. is relationship only exists for fields: the fully-qualified type of the field is recorded,
in addition to its fully-qualified name. ehas-type relationship is represented by an edge from
the field to a class or interface.

• Containment. In addition to their names, structural elements have metadata recording their
containment relationships. Fields and methods are contained by classes and interfaces, and
classes and interfaces in turn are contained by packages. Containment enables elements and
relationships to be aggregated from the model (e.g., find all of the calls made by all of the
methods in class Foo).

e containment relationship is different from the other relationships as it is implicitly encoded
in the structure of the source files. Containment enables elements and relationships to be
aggregated from the model (e.g., find all of the calls made by all of the methods in class Foo).

.. Decisions a developer can make about a structural element

Our model enables one of six primary triage decisions to be encoded for any structural element by
the developer. e decision represents how the developer intends for the structural element to be
handled during the reuse task.

• Accept. If the developer decides that the structural element he is investigating represents an
element that he should reuse, he can tag that element as accepted. Methods and fields cannot be
acceptedwithout the classes containing thembeing accepted (or theywould not have anywhere
to be reused to); this decision was made to minimize the difference between the pragmatic
reuse plan and the source code itself.

• Reject. Structural elements that represent functionality the developer does not want to reuse
can be tagged as rejected. If a class is rejected, all of its contained methods and fields are also
rejected; however, individual methods and fields can be rejected from an an accepted class.

• Remap. Any structural element deemed by the developer to be similar to an element that
already exists in his system can be remapped; when the developer chooses to remap an element
he must also specify the element in his own system he would like the element to be remapped
to. is means that the element itself will not be reused or rejected, rather any reference, call,
or inheritance relationship to the structural element will be changed from the element itself to
the element the developer specified.

• AlreadyProvided. Common structural elements between the developer’s system, and the source
system he is investigating reusing source code from can be considered common. Common
structural elements oen arise when the source and target system are dependent on the same
libraries or frameworks; in these cases the structural elements do not need to be reused to



satisfy the dependencies of any accepted code as they already exist in the developer’s target
environment.

• Extract. is special case of remapping applies only to fields. A field can be reused without
its containing class by extracting it from that class and inserting it into one of the classes the
developer has specified should be reused. is type of decision is best suited for reusing con-
stants. is kind of decision was added based on feedback from industrial developers (this is
detailed in Section .).

• Inject. Another special case added at the request of industrial developers was the ability to
inject any arbitrary fragment of code into a class they were reusing. ey wanted to do this so
they could add their own stub to the source code that they could then remap fields andmethods
to point to. is was to account for cases where they did not want to reject an element but did
not have a suitable element within their own system to remap the element to.

Each of the developer’s decisions will have implications on how much the reused source code has
to be altered when the reuse task is performed. Any edge from an accepted structural element to a
rejected structural element will result in a dangling dependency when the reuse task is performed;
a developer could introduce many dangling dependencies into the reused code by rejecting even a
single element if it is frequently called or referenced from the source code he has accepted. In general,
these dangling dependencies that arise from relationships to rejected elements represent code the de-
veloper does not consider to be central to the reuse task; because of this, these dangling dependencies
represent inheriting, referencing, and calling relationships that the developer will remove from the
source code he has reused. Similarly, edges originating in accepted elements to remapped elements
will also result in dangling dependencies; however, unlike with rejected elements, these dangling de-
pendencies will not be removed but changed to reference the alternative structural element specified
by the developer in the reuse plan. References to extracted fields from accepted elements will also be
updated to point to the extracted field’s new location.

. Pragmatic reuse plans as lightweight specifications
Pragmatic reuse plans contain much of the information needed to undertake a pragmatic reuse task;
as such, these plans represent lightweight specifications of pragmatic reuse tasks. Unlike formal spec-
ification schemes such as Z notation [Abrial et al., ] or B-Method [Abrial, ], pragmatic reuse
plans are not provably correct with respect to their given specification.

Within the context of a pragmatic reuse task, being provably correct is an overly burdensome
requirement as the overhead required to create a formal specification of the task may overwhelm
the benefits of performing the task. Pragmatic reuse plans relax the restriction of being correct in
exchange for a drastic reduction in their complexity and the time it takes to create them.



Our intention is not to fully automate pragmatic reuse tasks but to enable developers to be more
effective when they are performing them. While pragmatic reuse plans are not necessarily complete,
they are amenable to lightweight validation schemes. For instance, any edge from an accepted struc-
tural element to a structural element that has not been tagged with a decision can be easily detected
from a pragmatic reuse plan; a tool could recommend that a developer investigate these structural
elements in order to reduce the ambiguity in their plan. Pragmatic reuse plans are not positioned to
supplant formal specifications, rather they are trying to fill a niche where these specifications would
impose unnecessary complexity on the developer.

. Relationship to the concern graph model

Several of the requirements of the pragmatic reuse model are similar to those given by Robillard for
his Concern Graph Model [Robillard, ; Robillard and Murphy, ]. While Concern graphs
and pragmatic reuse plans contain the same structural elements that have the same relationships
between them, their intent diverges significantly. Concern graphs aim to bring together a set of
structural elements to aid program understanding approaches; pragmatic reuse plans aim to extend
this model to not only aid comprehension but to encode actions (via decisions) that can be used to
actually perform specific tasks. us, pragmatic reuse plans encode the developer’s intent within the
context of a specific kind of task; concern graphs do not.

. Structural analysis

Our model is populated by the static structure of the source and target systems. e static structural
analysis engine used in this dissertation was directly derived from the Strathcona Example Recom-
mendation System [Holmes et al., ]. Our static analysis engine had twomodes, one for extracting
data from the project hosting the code that was being reused (the source project) and one for extract-
ing data from the developer’s project (the target project). For the target project all that was extracted
was the structural element names for every interface, class, method, and field in the system; while
containment relationships were still inferred, no other structural relationships were extracted. For a
source project, the static analysis engine would extract all of the structural elements as for the target
project but it would also extract all of the structural inheritance, calls, and references relationships
from the source code.

e primary limitation of our static analysis technique is that we were unable to accurately ex-
tract polymorphic type information. at is, if the source code had this snippet IFoo foo =

obj.getFoo(), we would infer that foo was of type IFoo even though at runtime foo may have
been of type ConcreteFoo. e analysis engine would however identify the inheritance relation-
ship between IFoo and ConcreteFoo and present this in the model.



e structural analysis system takes both the source and target systems in order to determine
the common structural elements between these projects. Currently, we assume that there are no
fully-qualified name collisions for structural elements that are not in the default Java package. If a
fully-qualified name from the target project matches one from the source project they are considered
equivalent.

. Summary
is chapter described the structural elements, their relationships, and the decisions that can be ap-
plied to them in our implementation of pragmatic reuse plans. e elements and their relationships
are automatically extracted from the source code through structural analysis. e decisions about
these elements are added by the developer as they progress through their pragmatic reuse plan. Prag-
matic reuse plans describe the elements involved in a reuse task and capture how the developer in-
tends to manage those elements when performing the reuse task; these plans are also consistent,
lightweight, precise, language independent, and are amenable to automated interaction.

Our pragmatic reuse plans capture five structural relationships between packages, classes, inter-
faces, fields, and methods: inherits, calls, references, has-type, and containment. Developer intent
can be encoded through six decisions: accept, reject, remap, already provided, extract, and inject.





Chapter 

Graph-based pragmatic reuse planning

We built our first prototype of the Gilligan tool suite as a literal concrete realization of the pragmatic
reuse model described in Chapter . is prototype focuses on the initial part of the pragmatic reuse
process: helping developers to locate, to navigate between, and to understand the structural elements
that they wish to reuse during their pragmatic reuse tasks.

. Design goals
We had eight specific design goals when we designed the first prototype of Gilligan. e feedback
we received from our initial industrial developer survey (Chapter ) heavily influenced these goals;
each feature of the prototype was designed to further one or more of these design goals (DG):

DG .: Provide an abstract representation of the structural elements and relationships being inves-
tigated. One of the primary problems identified during the initial survey was that indus-
trial developers found it difficult to remember all the details pertinent to their reuse task.
We hypothesize that enabling developers to interact with an abstraction of the source
code, rather than working through many editor windows and alternate IDE views, will
provide a more cohesive experience that is easier for them to reason about.

DG .: Visualize all the structural elements and their relationships. As many developers in the
survey expressed a keen interest in the structural relationships of the source code they
were investigating for reuse, our tool should provide a visualization of all of the structural
elements, and their relationships.

DG .: Promote easy navigation between structural elements. One of the most overwhelming
aspects of following structural relationships in source code is having to open many dif-
ferent source code editors. We must enable developers to navigate their source code
using an abstract representation to reduce disorientation.

DG .: Provide a high-level overview of the reuse task. We would like to encourage developers
to think about pragmatic reuse tasks from a higher-level, rather than getting lost in the
very low-level details of the source code. To do this, we wish to provide a means to gain
a global overview of the pragmatic reuse task.

DG .: Explicitly record decisions about structural elements. e pragmatic reuse model can ex-
plicitly capture developer intent; our tool must enable developers to enter their reuse
decisions into the pragmatic reuse plan.

DG .: Make the structural elements that have been triaged easily differentiable from those that
have not. Another problem with navigating through many source code editors is that
while you can see which editors you have opened, it is difficult to see what portions of
those editors you have examined andwhich you have not; this makes it more difficult for
a developer to understand where they should investigate next. Our tool should clearly
identify to the developer structural elements they should investigate before considering
their plan complete.

DG .: Make performing pragmatic reuse tasks more systematic. Navigating through unfamiliar
code can be overwhelming and distracting. Prior research has listed the unsystematic
nature of these reuse tasks as problematic(Chapter ). As much as possible, our tool
should aim to help developers proceed with their investigation as systematically as pos-
sible.

DG .: Conscientiously avoid work that does not directly aid in the completion of the reuse task.
Planning a pragmatic reuse task cannot take more time with our tool than it would take
to perform manually, otherwise developers will never use the technique. As much as
possible, the tool must be lightweight, and allow developers to integrate our tool into
their workflow.

. First Gilligan prototype
e main objective of the first Gilligan prototype was to help developers plan their pragmatic reuse
tasks. Figure . contains an overview of how Gilligan fits into the overall pragmatic reuse process.
Once a developer has located a system containing a feature they would like to reuse, they can search
the source code using lexical tools for a starting point to begin their investigation. ey can then
use Gilligan to continue planning their reuse task from that point; with only a few clicks they can
start the tool by selecting their source and target projects [ .]. Gilligan then extracts the struc-
tural relationships statically from the source code and stores them in the pragmatic reuse model for
later retrieval. e developer can select their starting point in the source system from a list of struc-



tural elements in the system (through a tree view with a text filter) and start exploring the structural
relationships in the system from there.

Gilligan helps developers to visualize and navigate the structural dependencies within the source
code they are investigating; the end result of this investigation is a pragmatic reuse plan that the
developers can use to determine if the plan is meritorious and should be performed or if the plan
should be discarded. We hope that by making a pragmatic reuse plan, the developer will be making
these decisions for rational technical reasons. is is in contrast to dismissing a reuse task out of hand
for seeming like a bad idea, or pursuing a poor pragmatic reuse task without knowing that there are
significant technical hurdles that may make it impractical. If the developer decides that the reuse
plan is worthwhile, they can use the plan as a set of instructions guiding them through enacting their
plan by copying and modifying the source code they have identified for reuse.

e results of the prototype and evaluation discussed in this chapter have been previously pub-
lished [Holmes and Walker, a].

Investigate feature/
triage dependencies

Evaluate reuse plan

Abort
investigation

Find project

Select starting point

GILLIGAN

Perform reuse plan

Reimplement feature Feature reused

Modify source code

Figure .: Gilligan’s role in the pragmatic reuse process.

Gilligan was implemented as a set of bundles (formerly called plug-ins) for the Eclipse IDE.¹ Fig-
ure . provides a screen capture of Gilligan as it would look at the outset of the scenario described
in Chapter . is prototype of Gilligan directly displays the contents of the pragmatic reuse model

¹http://eclipse.org v.. to v..



for the developer to investigate; it relies on a graph-based metaphor: structural elements are repre-
sented as nodes, the relationships between elements are represented as edges. Nodes are decorated
according to their kind (package, class, method, field) with a small icon on the lemost side [ .,
., .]. Table . lists the various icons and their associated meanings; these icons were sourced
from within Eclipse itself to keep the icon scheme consistent with what Eclipse developers see regu-
larly. e edges Gilligan uses to represent relationships are shown in Table .. e colours of these
edges vary depending on whether a node adjacent to the edge is selected or not. In their default state,
inheritance relationships are blue, calls and references black, and containment grey. When selected,
all edges change from a width of  pixel to  pixels. Contains edges and inheritance edges are solid
while calls and references edges are dashed.

Icon Description

Package
Interface
Class
Method
Field

Table .: Standard Eclipse icons used by Gilligan.

Edge Description

Call or reference
Inheritance

Containment

Table .: Kinds of edges used by the Gilligan graph-based representation.

is prototype supports all the decisions listed in Section .., with the exception of field ex-
traction². Decisions are made by right clicking on a node in the graph-based view and selecting the
decision that is appropriate [ .]. ese decisions are annotatedwith bright colours; these colours
are given in Table .. We chose to represent the decisions with bright colours to enable developers
to glance at their reuse plan and instantly get a sense of how much code they were reusing, rejecting,
remapping, and how much was common [ ., .]. is at-a-glance support is intended to help
developers to feel on top of their task instead of feeling that they are mired in the details.

²is support was added in the second prototype based on the feedback we received from this prototype.



Colour Associated Decision

Accepted structural element
Rejected structural element
Remapped structural element
Common structural element

Table .: Gilligan colour scheme for encoding pragmatic reuse intent.

Gilligan provides one complete perspective³ consisting of four primary views.

• Gilligan Reuse Graph. is view exists in the top-le hand corner of Figure .; this view
maintains a list of all of the structural elements that the developer has investigated and are
present in the exploratory view. e Reuse Graph view has four key features: () it explicitly
encodes the containment relationships between structural elements through its tree structure;
() it enables developers to view similarities and differences in their decisions for similarly
contained structural elements as the label background in the tree is coloured with the decision
colours [ .]; () it allows quick searching with the text filter at the top of the view, this
enables the developer to search using both plain text and regular expressions [ .]; and ()
it is linked to all of the other views, if the developer selects a node in the tree it is instantly
selected in the graph view and its details are shown in the properties view [ ., .]). Only
containment relationships are shown in this view, the developermust use the ExploratoryView
to see the structural relationships between elements.

• Gilligan Exploratory View. is is Gilligan’s core view (large panel at the top of Figure .). It
allows the developer to navigate all of the structural elements in the system by traversing their
relationships from element to element [ .]. is view provides a graphical representation
of all of the structural elements and their relationships in the system [ .]. One of its
primary means of scaling is by only showing new elements as a developer asks for them; for
example, when the developer starts Gilligan with their initial location in the source code, only
a single method, class, or field is listed in the graph. As they expand nodes their relationships
are shown [ .]. In this way, the exploration is similar in nature to working through the
source code: the developer only sees the details they ask for; however, unlike the source code
the developer is able to stay in the same view all of the time and are able tomaintain the context
of how the element they are investigating interacts with the rest of the system [ .]. As
the developer opens new structural elements any relationships to previously open structural
elements are shown. e view provides a number of interaction techniques for the developer:

³In Eclipse lingo, a perspective is a cohesive set of individual views that are linked, interact, and work together for a
common task (e.g., debugging is one of the Java perspectives).



– Hover. When the developer hovers their pointer over a structural element the edges and
adjoining nodes are highlighted (and their borders and edges made heavier-weight) in
response [ .]. is feature was added to make the structural relationships the devel-
oper was currently investigatingmore obvious when the graph grew to be large. e node
that the mouse is over is highlighted in red; edges are highlighted in red as well while ad-
jacent nodes are highlighted with a yellow border. e effects of the developer hovering
can be seen in Figure . and Figure .; in both figures, the developer has hovered over
the drawChart(..) method. In Figure . only one the parent of drawChart(..) is
related to the method as the developer has yet to explore the drawChart(..) method.
In Figure . the developer has further explored the task so the highlighting shows many
more relationships.

While the developer is hovering over an element a small tooltip-like panel appears below
the node giving the developer quick access to several major pieces of functionality. is
panel has a small square button the colour of each decision the developer could make, as
well as a button to view the source code corresponding to the structural element in the
source code view [.]. is panel only stays active if the developermoves their cursor
onto it while hovering; otherwise it disappears quickly so the developer can concentrate
on the default hover highlighting.

– Click. If a developer clicks on an element, it becomes selected. e hover highlight re-
mains active until the developer either clicks on, or hovers over, another element. e
developer can move any node aer they have clicked on it; the edges to adjacent nodes
will automatically update as the developer drags the node to its new location.

– Right click. By right clicking on the node the developer can bring up the same features
that were available to them in the hover view, but in a context menu format [ .].
Each label in the context menu is preceded by a small icon that gives a graphical clue
(e.g., colour or picture) that the developer can select without reading the label’s text.

– Double Click. is action is the main way for the developer to continue exploring the
dependencies in the system. When they double click on an element all of the dependen-
cies of that element that are not already on the graph area added to the canvas [ .].
Gilligan utilizes a radial layout system as this was found during our initial informal ex-
perimentation to be an effective way to visualize structural elements.⁴ As new elements
are opened the old nodes are moved outwards as necessary to make space for the newly
opened elements. To reduce disorientation they aremoved outwards symmetrically from
the middle of the element the developer opened; node opening is also animated in an ef-
fort to reduce disorientation caused by moving nodes.

⁴We investigated several layout algorithms while making this choice; four specific examples we investigated are shown
in Appendix B. We decided the final example, a radial layout, was best suited to this project.



As nodes are selected in the exploratory view they are also selected in the tree in the le node;
this means that the developer can always glance to see containment information, related de-
cisions, and any information that is in the property view [ .]. Multiple selection is not
allowed from either the graph exploration view or from the tree view.

• Properties View. e developer can get additional details about any node they have selected
using the properties view (lower le corner of Figure .). e standard fields in this view are
name, declared in (contained by), state (decision), and comments. e name and declared in
fields are read only but the developer canmodify the decision through a drop-downmenu; they
can also add a comment if they think that there is some specific detail they want to remember
that they would like to have stored with the model.

• Source View. e source code view (the bottom panel in Figure .) allows the developer to
look at the source code for any node they are investigating. is panel can be triggered from
both the reuse graph and from the exploratory view. It is essential to not try to hide everything
behind the abstraction, as developers are used to working with source code; without being able
to access the source code directly they simply find indirect ways to do it and become frus-
trated (research has found that developers trust source code over any other artifact available
to them [Singer, ]) [ .]. e source code is essential for reasoning about specific,
important decisions, assessing the quality of the source code, and working with source code
that does not have descriptive identifiers. Gilligan heavily augments the source code view by
decorating the area behind specific textual elements with the colours corresponding to the de-
veloper’s decisions; for example, if the developer has rejected the method methodCall(), ac-
cepted an interface IListener and remapped the field MyClass.FieldA, they would appear
as methodCall() , IListener , and MyClass.FieldA for any instance of those elements
in the source file the developer is perusing [ .]. ese text colourings were added to reen-
force the decisions that the developer made in the abstract model and to project these onto
their concrete realization in the source code. In particular, having the yellow (already pro-
vided) annotations on the source code was extremely informative when projects used several
common libraries and frameworks; this allowed the developer who was looking at the source
code to ignore a large portion of it directly, without even needing to investigate an element
only to discover that they did not need to consider it.

To help manage the complexity of the graph, nodes can be collapsed into their parents. is
collapse functionality simplifies the graph by eliding details the developer is no longer interested in
seeing (such as collapsing methods into their parent class, or a class into its package). Some nodes
in Figure . have been collapsed into their parent packages. Developers can collapse nodes either
through a right click action or via the tooltip panel. is functionality was added to Gilligan to help
it scale to larger reuse plans.



Figure .: Screen capture of the graph-based Gilligan prototype.

Figure .: Azureus graphics feature reuse plan.



.. Using the graph-based Gilligan prototype

us far we have described how the developer interacts with Gilligan, but not how they actually use
it to create a pragmatic reuse plan. Aer selecting their starting node and being presented with an
initial set of nodes, developers investigate nodes that seem interesting to them. If there are many yel-
low, already provided, elements the developer can simply collapse them so they are not interfering
with their exploration of the task. As they see nodes that they are interested in they can double click
to follow the structural dependencies as deep into the source system as they would like; once they
have seen enough they can just select another node and continue on in a new direction. Develop-
ers are encouraged to make decisions about the nodes they investigate as they proceed through the
dependencies. Nodes that have been tagged with a decision are shown in bright colours; by tagging
nodes, developers can look for blank nodes as indications of where they should investigate next. Fig-
ure . shows what a more complete reuse plan, in which many nodes have been tagged, looks like.
Gilligan does not impose on the developer the order in which they should investigate nodes although
by directing them to nodes they have not investigated and making it visually obvious which nodes
they have investigated, the developer can maintain a sense of forward momentum without feeling
overwhelmed [ ., .]. One easy way for the developer to feel like they are “done” investigat-
ing a reuse task is by noting that all the nodes in their pragmatic reuse plan have been tagged with
decisions; in this case the plan can be considered complete.

.. Evaluating the reuse plan

Gilligan helps the developer focus on those dependencies that matter, recording his decisions about
those dependencies to minimize the re-viewing of code fragments. Using the graphical view, it is
visually evident which nodes need to be further addressed before the investigation is complete. While
this systematic process helps the developer to see what decisions he has made, it does not impose any
particular order in which those decisions must be made; the developer can iterate on the graph in
any way that is appropriate to his task.

At any point during the investigation of the feature, the developer can evaluate the state of his
reuse plan. e developer may notice early on that there are far too many rejected and remapped
dependencies to easily reuse the feature. If the developer completes the reuse plan, he can use its
structural description and annotations to make an informed decision about reusing the feature.

.. Application to motivational scenario

To ensure that this Gilligan prototype could successfully plan a reuse task we applied our tool to the
scenario described in Chapter . We started by selecting the Azureus project from our workspace in
Eclipse⁵ as the original project of the feature we wanted to reuse and the UltiGPX project as the target
where the code was to be reused. As mentioned in Chapter  SpeedGraphic.drawChart(..) was

⁵http://azureus.sf.net (v...)



the starting point for this functionality so we set this as the starting point in Gilligan. Gilligan’s initial
visual state is shown in Figure .. We navigated the SpeedGraphic class and its dependencies to
identify those portions of the class that were relevant to the graph drawing feature that we wanted to
reuse while identifying any other Azureus dependencies we did not want to reuse.

Opening the dependencies for the drawChart(..) method, we found  structural dependen-
cies; however,  of these (from  classes) had been automatically coloured yellow by Gilligan—both
Azureus and UltiGPX use the SWT framework. To reduce the clutter on the screen, we collapsed
all of the org.eclipse.swt.* dependencies into a single swt package. e remaining  depen-
dencies are from four different classes within Azureus. Double-clicking on the call edge to AEMon-

itor.enter(), we were presented with drawChart(..)’s source code in which the references to
AEMonitor were highlighted. From this annotated source view we could see that AEMonitor was
concerned with the locking functionality within the core of Azureus. is was not a feature we cared
to reuse so we collapsed AEMonitor’s methods into itself and marked it as rejected. Another  min-
utes of investigation resulted in the reuse plan shown in Figure ..

Using Figure . to estimate the effort required to perform the reuse task, we can see thatwewould
have to reuse  complete classes and  partial class. We were going to have tomanage  dependencies
on source code (involving the Azureus network locks and configuration) that were rejected from
the reuse task. Five classes in the swt package were common between Azureus and UltiGPX; no
action was required of us to satisfy the dependencies on these classes. From this sketch, we can see
that it should not be too difficult to extract this feature and integrate it with UltiGPX. Performing the
extraction and integration—and following the plan—took less than an hour. e reuse plan helped in
accomplishing the task, as whenever a compile error was encountered in the reused code fragments,
we could check the reuse plan to see how we should manage it; this helped direct our integration
activity. e speed with which we could plan and complete this task constituted further evidence
that Gilligan was worth investigating further.

. Evaluation
As this was our initial prototype for a reuse planning environment, we sought to address two high-
level research questions:

. Can industrial developers create pragmatic reuse plans using Gilligan?

. Do these developers perceive any derived benefit from this activity?

e goal of this evaluation was not to “prove” Gilligan’s effectiveness but rather to get feedback on
our prototype and to gain insight into industrial developers’ attitudes towards the tool support we had
built. We gave the tool to four industrial developers working in different companies. We identified
these four developers during our survey (Chapter ) as they all work with the Java programming



language within the Eclipse IDE, the same environment supported by the first Gilligan prototype. In
addition to verifying that the developers could plan reuse tasks, we wanted to know if the developers
felt they could tackle larger reuse tasks with the tool than they would normally attempt. e four
developers applied our tool to their own industrial reuse tasks and filled in a short questionnaire
about each task they tried (this questionnaire is included in Section A. on p. ). Gilligan was also
instrumented to record the developers’ navigation and decision actions as they were investigating
their reuse task.

.. Case study 

e first developer undertook two tasks: he extracted code from the open-source Standard Widget
Toolkit (SWT) graphical framework for parsing both BMP and PNG image files. He wanted to reuse
these pieces of code because they involve processing complex binary file formats that he did not want
to have to write himself and he was unable to reuse all of SWT (which comprises  [ []]spread
across  classes⁶).

... BMP extraction.

e developer started Gilligan with the WinBMPFileFormat class as the initial node. Using the
graphical view, the developer was able to quickly reject several methods in this class as they pertained
to the writing of these files, which he was not interested in. Further exploration led him towards LE-
DataInputStream and ImageData. He reused the former in its entirety, and just the data structure
from the latter. In the end, he reused  lines of code and had no latent dependencies on SWT.
Of the , possible nodes in SWT, the developer only visited . His final view of the feature
had  visible nodes. Of the nodes he visited, he accepted , rejected , remapped , and  were
already provided.

e developer then demonstrated how he would have undertaken the task manually. First, he
copied WinBMPFileFormat into his new project. He then went down the list of compilation prob-
lems (there were many) and dealt with them individually. Any dependency he could not easily man-
age he le until later. At the end he went through the remaining difficult dependencies and also
copied LEDataInputStream and the ImageData data structure into his workspace. Once the com-
pilation errors were resolved hewas done. Hismethodologywas similar to what our tool provides: he
used the compilation errors as markers for structural dependencies that were not satisfied within his
target environment. Unfortunately, doing this manually forces the developer to undertake the task
without having first determined that it is feasible. For example, if there was a dependency within the
BMP code that required a specific dependency within the SWT framework the developer could not
reuse, the developer would not have discovered this until they located the error corresponding to this
dependency.

⁶http://www.eclipse.org/swt/



... PNG extraction.

e developer began his investigation with the PNGFileFormat class. He was interested in immedi-
ately noting all of the class-level dependencies of this -line class. Unfortunately, the first Gilligan
prototype tool was designed to support a bottom-up investigation style and he had to open PNGFile-
Format’s methods to see these dependencies⁷. Aer opening these dependencies he had  nodes
on the screen and had discovered that there were at least  classes of interest to him for this task.
During this investigation the developer was interrupted multiple times by questions from his co-
workers. Aer these interruptions he was able to go back to the visual plan to remember where he
was; because his decisions were noted on the plan, these distractions did not cause him to go back
and re-evaluate any nodes. With  nodes visible, the developer indicated he would appreciate being
able to filter the nodes based on their type (for instance, only show class nodes) in order to make it
easier to understand. In the end, the developer marked  classes as accepted,  as rejected and  as
remapped.

When the developer actually did this reuse task he reused  classes (comprising∼ kLOC).Dur-
ing this reuse task he decided to change his mind about three decisions: he accepted one previously-
rejected class, he changed the remapped class to accepted, and accepted one class he overlooked
during the investigation. ese changes were made primarily due to the complexity of the task he
was pursuing.

In the post-task questionnaire the developer stated, “Aer trying to reuse the SWTBMP decoder,
I wasn’t convinced additional tooling was necessary ( lines reused, fairly isolated to one to three
classes). Aer trying to reuse the SWT PNG decoder, I changed my mind.” He also indicated that he
strongly agreed that Gilligan could help him “attempt larger, more complex reuse tasks”. However,
this case highlighted the need for further refinement of the user interface. While Gilligan did initially
help the developer identify those types that were relevant to his task, he was eventually overwhelmed
and had to use a hybrid approach that used both Gilligan and the manual techniques demonstrated
in the last case.

.. Case study 

e second developer wanted to reuse a feature that serialized his Java objects into XML so they could
be sent over the network. is feature needed to be reused because the originating project was no
longer beingmaintained. e developer started with a class that he knewwas involved with the XML
serialization functionality, so he explored its dependencies. He accepted  classes, remapped , and
found that  were already provided within his target system. During his investigation he investigated
 nodes ( of whichwere visible in the final plan), accepting , rejecting , and remapping , while
 were automatically marked as common. is reuse task took approximately  hours and in the
end∼ lines of code were reused. e reuse task was a starting point for a refactoring task tomake

⁷is shortcoming was addressed by our second prototype (Chapter ).



the old feature conform to the new system. e developer found that the tool “helped me visualize
the scope of reuse tasks and how much I would be able to reuse and what I would have to write.”

.. Case study 

e third developer wanted to reuse the virtual file system from a third-party application and to add
this functionality to his own system. e reuse task involved reusing  classes and remapping two
of the classes to equivalent functionality already provided within his own system; this task involved
reusing ∼ lines of code. e developer investigated  nodes in the visual view, with  of
them remaining in his final reuse plan; this investigation took  minutes. He accepted  nodes,
while  were already provided. He also marked two nodes for remapping; he wanted to connect
these nodes, corresponding to logging functionality, to those within his own application. During
his investigation, he also investigated the source code for  specific method calls. is developer
found that Gilligan helped him decide that this task was possible before carrying it out; however, he
wanted the tool to clearly highlight which method-nodes had external dependencies on them. He
also wanted the ability to hide nodes such as those representing already provided functionality.

.. Case study 

efourth developer also completed two tasks. In his first task, hewanted to reuse an implementation
of an old featurewithin a new system; however, he needed tomodify this implementation inways that
were inconsistent with the old application. In this task, he visited  nodes, with  ultimately being
of interest to him. Of these, he marked  as accepted and  as remapped;  were automatically
marked as already provided within his target system. e task ultimately reused only  lines of
code and took only  minutes to accomplish.

In the second task, the developer attempted to reuse the GraphML parsing code from the Jung
open source project.⁸ is was a complex task that involved over  lines of reused code. Dur-
ing the investigating phase, the developer identified the need for a “verify plan” feature for the tool;
this feature would check one’s accepted nodes and confirm that they do not have any non-triaged
dependencies. He requested this feature because during this task he investigated  nodes (of the
, nodes in Jung) which he found to be somewhat overwhelming to keep track of. He noted that
the tree view was especially important for tracking large reuse tasks as the entries in this view are also
coloured with the developer’s decisions. In this task he accepted  nodes, rejected , remapped ,
and  were marked as already provided.

⁸http://jung.sf.net



. Discussion
Aer the case studies, each of the four industrial developers agreed that Gilligan helped them plan
larger reuse tasks than they would usually attempt; indeed, the tasks the developers attempted were
all larger than the typical sizes identified in our initial survey. Of our stated goals, the developers
responded most strongly to the aspects of Gilligan that supported DG ., ., and .. ese broke
down to three key savings, from their perspectives: () they did not have to hunt through a maze of
editors to navigate a dependency chain; () they did not forget the decisions they made during their
investigation, nor did they have to try to remember the structure of the system or write it down; and
() by seeing their decisions explicitly recorded they were able to direct their investigation to struc-
tural elements they had not yet visited and could avoid revisiting nodes they had already investigated.

e largest and most consistent piece of feedback about the planning interface we received was
that the graphical approach started to degrade for larger reuse plans. Developers also found that it
was awkward to work with the graph-based representation; their tools are mainly editor-, list-, and
tree-based and switching to a graphical representation made them work harder than they expected.
Based on this feedback, we worked extensively with several of these developers to brainstorm what
pieces of information they needed most and to come up with a new prototype interface for planning
pragmatic reuse tasks. e single fact that surprised us themost from these discussions is that the de-
velopers were mainly interested in the outgoing dependencies for any element they were looking at.
Interestingly, this strongly contradicts DG . which involved showing all the structural dependen-
cies to the developer. We resolved to rethink our planning interface with a more use-case oriented
approach for the next iteration. is will be discussed in greater detail in Chapter . While we might
have attributed some of this feedback to the fact that these developers were using the tool without
formal instructions about how it operated, our own experiences using Gilligan strongly reinforced
the view that the graphical prototype poorly scaled for planning larger reuse tasks.

In this evaluation, we also learned of two new decisions that our industrial participants wished
they could have made while triaging structural elements. First, they wanted the ability to extract
a field from its declaring class and to reuse it within one of their own classes without its declaring
class. is was specifically to enable them to reuse constants more easily. Second, our industrial
participants wanted the ability to “inject” a source code fragment into any class they had reused. By
this, they meant the ability to add arbitrary methods or fields to their reused class. is was to enable
them to add their own code to the source code they were reusing and then remap any field ormethod
to this stub.

Two small features that were mentioned by several developers as being helpful were the source
code view and the automatically tagged common dependencies. Developers liked being able to look
at their decisions in the source code text itself, although they wished the colouring was applied to
an editor they could change themselves instead of to a static text view. Gilligan’s automatic tagging
of common dependencies was also helpful to developers; they liked knowing they could not worry



about specific dependencies without looking into them at all.
DG . was not entirely fulfilled. While developers were able to create pragmatic reuse plans, and

thought they could attempt larger tasks by doing so, working with an abstraction did not directly help
them perform the task. Several times developers commented about additional features to help them
verify their plan and actually perform the mechanical operations required to enact the reuse plan for
them. We investigated means to address these concerns in our third prototype which is covered in
Chapter .

Another interesting lesson learned from this set of case studies is that running controlled ex-
periments is preferable for industrial developers. is is because actually getting useful information
from them about tasks they performed on their own systems is problematic: most developers had
to consult with their managers, and some had to discuss the matter with their company’s legal de-
partment. ese issues could have been avoided if we had provided the tasks ourselves. While this
decision would negatively impact the external validity of our experiments, it would increase their
internal validity; we decided this trade-off was acceptable to be able to continue to collect feedback
from our industrial partners.

.. Limitations

ese case studies involved only four industrial developers. While their six tasks were realistic for
their context, we cannot claim their experiences will definitely generalize. is is a proof-of-concept
that we used to check our progress with the prototype and to learn what future directions to take
with the next version of the tool. While these developers, and their tasks, were varied enough to
suggest that Gilligan is a valuable tool for planning and reasoning about pragmatic reuse tasks, more
evaluation is required to both act on their feedback and further validate our approach.

. Summary
Our initial Gilligan prototype tried to faithfully, and directly, represent pragmatic reuse plans through
a graph-based visualization through which developers could explore and navigate the structural de-
pendencies of the source code they were investigating for reuse. We had eight design goals for this
initial prototype; upon evaluation, we discovered that one of these, DG ., the ability to see all of
the relationships between the structural relationships in the system, was overwhelming.

In evaluating this prototype we found that:

• Industrial developers were able to successfully plan pragmatic reuse tasks on their own tasks
using Gilligan.

• Industrial developers felt they would be better able to understand larger pragmatic reuse tasks
using Gilligan than were they to undertake the same task without our tool support.



• While the graph-based metaphor for planning pragmatic reuse tasks was effective, developers
felt that it provided them with more information than they needed to be successful. Based on
this feedback the planning interface was rebuilt completely for the next prototype.

rough conversations with our industrial participants, we also learned that they felt that while
planning a pragmatic reuse task may be helpful, Gilligan would be much more valuable for them if
it assisted them in performing their pragmatic reuse task, in addition to planning it. As an aside,
we discovered that running industrial developers through controlled experiments may be more ef-
fective; several of our industrial developers had to receive managerial approval (in one case to the
vice-presidential level) and legal approval to release their case study data to us. We could avoid these
problems and still continue to work with industrial developers in the future, by performing con-
trolled experiments whereby we control the setting by providing the tasks. In these experiments we
would instead be measuring industrial developers performance on our set tasks and relying on their
qualitative feedback to relate our chosen tasks to their industrial experiences.



Chapter 

Tree-based pragmatic reuse planning

While evaluating our first Gilligan prototype with industrial developers, we learned that these devel-
opers did not think about the structural dependencies of a system in the way that we expected while
investigating a pragmatic reuse task. e difference can be enumerated into four main observations:

• In order to scale to larger tasks, developers are willing to forego having all of the details about
the structural relationships in the system available to them in the abstraction, if it means the
task is more tractable and less overwhelming. If they feel like they need further information
they are comfortable going to the source code to get it.

• While planning a pragmatic reuse task, the developer is mainly interested in outgoing depen-
dencies. What does this call? What does it reference? What classes and interfaces does it inherit
from? is focus arises from the fact that they want to learn how the code they are investigating
depends on the system, not how the system depends on it.

• ere are two main groups of dependencies developers are interested in while investigating
any structural element, its direct dependencies (what does it call, reference, and inherit from)
and its indirect dependencies (what is the transitive closure of all its dependencies).

• Developers think about the dependencies of a structural element more like a tree than a graph.

e results of the prototype and evaluation discussed in this chapter have been previously pub-
lished [Holmes and Walker, b].

. Design goals
Based on these observations, we investigated the pragmatic reuse planning problem from a different
direction: what information does the developer require while creating a pragmatic reuse plan? Using
this information, we changed our goals from the first prototype (Section .) and added some new
goals to follow while designing our second prototype.

DG .: Provide an abstract representation of the structural elements and relationships being in-
vestigated. Unchanged.

DG .: Visualize all the structural elements and their relationships. Developers found that con-
sidering all the relationships had scalability issues. is goal has been replaced by DG
..

DG .: Promote easy navigation between structural elements. Developers had some difficulty
navigating using the graphical view provided by the first prototype. e developers of-
ten referred back to the tree view to locate the node they wanted there so it would be
highlighted in the graph for them. is goal has been augmented by DG ..

DG .: Provide a high-level overview of the reuse task. Unchanged.

DG .: Explicitly record decisions about structural elements. Unchanged.

DG .: Make those structural elements that have been triaged easily differentiable from those that
have not. Unchanged.

DG .: Encourage making performing pragmatic reuse tasks more systematic. Developers found
it difficult to progress through the graph systematically as the nodes were not structured
in a way that promoted sequential navigation. While we arranged the nodes in this way
to facilitate understanding, this decision interfered with working through the nodes one
at a time. is goal has been augmented by DG . and DG ..

DG .: Conscientiously avoid work that does not directly aid in the completion of the reuse task.
Developers made specific comments about enacting pragmatic reuse plans. is goal
was investigated in more detail with the third prototype (Chapter ).

DG .: Focus on outgoing dependencies. Based on developer feedback, our newprototype should
focus on delivering outgoing dependencies to developers, rather than trying to describe
both incoming and outgoing dependencies.

DG .: Make it easier to identify both the direct dependencies and all the indirect dependencies.
Developers consider these two categories separately. While the direct dependencies give
the developer a feel for what the system is doing, the indirect dependencies are more
indicative of the cost of reusing a dependency; however, it is not possible to understand
the indirect dependencies of any structural element without investigating many source
files.

DG .: Use standard UI widgets that developers are familiar with. Based on feedback from our
first prototype we decided to try to use standard UI widgets such as lists, trees, and



editors in the second version of Gilligan, rather than focus on a graphical approach. is
goal was added to increase keyboard accessibility and to reduce the training required for
a developer to learn how to use Gilligan effectively.

. Second Gilligan prototype
Similar to our first prototype, the main objective of our second Gilligan prototype was to help de-
velopers plan pragmatic reuse tasks. e user interface of this prototype was completely rewritten
taking into account the feedback we received from our industrial participants aer they used the
first prototype of the tool. is prototype aims to better support developers performing these tasks
by providing only the subset of features they need [Reiss, ] [ ., .]; if they require more
information than the tool provides they can use the source code directly to gain a greater under-
standing. Our primary concern with this prototype was to reduce the amount of work required of
the developer while investigating the structural relationships within the system. By leveraging stan-
dard UI widgets we aim to make Gilligan easier to learn and make the navigation aspect quicker to
use [ .].

At the conclusion of the industrial case studies (Section .) we solicited feedback from the in-
dustrial developers involved in the evaluation and performed some participatory design sessions
with them including brainstorming about solutions to the shortcomings identified from using the
first prototype to plan industrial pragmatic reuse tasks. ese sessions included creating lists of in-
formation needs, creating paper mock-ups, white-board designs, and use cases. By taking a more
user-centred approach, the second prototype aimed to better address the needs of industrial devel-
opers when creating pragmatic reuse plans.

As with the first prototype, starting a pragmatic reuse task can be done with only a few clicks
of the mouse. Figure . contains a screen capture of the start task dialog; here the developer has
selected a source and target project and provided a short textual description of the reuse task. Once
the dialog closes, the projects are statically analyzed.

Gilligan requires a starting point to be selected before the developer can navigate through the
structural dependencies in the system. Figure . contains a screen capture of what this process
entails; in this case the developer has searched for *drawChart*. Only elements from the source
system are used to populate this dialog.

eGilligan planningUI with the initial drawChartmethod is shown in Figure .. eGilligan
UI is made up of four main panels. e three panels along the top are structural exploration views;
this is where the developer can explore the abstraction of the source code they are investigating for
reuse. e bottom panel contains the source code view. e developer is free to resize the views as it
suits them; if they are not using the source code view they canmake the top views taller (or conversely
they can shrink them if they are using the source code extensively).



Figure .: e initial dialog for starting a pragmatic reuse task with Gilligan. e developer
needs only to select the source and target projects; the textual description is optional.

e lemost panel in Figure . is used to track any structural element that the developer has
tagged with a decision. If at any point they tag a structural element in any view, the element is au-
tomatically added to the lemost panel [ ., .]. is panel acts as a placeholder for significant
structural elements for the developer. If the developer wishes they can also manually add structural
elements that have not been triaged to this view by pressing the small ‘plus’ icon above the view.

e middle panel in Figure . displays only the direct dependencies of any element selected in
the lemost view. e rightmost panel in Figure . displays only the transitive closure of any element
selected in the middle view. ese two panels make it easy for a developer to quickly see both the
direct and indirect dependencies quickly and concurrently [ .].

Each of the structural panels have several common elements (Figure . contains a screen capture
of one of these views). Each panel has a text filter box along its top margin. is filter can be used to
find a specific element (or group of elements) in a view using either plain text or regular expressions;
changing the filter does not affect the selection allowing the developer to filter without modifying
the state of the other panels. Each panel consists of four columns. e description (lemost) column
contains a tree that contains the name of the structural element, shows its containment hierarchy,
has an icon showing the kind of element it is, and gives a visual cue showing if the developer has
selected that element yet or not. If a developer has selected an element, its text is shown in black; if



Figure .: Gilligan dialog for selecting the starting point for investigation; the developer can
select as many structural elements as they wish. Additionally, the developer can reactivate
this dialog at any time to manually add any structural element into their reuse plan.

Figure .: Initial view presented by the second Gilligan prototype.

they have not yet visited an element explicitly, its text is shown in grey. e decision (second) column
displays any decision the developer made about a structural element [ .]. Unlike the first pro-
totype, this decoration was moved to its own column to improve readability. e direct (third from
the le) dependency count column gives the developer a preview of the number of dependencies an
element has without having to select it. e indirect (rightmost) dependency count column informs
the developer about the number of structural elements in the transitive closure for that element. For



example, in Figure . AEMonitor.enter() has  direct dependencies and  indirect dependen-
cies. e direct and indirect dependency counts have been added to give the developer additional
information about the potential “cost” of a dependency without forcing them to navigate through its
dependencies to discover this information manually [ .].

In the first prototype developers frequently asked to be able to select multiple elements simulta-
neously so they could make many decisions at once or so they could look at many sets of dependen-
cies concurrently. is second prototype enables any arbitrary set of dependencies to be selected in
any view; however, the view they are selected in has direct bearing on what resultant relationships
Gilligan populates the views with.

Figure . contains a series of screen captures showing how selections work in Gilligan (this
example is taken from the scenario from Chapter ). Once the developer starts the reuse task (Fig-
ure .) and selects drawChart(..) as the initial starting point (Figure .), Gilligan provides the
initial view shown in Figure .(a).

Any element selected in the lemost view will have its direct dependencies shown in the middle
panel. Figure .(b) demonstrates what happens once the developer selects drawChart(..) from
the lemost panel. If multiple elements are selected, the union of their direct dependencies is shown
in the central panel.

e transitive closure of any element selected in the central view will be shown in the rightmost
view. Figure .(c) demonstrates the effect of selecting all of the elements in the central panel; in
this case the transitive closure of the dependencies for drawChart(..) are shown. Selections in
the rightmost view have no effect because by definition the transitive closure of any element in the
rightmost panel is already shown. If a developer wants to quickly investigate a structural element in
the lemost panel, they can simply double click on it: its direct dependencies will be shown in the
middle view, they will be selected, and the transitive closure will appear in the rightmost view [
.].

For any selected element, Gilligan only shows the structural dependencies and their containing
element(s). e dependencies that are show are only calls, references, has type, and inherits from [
.]. Some structural information is not shown, e.g., in Figure .(b) the developer has selected the
drawChart(..) method. In the direct dependency view, the AEMonitor class is listed containing
two methods (enter() and exit()) even though this class declares  methods and  fields. ese
other structural elements are not listed because drawChart(..) is not directly dependent upon
themdirectly. As structural elements are sometimes hidden (e.g., thosemethods and fields not shown
for AEMonitor), developers have the options to request all of the contained structural elements for
any element; this action can be accessed via the context menu.

ree types of additional information are presented to the developers through icon overlays, as is
common practice in the Eclipse IDE. Table . shows the three kinds of icon overlays; these overlays
can occur in any combination but are only shown (and are only relevant) for classes and interfaces.



Icon Overlay Description

Contains elements that are not shown
Has at least one superclass or superinterface
Has at least one subclass or subinterface

Table .: Icon overlays used by Gilligan to show additional information.

As developers are used toworkingwith source code, we augmented the source code editor (rather
than a source code view as in the first prototype) to visually display the developers decisions to them
by colouring the source code directly [ .]. e source code is displayed using the same colours
as the decisions in the reuse plan. Two screen captures of the source code mark up are provided in
Figure ..

.. Application to the motivational scenario

Applying the second Gilligan prototype to the motivational scenario described in Chapter  was in
effect similar to applying the first prototype. e same decisions were needed; however, using this
prototype, the developer had to click on significantly fewer elements. ey could also clearly see
that AEMonitor and COConfigurationManager would involve a large number of dependencies by
looking at the direct and indirect dependency counts in the structural views. e developer would
also have to spend less time navigating through the graphical view because they can just click and
filter on the elements they are interested in in the structural views. Figure . contains a screen
capture showing some of the interesting elements for this reuse task and how they would look with
the new prototype; this can be compared to Figure ..

. Evaluation
Our first prototype investigated the questions “can industrial developers create pragmatic reuse plans
using Gilligan?” and “do these developers perceive any benefit planning their reuse tasks with Gilli-
gan?”. We wanted to investigate this prototype in a different way. e second prototype focused on
improving Gilligan’s ability to deliver the information that developers need, and to do this with less
work on their part. Our research question for this evaluation was:

• Can developers more effectively locate structural dependencies using Gilligan compared to
their normal practice?

To evaluate this research question, we conducted a semi-controlled experiment using six partic-
ipants, each of whom performed four tasks. Two tasks were undertaken using our approach, while
the other two tasks were performed using standard IDE tools (“manually”). e participants were
asked to identify the transitive dependencies for a fragment of source code. is task was selected



because it is relevant to a developer performing a pragmatic reuse task who is asking, If I reuse this
dependency, what else will I have to bring with it? Participants were given an unlimited amount of
time to complete each task and were passively monitored during this time. Each participant was a
soware engineering graduate student who was an experienced Eclipse IDE user and had developed
soware on a regular basis.

e tasks undertaken were selected by identifying four Java-based open source projects and ran-
domly searching for methods that had between  and  transitive dependencies. is problem
size was chosen to enable the tasks to be completed in  to  minutes so each subject could per-
form  tasks within a reasonable amount of time. e subjects performing the manual treatments
were provided with a simple tool to record the dependencies that they deemed relevant to the task.

Subjects (S through S) were assigned to treatment groups (G, G) in a randomized fashion.
We chose to keep the task order fixed (T through T) to keep any learning effects consistent between
subjects. e subjects in G performed T and T with Gilligan and T and T manually, while the
subjects in G reversed this treatment. Additionally, to decrease learning effects, we chose each task
from different systems.

Before the participants took part in the study, they were each given a written description for each
task as well as a training task they could perform using both Gilligan and the manual approach. e
subjects had as long as they wanted to investigate the tools on the training task before starting the
four experimental tasks.

We recorded how long each task took and which dependencies the subjects identified for the
source fragment they were investigating. We compared these results to solutions we derived by care-
fully completing the task several times; we use this experience to claim the number of correct, miss-
ing, and incorrect nodes for each trial. Using these numbers we are able to report precision (ratio
of relevant nodes identified to relevant and irrelevant nodes identified) and recall (ratio of relevant
nodes identified to number of relevant nodes in solution) of the technique.

We employed the Concern Mapper Eclipse plug-in¹ to permit the participants to record depen-
dencies easily during the manual case. e Concern Mapper plug-in simply records a user-selected
list of structural entities within the IDE. As developers encountered entities upon which the code
fragment of interest had direct or indirect dependencies, they were told to add them to the plug-in’s
view. Concern Mapper also served as an augmentation of the standard IDE toolset, as the developer
could use it as an index to click on any entity to switch to it. is was more manageable than working
through the list of all the elements in the system (or using the open editors).

¹http://www.cs.mcgill.ca/ martin/cm/ v..



Task Classes Fields Methods Total

Ganymede    
HttpClient    
GanttManager    
Jajuk    

Table .: Size of the correct solutions.

.. Experimental tasks

Next we describe each of tasks the subjects were to perform. e number of dependencies in the
solution for each task is shown in Table .. e correct solutions for each of the tasks are included
in Appendix D.

Task : Ganymede. efirst task involved investigating the dependencies for starting a LogJ socket
server inside Ganymede,² an Eclipse-based viewer for receiving LogJ notifications over sockets.
Ganymede consists of  classes and , lines of code. e subjects were tasked with finding all of
the transitive dependencies for Log4JServer.startListener() while excluding any dependen-
cies from the Java standard libraries or from the org.eclipse.* packages.

Task : HttpClient. For the second task the subjects had to identify the dependencies for parsing
cookies inHttpClient.³ HttpClient is a library that provides a level of abstraction above the java.net
layer, implementing a full HTTP stack for developers to use in their own systems. is project con-
tains  classes and , lines of code. e subjects started in CookieSpecBase.parse(..) and
excluded any Java standard library classes.

Task : GanttManager. e third task involved locating the dependencies for adding a delay to a
Gantt activity in GanttManager.⁴ eGantt project provides a tool to help users create project sched-
ules consisting of tasks and resources assigned to complete these tasks. e Gantt project consists of
 classes and , lines of code. Each participant started in ConstraintImpl.addDelay(..).
Java standard library dependencies were excluded.

Task : Jajuk. e final task looked at adding an item to a playlist inside the Jajuk media man-
ager.⁵ Jajuk is a comprehensive media manager and player written in Java; it consists of  classes
and , lines of code. e participants were asked to ignore dependencies on Java standard li-
braries and on org.apache.logging.* packages. Each participant started their investigation in
History.addItem(..).

²http://ganymede.sf.net (v...)
³http://jakarta.apache.org/httpclient (v._rc)
⁴http://ganttproject.sf.net (v..)
⁵http://jajuk.info (v..)



.. Results

Aer analyzing the trace data that we had collected while the subjects performed each task, we were
able to forensically determine if and when they deviated from the correct solution.

Task : Ganymede. S, S, and S used Gilligan for this task, finding all the correct dependencies
in an average of  minutes and  seconds. Performing the task manually, participants S, S, and
S had a recall of . and took an average of  minutes  seconds. e recall of S–S suffered
because each of them failed to adequately explore the dependencies of GanymedeUtilities.init-
Actions(). is one method call was obscured as a condition in an if statement but was the root
of a dependency chain containing over  other elements. Although S–S identified many of these
dependencies via other paths, they ended up neglecting to identify an average of  structural depen-
dencies from the solution, each of which the subjects using Gilligan had found.

Task : HttpClient. e participants manually performing this task identified far fewer correct de-
pendencies than the participants supported by Gilligan ( vs. ). Again, participants manually
performing the taskmissed a large number of dependencies by failing to follow a single path through
Date.parseDate(..); this path led to  dependencies on ParameterParser that each of these
subjects failed to detect.

Task : GanttManager. In this task, both treatment groups failed to detect a large number of the
structural dependencies. Participants in the manual treatment group had an average recall of only
 over an average of  minutes of investigation while the Gilligan-supported subjects had an av-
erage recall of  over  minutes and  seconds. While observing the participants performing this
task,  of the  failed to notice that half of the structural dependencies for this task were performed
by subtypes that needed to be investigated indirectly. Several of the structural dependencies led the
participants to interfaces and abstract classes; only one of the participants investigated the subtypes
of these interfaces. In each case only one subtype existed so it was easy to determine which type the
code was actually dependent on.

Task : Jajuk. is task had the greatest discrepancy between the Gilligan-supported subjects and
the manual participants. e manual-treatment subjects had an average recall of  in  minutes
and  seconds. e participants using Gilligan had an average recall of , spending  minutes
and  seconds to identify these dependencies. Although the manual-treatment subjects performed
the task on average slightly faster than the Gilligan-supported subjects, they performed significantly
worse in locating each of the correct dependencies. During this task we observed the participants
revisiting the same node much more than in other tasks. e manual-treatment participants in par-
ticular would visit the same method several times trying to remember if they had been there before.
e manual participants each missed a branch containing  dependencies by not following a single
path into FileManager.getInstance().



Precision and recall. We compared the dependencies identified by the subjects to the solution for
each task. Recall rates, that is, the proportion of correct dependencies identified by each subject for
each task are shown in Figure .. From this graph we can see that subjects manually carrying out
the tasks generally did worse than those supported by Gilligan. Neither approach yielded high recall
for T. Over all the tasks, the average recall for the Gilligan-supported subjects was  while the
manual-treatment participants achieved .

We also calculated precision; that is the proportion of invalid nodes to valid nodes. e manual-
treatment participants achieved an average precision of  while the Gilligan-supported subjects
achieved an average of . Precision was fairly consistent between each of the tasks, so we do not
present it in a graph.

Figure . compares the average time taken per-task against the average recall. In this chart better
solutions would appear at the bottom right, while worse solutions would appear at the top le. In
general from this graph we can see that the manual tasks took longer and had lower recall than the
tasks for which the subjects had access Gilligan. e subjects took an average of  minutes per task
using Gilligan and minutes performing the tasksmanually. eir average recall using Gilligan was
 compared to  in the manual case.

.. Observations

Observing each of the participants while they performed the tasks yielded several insights. During
each manual task, the participants had difficulty determining if dependencies were part of the re-
stricted set of dependencies they did not have to consider. e participants would hover over the
dependency to see its fully-qualified type or they would navigate to the dependency and scroll to
the top to see its package signature. For method bodies that had a large number of dependencies
that met the restrictions, the subjects oen missed important dependencies as they were obscured
by unimportant ones; this was the case that led to the missed path in T.

While using Gilligan, the participants would scroll though the transitive dependency list to check
for any nodes that had not been annotated as a final step. While this was effective for T, T, and T,
it led to errors in T as the subjects needed to interact more with the tool to request the subtypes of
the interfaces they had located (possibly pointing to an inadequacy in the tool). is shortcoming
was partially addressed by the validation views provided by the third prototype (Chapter ).

Aer the participants had completed all four treatments, we performed an exit interview to see
how they perceived their performance for each treatment. e participants were quite positive about
their performance: on a Likert scale from  (very poor) to  (very high) they rated their confidence in
their solution at an average of . for the tool-supported cases and  for the manual cases. e most
common complaint about the manual approach was that “since you can’t remember where you’ve
been you oen end up doing things over” (S); these sentiments were echoed in similar comments
by S, S, and S. S also stated that dependencies could sometimes be “obfuscated by the source



code” and that “scanning through code your brain sees chunks and if you misinterpret some part
you’ll just skip over [it]”. is was borne out in their performance of the manual tasks.

. Discussion
is evaluation was interesting because it pitted our tool, that developers had received less than 
minutes worth of training for, against all their experience using an IDE to locate dependencies. While
we had hoped developers would be more effective (or at least faster) using Gilligan, we were pleased
to find that both seemed to be true. One surprising result of this evaluation was how much trouble
developers had trying to identify structural dependencies in the manual case; we were surprised
to find that in all the  manual cases, none of the developers managed to find all of the relevant
dependencies (using Gilligan, developers found all of the correct dependencies in  of  cases).

While Gilligan performed well during the evaluation, in the third task the subjects failed to lo-
cate many of the relevant dependencies. is shortcoming occurred because, by default, the tool
is designed to show dependencies from method calls and field references. In this task, many of the
dependencies originated in subtypes in the inheritance hierarchy. While visual cues for this informa-
tion were provided by the tool, we believe that they were not effective because the developers trusted
its default output. Gilligan will have to be modified to provide more inheritance-aware information
by default in the future (this is discussed in future work (Section .)).

e ease with which the developers learned and used Gilligan reinforced our belief that DG .
was the right decision; the developers were able to quickly and easily adapt to the UI widgets with
which they were accustomed. e success the developers had using Gilligan was a positive sign that
the decisions we made to support DG . were effective although further evaluation on real reuse
tasks would be needed to verify this. While this prototype did focus on outgoing dependencies as
required by DG ., this evaluation did not address whether this was the right decision or not.

Switching to the tree-based method displaying and navigating dependencies caused some inter-
esting functionality to be lost that was present in the first prototype. With our tree representation it
is not easy to see how ‘important’ any structural element is, whereas with the graphical view a de-
veloper could look at any node in the graph and enumerate its in-edges. Also, it is not easy to get a
feel for the size of the reused feature in relationship to the transitive closure that feature could have
and the size of the whole system. While this was not easy with the graphical view, it could be done
if the developer really wanted to know. Ultimately, maintaining some of the overview-perspective
aspects of the first prototype and providing a means to both navigate up and down dependencies
could alleviate many of these shortcomings.

.. Limitations

We conducted our evaluation to gather initial evidence into the efficacy of our approach in order to
judge whether further investment should be made in the tool. e small sample size and small scale



of our evaluation are obvious drawbacks. While our subjects were graduate students, they were all
soware engineers who actively write code, and many of them have industrial experience. While
the tasks performed by the subjects were not very large, the average recall for the manual cases was
quite low; using larger tasks would likely only exacerbate this result. Our semi-controlled experiment
demonstrated, for the tasks and subjects we tested, that Gilligan increased recall and decreased the
time required for subjects to identify the structural dependencies compared to manual techniques.
Further evaluation involving industrial developers and tasks is needed to determine the generaliz-
ability of these results.

It would have been very interesting to compare developers searching for these dependencies using
the first and second Gilligan prototypes. While anecdotally we believe that developers would have
performed much better with the second prototype (at least in terms of time), this evaluation did not
investigate that potentially interesting avenue.

. Summary
Based on the feedback our industrial developers gave us in the first evaluation, we explored a dif-
ferent, tree-based metaphor for helping developers explore the structural dependencies within the
source code with our second Gilligan prototype. is prototype added three new design goals, while
eschewing one of the goals we had invalidated aer evaluating our first prototype. Two of these de-
sign goals arose by carefully considering the informationneeds of a developer performing a pragmatic
reuse task while the third involved using UI elements that developers are familiar with to reduce the
learning curve for our tool.

Upon evaluating our second Gilligan prototype, we learned three primary lessons:

• Developers are surprisingly poor at locating all of the structural dependencies for a particular
fragment of source code using standard development tools. is skill is important for assessing
pragmatic reuse tasks because one missed dependency can be the difference between a task
being easy or infeasible.

• A mechanism to alert developers to investigate dependencies they have omitted, or to let them
know that they have investigated all the dependencies would be helpful.

• Developers could effectively navigate structural dependencies using the second Gilligan pro-
totype.

is evaluation did not identify any glaring deficiencies with the exploration aspect of the Gilli-
gan prototype, although we discovered we could improve the way that Gilligan represents type hi-
erarchy information. Our final prototype instead investigated a piece of feedback we received from
our industrial participants aer they used the first prototype, that Gilligan should semi-automate the
enactment of the pragmatic reuse plan.



Figure .: A Gilligan structural view showing each of the columns of information as well as
every decision colour and many of the icon overlay combinations.



(a) No elements selected; drawChart(..) is light grey because it is yet to be selected. Even without selecting
drawChart(..) the developer can see that it has  direct dependencies and  indirect dependencies.

(b) Once drawChart(..) has been selected the middle pane is populated with all of drawChart(..)’s direct depen-
dencies. At a glance the developer can see that AEMonitor.enter() and AEMonitor.exit() are the root of many of
drawChart(..)’s transitive dependencies.

(c) Aer the developer double clicks on drawChart(..) (or selects all of its direct dependencies in the middle view), the
rightmost view is populated with the transitive closure of the dependencies required by drawChart(..). If the developer
wants to see the transitive closure of any specific direct dependency required by drawChart(..) they can select only those
elements they are interested in in the middle view and the rightmost view will be updated.

Figure .: Screen captures demonstrating Gilligan’s selection behaviour.



(a) Initial view of the source code annotations for the
drawChart(..) method. Common dependencies are already
highlighted in yellow from the outset as Gilligan triages these
automatically.

(b) Final view of the source code annotations for
drawChart(..) aer the developer has made several de-
cisions. e this_mon field and call to enter() have been
rejected by the developer. e drawScale(..) method has
been accepted along with the drawCanvas and bufferImage

fields.

Figure .: Gilligan source code view before and aer decisions were made.

Figure .: Screen capture while working on the motivational scenario.



Figure .: Recall for the four tasks.

Figure .: Average recall and time.





Chapter 

Pragmatic reuse plan enactment

Our first two Gilligan prototypes concentrated on pragmatic reuse planning. Several major usability
issues were identified when we evaluated the first prototype; aer evaluating our second prototype,
and watching developers work with it, we decided that we needed to improve several areas to help
developers better perform pragmatic reuse tasks. Looking back at all the feedback we had received
from our participants, and drawing on our own experience, we identified three key ways in which
Gilligan could be improved:

• Provide feedback about the completeness of the pragmatic reuse plan. While evaluating the sec-
ond prototypewewould see developers identify all the correct dependencies and then continue
investigating, just to be sure. Gilligan should direct developers to structural elements they have
missed investigating, as well as let them know when they have investigated everything they
should look at.

• Make the reuse plan executable. Pragmatic reuse plans are lightweight specifications describing
not onlywhat elements are involved in a pragmatic reuse task, but how they should bemanaged
when the task is carried out. Gilligan should automatically extract the source code specified in
the pragmatic reuse plan and integrate it into the target project, modifying it as necessary.

• Developers are not omniscient. Gilligan should help developers to perform pragmatic reuse
tasks in a more iterative manner; that is, they should not have to create one perfect plan and
execute that plan once, rather they should be able to make a decision and instantly see the
effects of that decision in the source code.

e results of the prototype and evaluation discussed in this chapter have been previously pub-
lished [Holmes and Walker, ].

. Design goals
Based on these key themes, we identified three new goals that the third Gilligan prototype should
meet. e new goals augment DG . and DG ..

DG .: Provide an abstract representation of the structural elements and relationships being in-
vestigated. Unchanged.

DG .: Visualize all the structural elements and their relationships. Superseded by DG ..

DG .: Promote easy navigation between structural elements. Augmented by DG ..

DG .: Provide a high-level overview of the reuse task. Unchanged.

DG .: Explicitly record decisions about structural elements. Unchanged.

DG .: Make those structural elements that have been triaged easily differentiable from those that
have not. Unchanged.

DG .: Encourage making performing pragmatic reuse tasks more systematic. Augmented by DG
. and DG ..

DG .: Conscientiously avoid work that does not directly aid in the completion of the reuse task.
is goal is heavily augmented by DG ..

DG .: Focus on outgoing dependencies. Augmented by DG ..

DG .: Make it easier to identify both the direct dependencies and all the indirect dependencies.
Unchanged.

DG .: Use standard UI widgets that developers are familiar with. Unchanged.

DG .: Support validating a pragmatic reuse plan. Gilligan must be able to identify structural
elements that the developer needs to consider before their plan can be considered ‘com-
plete’. It should also be able to indicate to the developer when the developer has investi-
gated all relevant structural elements.

DG .: Semi-automatically enact a pragmatic reuse plan. A pragmatic reuse plan contains much
of the information needed to perform the pragmatic reuse task; a developer could either
walk through the plan one element at a time performing each step in turn, or a tool could
do all of that work for them. Gilligan should be able to take a reuse plan and the source
and target system and enact the plan semi-automatically. Gilligan should also consider
the decisions encoded in the reuse plan to manipulate the source code to reduce the
number of simple compilation errors the developer must manually fix.



DG .: Support an iterative process for pragmatic reuse planning and enactment. Pragmatic reuse
tasks are not performed by creating a single, perfect, reuse plan followed by a set enact-
ment process; the reality is much more iterative. Developers understand source code
and are constantly thinking about how their decisions will be implemented in the code.
Gilligan must support an iterative process for planning and performing pragmatic reuse
tasks.

. ird Gilligan prototype
Unlike our first and second prototypes, the main objective of our third and final Gilligan prototype
was not to help developers plan pragmatic reuse tasks but to help them perform them. e third
prototype focused on the executable aspect of pragmatic reuse plans: how much work can Gilligan
automatically do for a developer given their pragmatic reuse plan? [ .] Is the specification suf-
ficient to take care of many of the details for the developer or is it too lightweight? DG . primarily
involves investigating these issues. DG . and DG . both arise from automated support. If it
is easy to enact the plan, how can we support a plan being enacted iteratively as a developer con-
verges on a solution? [ .] How can we direct their investigation when they have only a partially
developed pragmatic reuse plan? [ .].

Figure . contains an updated version of the pragmatic reuse process (the previous version can
be found in Figure .). One major flaw in the previous version of the reuse process was that the
back edge from Modify source code to Investigate / triage was far too late in the process.
In the old process, the developer had to start performing the pragmatic reuse task before they could
see the effects of any decision in the source code; once the developer got to this point they would
be resistant to going back into the planning interface because if they changed their mind they would
have to undo any edits they had made to the source code up to that point.

Where the first and second Gilligan prototypes originally aimed to capture the intent of the de-
veloper with respect to their plans for pragmatic reuse, the third prototype aims to bridge the gap
between the intent of the plan and the realization of the task by semi-automatically enacting the
pragmatic reuse plan for the developer. First, Gilligan migrates the source code fragments that the
developer intends to reuse from the originating project into the target project (see Section ..) ac-
cording to the reuse plan [ .]. Second, Gilliganmitigates the compilation problems in the reused
code caused by dangling references that arose from removing the code from its originating environ-
ment (see Section ..) by semi-automatically manipulating the source code [ .]. e goal of
the semi-automation is to reduce the effort needed by the developer to transition from planning a
reuse task to its successful implementation. ese steps also enable the developer to quickly iterate
on their reuse plans allowing them to investigate alternative reuse scenarios in an effort to improve
their reuse plan [ .]. By moving the ability to see, in the concrete realization of the reuse task
(the source code), the effects of any decision up in the reuse process, the developer is encouraged to
continue to use the planning interface and to test new hypotheses about their reuse task [ .].



Investigate feature/
triage dependencies

Automatically enact
reuse plan

Evaluate compilation
errors / source code

Abort
investigation

Reimplement feature

Find project

Select starting point

GILLIGAN

Feature reused

Modify source code

Figure .: Gilligan’s role in the pragmatic reuse process.

.. Extraction

edeveloper initiates the enactment of the pragmatic reuse plan by clicking the “enact plan” button.
Gilligan then analyzes the plan to determine which source code entities should be reused. e tool
locates all the source code corresponding to accepted nodes in the reuse plan. It then migrates the
source code associated with these nodes into the target project [ .]. In order to keep the reused
code separate from the rest of the source code in the target project, we create a source folder called
reusedCode under which we keep all of the reused code, and augment the developer’s build path
to include this directory. is separation ensures that the reused code will not interfere with the
developer’s project and makes it easy for him to roll back from the reuse task by just deleting the
generated folder. When code is extracted, the structure of its original package hierarchy ismaintained
for ease of comprehension.

We slightly restrict which nodes must be copied from one system to another. Any accepted class
will be migrated; however, accepting any field or method implies that its declaring parent class is also
accepted. is is because we cannot reuse code if we have nowhere for it to go. Only extracted fields
are an exception to this condition. In addition, any non-annotated method or field of an accepted
class will be reused but will not be modified in the integration phase. is restriction reduces the



complexity of the reuse plan and enables the reused source code to remain largely structurally intact
relative to its originating system.

Aer Gilligan has copied the code into the target project, dependencies between the reused
classes will remain valid as the package structure was maintained (these dependencies are repre-
sented by solid lines in Figure .). Any dependencies to structural entities outside those being reused
would normally cause compilation problems (these are represented by dotted and dashed lines in Fig-
ure .); however, the integration portion of Gilligan resolves many of these (see Section ..). In
Figure . Graphic, ScaledGraphic, Scale, and ValueFormatter have been extracted in their
entirety. SpeedGraphic and BackgroundGraphic have been extracted but some of their methods
and fields will be removed.

.. Integration

During this phase, the source code that has been migrated from the original system to the target
system must be manipulated to resolve any compilation problems that have arisen. When source
code is removed from the context for which it was written and placed into a foreign environment,
many of its dependencies can be unfulfilled. e unfulfilled dependencies in the reused code are
manifested as dangling references to types, methods, and fields that were not also reused (and do not
exist in the target project).

Using the model backing the reuse plan, Gilligan can pre-compute each of the changes that the
tool should perform to repair any dangling references. is model contains a static picture of ev-
ery entity within the system that the reused code references. From this, Gilligan can predetermine
which relationships are being deliberately severed or remapped in the reuse plan, and based on the
annotations in the plan, it can determine how to manage these dependencies and automatically ma-
nipulate the source code to resolve many of the problems that arise from removing the code from its
originating context [ .].

Gilligan proceeds in fourmajor steps. First, it handles new code being added to the reused entities
(Section ...). Second, it updates dangling references (Section ...). ird, it removes any
unnecessary code (Section ...). And last, a simple finalization step takes place (Section ...).

... Managing source code additions

e code addition step adds new code to those entities previously migrated to the target project in
Section ... ere are two cases that must be handled: code injection, and field extraction. For
code injection, any fragment provided by the developer is inserted into its target class (as specified
in the reuse plan). For example, if the developer’s plan specifies injecting the fragment “Logger log
= new Logger();” into the SpeedGraphic class, the Abstract Syntax Tree (AST) for this class is
loaded and the fragment is added to its beginning (e.g., as its first declaration). e burden is on the
developer to ensure that the injected fragments make syntactic sense in the context of a class body



(e.g., injecting fields or methods is fine, but injecting an arbitrary fragment will likely result in an
error). Code can only be injected into classes, not into methods.

For field extraction, any fields in the plan that have been marked for extraction are copied from
the class in which they were declared into the target class specified in the pragmatic reuse plan. Mov-
ing the field only updates its declaration, not its references in the reused code (this happens in the
next step). Again, the import statements are also updated to reflect this addition to the target class.
For example, in the pragmatic reuse plan given in Figure ., several fields in the Color class are ex-
tracted into the SpeedGraphic class. As classes other than SpeedGraphic use these fields, Gilligan
also ensures that the SpeedGraphic class is public so these fields will be visible.

... Managing dangling references

e management of dangling references is the most complex step in the integration phase. Gilligan
proceeds through the pragmatic reuse plan minimizing the number of dangling references in the
reused code. Two primary classifications of dangling references are managed: () references to fields,
calls to methods, and references to supertypes that were rejected in the reuse plan; and () calls to
methods and referenced fields that have been injected, extracted, or remapped in the reuse plan.

Gilligan starts by managing references to fields, methods, and supertypes that were not reused.
Gilligan searches each accepted node for dependencies on other nodes that have been rejected. If
a dependency to a field or method is found, it is managed: Gilligan comments-out the code corre-
sponding to the dependency within the accepted code. (Currently, the alternative of “stubbing-out”
rejected dependencies—by calling a dummy method or returning a nonce value—is not supported
by Gilligan.) Gilligan comments out changes made to the bodies of methods due to calls and refer-
ences being rejected, rather than remove them completely, as their details could still be informative
to the developer. ese comments are accompanied with a note to indicate that the change was
made by Gilligan. is also allows the developer to easily locate each change to the source made by
Gilligan using traditional search tools. For the sake of simplicity,¹ Gilligan rejects field references and
method calls only at the statement level. For example, in Figure ., the field BackgroundGraphic.-
this_mon is rejected; references to this fieldmust be eliminated. SpeedGraphic references this field
repeatedly by calling a method on it (e.g., this_mon.enter()). Because Gilligan eliminates refer-
ences at the statement level, the whole statement is commented-out rather than just the fragment
mentioning this_mon. In this case, this treatment suffices as the call to enter() is also rejected and
would have had to be eliminated in a later step. As rejected elements take preference over accepted
ones, if enter()had been accepted in this example but this_monwere rejected, the statementwould
still be commented-out, although the enter() method itself would still be reused.

More complicated examples can lead to problems. If, for instance, getActionBars() were re-
jected in the code snippet in Figure ., Gilligan would simply comment out the whole statement,

¹e Eclipse tooling for manipulating abstract syntax trees (ASTs) restricts where comments can be inserted.



Original code:

IStatusLineManager ism = getViewSite().getActionBars()

.getStatusLineManager();

Aer rejecting the call to getActionBars():

/** GILLIGAN: Call rejected in reuse plan.

IStatusLineManager ism = getViewSite().getActionBars()

.getStatusLineManager();

*/

Figure .: Example of how Gilligan rejects structural elements.

rather than commenting out the single method call. In this case, later statements that reference ism
will also have to be removed (manually) as commenting out this line removes the variable declaration
from the code.

If the pragmatic reuse plan has reused a class but not some subset of its supertypes, the tool must
then remove these references. is oen occurs as developers trim the functionality they are inter-
ested in from an inheritance hierarchy. Any number of supertypes can be removed. For example, in
Figure ., the class declaration class SpeedGraphic extends ScaledGraphic implements

ParameterListener is updated because ParameterListener is rejected. Gilligan updates the dec-
laration to be class SpeedGraphic extends ScaledGraphic. If the subclass were dependent
on a method within a rejected supertype, this would be shown as a dependency between a method
in the subtype and a method on the supertype during the planning process. is dependency would
have been resolved at the beginning of this step.

Finally, any accepted node with a structural dependency that has been remapped is handled.
ese cases are simpler than in the rejected-node case as code does not disappear; it is simply redi-
rected. is step handles  cases: calls to injected and remapped methods and references to in-
jected, extracted, and remapped fields. For example, in Figure ., Colors.black is extracted to the
SpeedGraphic class; any reference to Colors.black within an accepted node will be remapped
to SpeedGraphic.black. References in BackgroundGraphic.drawBackground() and Scaled-

Graphic.drawScale() must be updated to the extracted location (SpeedGraphic.black). If the
reuse plan remapped logging functionality from SWT.error(...) to a method on the injected field
log, such as log.error(...), any reference to SWT.error(...) would be updated to log.-

error(...).



... Managing unnecessary code

is step removes extraneous reused code from the target system, that is, methods and fields marked
as rejected in the reuse plan that are declared within accepted classes and interfaces. In the previ-
ous steps, any changes Gilligan made to a source file either added code, updated existing code, or
removed sections of code by commenting them out. In this step, we found that removing rejected
methods and fields by commenting them out made the source files seem cluttered by the number
and size of the multi-line comments spread throughout the file. To address this, rejected fields and
methods are completely removed from the source code by removing them from the AST of their con-
taining class. Gilligan does not apply any modifications to rejected entities; it just eliminates them
from the source. For example, SpeedGraphic.getInstance() makes reference to methods in the
rejected type COConfigurationManager. As getInstance() is rejected, Gilligan did not resolve
its dangling references in step two. e tool only needs to remove methods and fields that are chil-
dren of classes that have been accepted, i.e., if a type is completely rejected or remapped Gilligan does
not need to delete any code as it would not have been copied to the target system in the extraction
phase. For instance, in Figure . AEMonitor.enter() is in a completely rejected class that was
not copied to the target project. In contrast, SpeedGraphic.getInstance() is a rejected method
within an accepted class; our tool removes this method during this step. e import statements are
also updated in this step to reflect changes in dependencies due to removals.

... Finalizing source code modifications

Each of the changes made by the three previous steps were made to the AST representation of the
code, not directly to its text. is separation reduces the chance that one change will cause another
alteration to fail. By working with an abstraction of the source code, the edits Gilligan makes do
not cause shis in the source code tokens that the AST cannot compensate for. For example, if we
had injected a method fragment into the beginning class but then tried to remove a different rejected
field subsequently, we could run into problems if we were to trace themodel representation to textual
locations (such as line numbers and character offsets); bymanipulating the AST exclusively, we avoid
these potential pitfalls. Aer all the steps are complete, Gilligan applies the changes to the files and
writes them to disk, collecting statistics about the scope of the changes it has made. is final step
can also apply any changes appropriate for the end of the process such as formatting the source code.



.. Supporting iterative planning and enactment

Figure .(a) depicts the complete Gilligan workspace for a developer who is working on the sce-
nario from Chapter . is figure shows two major differences compared to the last prototype (see
Figure .):

. e problems view has been moved to be a part of the Gilligan perspective. is allows the
developer to keep constantly appraised of the state of their reuse task in terms of compilation
errors. In Figure .(a) the developer can see that they currently have  compilation errors.

. e validation view on the right side of the screen in the middle shows to the developer which
dependencies, if any, they should investigate next.

e validation view is split into two parts. e le side of the view provides a list of the depen-
dencies the developer still needs to investigate. When the developer selects any of these elements the
right side of the view shows which structural elements, from the set of elements they have already ac-
cepted, are transitively dependent on the selected structural element. is gives the developer some
idea of how important an elementmay be to their reuse plan; this is the only way that Gilligan violates
DG ., as in essence the right side of the validation view is showing the incoming dependencies for
the selected element. If the developer clicks on any element in the right panel they are taken to that
element in the structural views above. Gilligan populates the validation view by traversing the transi-
tive closure of every accepted structural element and adding any element that has not had a decision
applied to it to the validation view. While simple, this approach effectively alerts the developer to
any node that is in some way relevant to something they want to reuse but about which they have not
made a decision [ .]. ese can be thought of as inconsistencies in the plan. Gilligan can most
effectively enact the plan if it has been completely filled out; by using the validation view developers
can ensure that their plan is as complete as possible. is view also can give them an indication that
they have thoroughly investigated their reuse plan [ .].

A number of interesting observations can be made about Figure .(a):

• e untriaged elements in the indirect dependency structural view, validation view, problems
view, and undecorated source code in the source code editor are all related.

• None of Colors.blues, Colors.BLUES_DARKEST and Colors.BLUES_MIDLIGHT have been
adorned with a decision colour in the source code editor. is is because the developer has not
tagged any Colors fields with decisions yet; this is reiterated by the bottom three errors in the
problems view along with the bottom two visible elements in the le half of the validation view.

• COConfigurationManager comprises the top three errors in the problems view. Not coin-
cidentally, the top three structural elements in the le half of the validation view correspond
to COConfigurationManager methods. ese three errors arose because somewhere in the



reused code addParamater(..), getIntParamater(..), and removeParamater(..) are
called but they are not marked as accepted, rejected, or remapped. ese three dangling point-
ers would be fixed if the developer tagged these elements.

• In the indirect dependency view, the ValueFormatter interface has no decision applied to it.
By selecting it, the developer can see that two classes, fivemethods, and one field are dependent
on this interface. is gives them a strong indication that the interface is important to the
source code they are investigating and that they should consider accepting this dependency.

Aer the developer has rejected COConfigurationManager from their reuse plan, their valida-
tion view updates, as does the error list (Figure .(b)). e developer can now see that their error
count has decreased, the error messages caused by COConfigurationManager have been resolved,
and that ValueFormatter and ParameterListener should be considered next. e developer can
keep working through these errors one at a time to see their effect. For instance, if the developer in-
stead chose to accept COConfigurationManager, their error count would more than double, to 
(Figure .). In this way the developer can investigate alternative reuse decisions, and see how these
decisions are reflected in the source code, in order to make the most informed decision possible.

. Evaluation
Our previous evaluations investigated whether industrial developers perform pragmatic reuse tasks
(Chapter ), how effectively industrial developers could create pragmatic reuse plans (Section .),
and howmuchmore effectively developers could locate structural dependencies using our tools (Sec-
tion .). Here, we wanted to answer three main research questions:

. How much effort can semi-automating the enactment of a pragmatic reuse plan really save a
developer?

. How many fewer errors must a developer manually fix when performing a pragmatic reuse
task with our semi-automation?

. How does semi-automating the enactment of pragmatic reuse plans affect a developer’s pro-
ductivity when they are performing pragmatic reuse tasks?

To address these questions, we undertook two investigations. In the first we performed a case
study by performing two pragmatic reuse tasks using both manual techniques and Gilligan. We then
compared the minimum possible effort required to complete the pragmatic reuse task for the two
treatments, where no delays or errors due to comprehension were considered; this represents the
optimal scenario for each treatment.

Our second evaluation involved a controlled experiment using eight developers experienced in
developing and modifying medium- to large-scale Java applications. Each developer attempted to



complete two pragmatic reuse tasks, one via the manual treatment and one via the Gilligan-based
treatment. Participants were provided with a pragmatic reuse plan that had been created by us.

In both evaluations, “completion” was defined as the successful execution of a test suite that we
provided for the purpose. One test suite was implemented as an Eclipse plug-in, while the other was
a standalone application; we henceforth refer to both as test harnesses.

.. Task descriptions

Both evaluations used the same two tasks. Each of these tasks involved extracting specific function-
ality from an existing system and integrating it into a new system. Once integrated, the reused code
needed to functionwithin a test suite for the reuse task to be considered a success. Each task operated
on a different open-source Java system from a different domain.

... Metrics lines-of-code calculator

e Metrics Eclipse plug-in² can compute  different metrics (e.g., lines of code, cyclomatic com-
plexity, efferent coupling, etc.) for resources inside Eclipse projects. is plug-in contains  classes
comprising . thousand lines-of-code (kLOC). e goal of this task was to reuse the lines-of-code
(LOC) calculator from this project; however, the system was not designed to enable individual met-
rics to be reused without the remainder of the Metrics plug-in.

e reuse plan for this task involved reusing portions of  classes. Successful completion of this
task involved reusing  LOC. For the task to be a success, the reused code had to compute the LOC
for every class in every project in the Eclipse workspace when activated by the test harness.

... Azureus network throughput view

Azureus³ is a client application for the BitTorrent peer-to-peer file-sharing protocol. Azureus con-
tains , classes comprising  kLOC. It contains a view that visualizes its network throughput for
the user. e goal of this task is to extract this network throughput view from Azureus and integrate
it into a new system. is feature was not designed to be reused outside of Azureus.

e reuse plan for this task involved reusing portions of  classes. Successful completion of this
task involved reusing  LOC. To succeed at the task, the reused code had to be able to correctly
display a data set provided in the test harness.

.. Analysis of minimum required effort

Before performing an experiment to determine how automating the enactment of pragmatic reuse
plans affects real developers, we wanted to understand the potential savings that this automation
affords.

²http://metrics.sf.net v..
³http://azureus.sf.net v...



We wanted to answer two main research questions:

. How much more work is it to perform a pragmatic reuse task manually compared to the same
task when Gilligan semi-automates its enactment?

. How many fewer compilation errors must a developer consider when their pragmatic reuse
plan has been semi-automated compared to doing it manually?

To do this, we performed an case study that analyzed the effort an idealized developer would have
to expend to perform two pragmatic reuse tasks using both Gilligan and performing them manually.
In this case study we performed each task many times, with both treatments, to find the best way to
perform the task. We then considered how much effort a developer would have to expend with both
treatments if they performed the task the best way that they possibly could.

For each task we started with the reuse plan and two projects: the original project and the target
project (containing the test harness). For the manual treatment our first action was to copy each of
the classes involved in the reuse task from the source system to the target system. For the automated
treatment our first action was to press the “enact plan” button in Gilligan. e number of compilation
errors present aer these operations is provided in Table .. ese error counts represent the size of
the task facing the developer as they begin the task; we consider this an important indication of how
daunting the task may seem at first.

Case Gilligan Manual Error reduction

Metrics   .
Azureus   .

Table .: Compilation errors for each task and treatment.

Compilation errors alone are not always a good indicator of required effort. We record the
amount of work to enact the reuse plan in terms of the number of “edits” a developer must undertake
to resolve all the compilation errors in the reused code. While this cannot attest to the functional-
ity of the code, this gives us an indication of the relative amount of work required to get the code
from both approaches to a consistent state for comparison. An edit involves making one conceptual
change to the source code; if one edit resolves many problems, it still only counts as one change (for
instance, if adding one import statement resolves five compilation errors, only one edit is counted).
An edit represents a single conceptual change the developer makes to the source code. For example,
in the Metrics system, the reuse plan specifies that calls to AEMonitor.exit() are to be removed
from the target system. Although there are several of these calls to remove, doing so only counts as
one edit as it is one conceptual operation. e minimum number of edits required to successfully
complete each task with each treatment is given in Table .. We performed each task multiple times
(with the same plan for each treatment) to ensure that our edit counts were as low as possible.



Case Gilligan Manual Edit reduction

Metrics   .
Azureus   .

Table .: “Edits” required for each task and treatment.

Some edits require more thought and investigation on the part of the developer to resolve than
others. ese difficult edits arise due to conceptual mismatches between the original and target
systems [Garlan et al., ]. For the Metrics task, only one of the edits represented a conceptual
mismatch that arose from removing the reused code from the system for which it was designed.
is occurred because the reuse plan specified that the MetricsPlugin class, and all of the ele-
ments it declares, should not be reused; this caused a dangling pointer in the TypeMetrics.get-
Calculators()method as it invoked thegetDefault() and getCalculators(String)methods
on the MetricsPlugin class. e solution to this problem is shown in Figure .. Instead of simply
commenting out some code, the developer had to think about what getCalculators(String)was
actually doing andmimic this functionality within his own system, within the constraints of his reuse
task (he did not want to return a set of calculators but only the one he was reusing, TotalLinesOf-
Code()); this short snippet relieved him from having to reuse the MetricsPlugin class. A complete
description of each edit required to perform this task manually is included in Section E...

ree edits in theAzureus task represented conceptualmismatches; these were common between
the two treatments. While Gilligan does not resolve any of the conceptual mismatch errors, it helps
the developer to quickly identify them by resolving all of the trivial compilation errors that occlude
them. Azureus uses an array of colours (called blues) to represent the various shades of blue used in
the graph. When the graph was reused, its references to the Azureus Color class were remapped to
the colour constants used in the target system. As the target system used different constants for dif-
ferent blues (e.g., light_blue, dark_blue, etc.) the developers would need to change the references
on the arrays of blues to the various constants in the target environment. Other than these  edits,
the remainder of the changes were mechanical compilation error resolution. A complete description
of each edit required to perform this task manually is included in Section E...

.. Task effectiveness experiment

In this experiment we had one main research question:

• What is the difference, in terms of productivity, of a developer enacting a pragmatic reuse plan
manually compared to using Gilligan’s semi-automated enactment functionality?

To gather evidence to answer this question we performed an eight-developer controlled experi-
ment. Four participants were industrial developers (I through I) and four were experienced so-



ware engineering graduate students (G through G). All participants were experienced in devel-
oping and modifying medium- to large-scale systems written in Java, and in the use of the Eclipse
IDE; relevant experience varied between  years for the least experienced participant (an industrial
developer) and  years for the most experienced participant (also an industrial developer).

For this experiment we used the same two tasks as in the previous case study; these tasks are
detailed Section ... Participants were randomly assigned task–treatment pairs although we bal-
anced the assignments by ensuring that each task–treatment pairing was completed by two graduate
students and two industrial developers and to ensure that each task–treatment pair was performed
an equivalent number of times. We ensured our experiment was balanced in this way because of the
small number of trials involved.

Each participant used Gilligan for one task and performed the other task manually. e order in
which the participants performed the two treatments was also randomized. We created a reuse plan
for each task and provided identical versions for each treatment; the contents of these reuse plans are
included in Figure E. and Figure E.. A time limit of one hour was set for each task; we chose this
time limit as it seemed like a reasonable amount of time for a developer to invest in this kind of task.
We recorded whether or not the participants succeeded or failed for each task, how long they spent
performing the task, and collected their final code for later analysis. Aer completing both tasks
the participants completed a follow-up questionnaire (the questionnaire is included in Section E.,
p. ).

e results of the experiment are shown in Figure .. efigure depicts successful task–treatment
pairings in green (diagonal hatching in greyscale). ose task–treatment pairings that were failures
are indicated in red (solid in greyscale). e graph clearly shows that the participants successfully
completed more tasks using Gilligan ( out of ) than with the manual treatment ( out of ). It is
also clear that, for these tasks, developers were able to complete the tasks in less time using Gilligan
than when undertaking them manually.

... Manual treatment

e four participants who manually enacted the Metrics LOC reuse task were the least successful.
By examining their resulting code and reading their comments in the questionnaire, it became clear
that they knew there was a tricky problem they needed to fix somewhere in the reused source code,
but they could not identify where in the source code it was. At the outset of this manual task, each
participant (I, I, G, G) had  compilation errors to resolve; in the process of resolving these
errors, they seemed to become disoriented. While each of them ended up with code that compiled,
only I successfully completed the task (in  minutes). One of the participants became so frustrated
with this task that aer  minutes he gave up. One of the participants who failed at this task (I)
reported, “emanual approach wasmostly drone work; it took longer to get the target project into a
state where interesting problems could be solved.” Even I, who was successful, stated, “[e manual



task was] not hard, very tedious though. I was sitting there going ‘this should be automated.’”
e other  participants undertook the manual version of the Azureus task. Only one of these

developers (I) failed to complete the task (aer minutes); the rest managed to finish in an average
of  minutes.

... Automated treatment

Each of the participants who undertook theMetrics LOC task usingGilliganmanaged to successfully
complete the task (in an average of  minutes). In the questionnaires, these developers mentioned
that they were able to concentrate on the  compilation errors that remained aer Gilligan ran. Since
two of these errors were trivial, they were able to focus on the single remaining error (which was a
conceptual mismatch). While this error was tricky to solve, each of them was able to get the code to
work successfully with the test harness.

All the participants also completed the Azureus task using Gilligan (in an average of  min-
utes). ese developers did not seem to have any trouble changing the reused code to use the specific
fields for blue rather than the blues array. For this task, I said, “ere were still some syntactic
mismatches, but what I found was that the problems that remained were more directly related to the
actual misalignments between use contexts; they were more directly related to the reuse I was trying
to achieve.” I also stated that, “e simplicity of push-button enactment of the plan was a big win for
Gilligan. I found it took me closer to where I wanted to be, and much faster. e manual approach
was mostly drone work and took a lot longer to get [the] target project into a state where interesting
problems could be solved. e manual approach also opened holes allowing errors in changes and
omissions as well.” I also made two short statements about the automated enactment, “automation
makes the whole process worthwhile” and “the automatic task was great, hit the button, go, and it’s
immediately obvious what the tool did.”

. Discussion
In the first evaluation, we found that even if a developerwere tomanually undertake a pragmatic reuse
task perfectly, expending a minimum amount of effort, he would still have to perform significantly
morework than a developer undertaking the same taskwithGilligan. For our two tasks the developer
would need to consider and perform at least  times more edit operations than the same developer
using automation support.

In the second evaluation we found that with automation support, developers were more likely to
successfully complete our two pragmatic reuse tasks. While  of the  manual treatments ended in
failure, all  of the automated treatments were successful. ese successful tasks were also completed
in much less time than their successful manual counterparts ( of the manual time in the Metrics
task; of themanual time in theAzureus task). Whilewe expected thatGilligan’s semi-automation
would save developers time, we were very surprised about the differences in success rates between the



two approaches. In the case study (Section ..) we identified several specific compilation errors that
arose from integrating the source code into a new context that were harder to fix than usual. It was
these errors that impeded the developers from succeeding at themanual tasks; when undertaking the
tasks manually they would have so many errors to fix that they would either fix them simplistically
(and thus fix the hard problems incorrectly without noticing) or they would become overwhelmed
and skip over the hard problems when they encountered them because they “seemed hard” and carry
on trying to fix all the easy problems first. By semi-automating the pragmatic reuse plan Gilligan
fixed the easy problems automatically, enabling the developer to focus on only those tricky problems
that remained.

Several participants commented that manual enactment was largely “drone work” (I), “tedious”
(I), and “error-prone” (G). e primary reason that participants failed to complete their tasks
was because they did not resolve the conceptual mismatch between the reused feature and its new
environment. In fact, in  of the  failure cases, the participants could not even identify where this
mismatch took place, let alone resolve the problems created by themismatch (G found themismatch
but could not resolve it). For theGilligan-supported task–treatment pairings, all the participantswere
able to both identify and resolve the mismatch while successfully completing their tasks.

Two of the industrial developers made specific comments about how automating the enactment
of the reuse plan positively changes their likelihood of using such a tool. I stated, “I wouldn’t use
Gilligan on its own; I have a bias against visualization andmodelling tools. I don’t care that themodel
is nice, it’s running code that counts. e automation gives me the bridge I need to make the model
valuable.” while I said that, “I’m not one who likes planning for planning’s sake. However, if the
planning tool happened to also do the WORK for me, well then I would be much more likely to use
it.” Wewere encouraged to hear industrial developers becomingmuchmore open to expending effort
creating pragmatic reuse plans given our tool support for performing the bulk of the enactment task
for them.

ese two evaluations have focused entirely on evaluating DG .. e case study and exper-
iment both provide evidence that automating the enactment of the pragmatic reuse plan can save
the developer time, effort, and make them more productive while they are performing pragmatic
reuse tasks. How validation [ .] and improvements to support iterative development of prag-
matic reuse plans [ .] affect the outcome of these tasks has not been evaluated; to do so requires
developers to both plan and perform pragmatic reuse tasks (see Section .).

.. Limitations

Our first evaluation considered the “ideal” developer who could complete his tasks with the mini-
mum amount of work. While this developer is also not representative, he does represent the lower-
bound that the best developers could strive to achieve. Even this developer had to perform consid-
erably more work with the manual treatment than with the semi-automated one.



For the experiment, the number of participants was fairly small, at only eight. We have not at-
tempted to quantify the relative effort of the treatments with statistical significance, therefore; we
have reported times to give a sense of scale and trends. e trend in the results is unambiguously in
favour of Gilligan.

e participants cannot definitively be categorized as representative of the intended target pop-
ulation (i.e., industrial developers familiar with Java development, the Eclipse IDE, and pragmatic
reuse tasks). We used graduate students to increase the number of participants, due to the difficulty
in recruiting industrial developers to evaluate a research prototype. We can see some differences
between the graduate students and the industrial developers, each favouring the skills of one group
or the other in differing task–treatment pairings. Most importantly, the trend in favour of Gilligan
was uniform regardless of from which group came a participant.

... Representativeness of tasks and systems

Only two tasks were performed on two systems. e tasks and systems cannot be definitively cate-
gorized as representative of all systems and all pragmatic reuse tasks. However, the tasks were non-
trivial, being taken from real development scenarios and not synthesized for the sake of the research;
each involved the reuse of functionality that had not been designed to be reused in thewaywe needed.
Likewise, the systems are of medium- to large-scale from two disparate domains. ere is nothing
to suggest that these tasks and systems are otherwise special. We do suspect that “data-driven” ap-
plications are less likely to be amenable to the structure-oriented planning and enactment on which
we have chosen to focus to-date. Whether our entire pragmatic reuse approach can be adapted to
data-driven applications, remains to be investigated.

For the sake of experimental control, we provided the participants with pragmatic reuse plans for
their tasks. Whether this reflects how Gilligan should be used in practice (i.e., one person planning
the task and another person enacting it) is unclear. Wewould consider not having planned the task to
be an impediment to enacting it; nevertheless, the use of Gilligan uniformly allowed this impediment
to be overcome. It remains to be investigated whether having the same person planning a task and
enacting it manually would result in better performance than the use of Gilligan. We conjecture
that Gilligan would still outperform manual enactment, due to its ability to “abstract away” trivial
compilation issues.

... Net cost of pragmatic reuse

One might question how much effort must be expended to create or to interpret pragmatic reuse
plans, and whether this effort would overwhelm the reported benefits of semi-automated enactment.
In our experiment, each pragmatic reuse plan required less than minutes to construct by us, despite
our lack of experience with the original systems. As for interpreting the plans, Participant I states,
“Ultimately [theGilligan-supported treatment] seemed a bit like cheating, because I didn’t really need



to know much about the reuse plan at all, it just went ahead and did it, and I fixed a couple of spots.
I’ll leave out the debate as to whether or not this is a good thing, but [it] did take me a LOT less time
than the manual step.” Most importantly, the tendency to trust the plan and to focus on the details of
the remaining errors was the strategy that led to success. e incompleteness of the plans always leads
to some errors, so the developer must investigate and understand the (isolated) problems. Our plans
were also error-free, to the best of our knowledge, though necessarily incomplete. Given our relative
ease in creating the plans, we feel that the lack of errors in the plans was realistic for these tasks;
however, we must consider both the abilities of developers to plan as well as perform the pragmatic
reuse tasks to see if the costs associated with creating the plan outweigh the benefits of the semi-
automation of its enactment (this is discussed in Chapter ).

. Summary
Compared to our first two Gilligan prototypes that focused on pragmatic reuse planning, our third
prototype instead investigated techniques that could semi-automatically extract the source code spec-
ified by the developer in the reuse plan and integrate it into their project. is prototype added three
new design goals. e first enabled the developer to validate their reuse plan so they could both tell
when they were done their investigation, as well as to identify additional structural elements they
should investigate. e second involved semi-automating the enactment. e third design goal re-
volved around features that encouraged iterative planning and enactment.

We evaluated this prototype using a case study and a controlled experiment. From these two
evaluations we made four main observations:

• By automating the enactment of pragmatic reuse plans, Gilligan can considerably reduce the
effort required to enact these plans.

• Gilligan can automatically resolve the majority of compilation errors that arise in source code
that has been removed from its originating context according to a pragmatic reuse plan.

• Semi-automating the enactment of a pragmatic reuse plan has the potential to save the devel-
oper a significant amount of time.

• Semi-automating the enactment increases the likelihood that the developer will successfully
complete a pragmatic reuse task by allowing them to focus on the problems that are important
impediments to their successful completion of the reuse task.

Based on our observations of the participants working with this final Gilligan prototype, we de-
cided to perform a larger end-to-end experiment in which the participants had to both plan, and
perform pragmatic reuse tasks.



(a) FullGilligan environment configured for iterative planning and enactment showing errors caused by dangling references,
the validation view, and missing source code highlighting.

(b) Updated validation view aer rejecting COConfigurationManager.

Figure .: ird Gilligan prototype configured for iterative planning and enactment showing
errors caused by dangling references, the validation view, and missing source code high-
lighting.



Figure .: Updated validation view aer accepting COConfigurationManager; this decision
caused the error count to double.

Original code with dependency on MetricsPlugin:

return MetricsPlugin.getDefault().getCalculators(”type”);

New code that only returns the calculator that the developer wants to reuse:

Vector calculators = new Vector();

calculators.add(new TotalLinesOfCode());

return calculators;

Figure .: Snippet to resolve mismatch in Metrics task.!"##$%

&'(#)*

+#$,-./)+'01'2 +#$,-./)31$45'$-. 361,#1/)+'01'2 361,#1/)31$45'$-.
7

*7

87

97

%7

:7

;7

<7

='/>)?)=,#'$5#0$)&'-,/

=
-5
#
)@
5
-0
1
$#
/
A

B8 B% C* C9 C9C*B%B8B* B9 B9B*C8 C8C% C%

Figure .: Results of the task effectiveness experiment. Green/hatched bars indicate success.
Red/solid bars indicate failure.



Chapter 

Holistic evaluation

us far in this dissertation, we have discussed five evaluations examining pragmatic reuse tasks,
and how Gilligan can help with these tasks. ese evaluations have examined eight main research
questions:

¬ Do industrial developers actually performpragmatic reuse tasks? ( , C-
 ) In this survey we found that industrial developers frequently perform pragmatic reuse
tasks and have access to a large body of source code they can reuse in this fashion.

­ What issues do industrial developers consider while evaluating a pragmatic reuse task? (-
 , C ) Understanding the extent of the coupling between the source
code they want to reuse and its originating system is a key impediment to determining the risk
associated with a pragmatic reuse task.

® Can industrial developers create pragmatic reuse plans using our graph-based Gilligan proto-
type? (  , S .) In this case study, our industrial participants
found that they could successfully create pragmatic reuse plans for tasks derived from their
work environment.

¯ Do industrial developers perceive any derived benefit from planning their reuse tasks using
Gilligan? (  , S .) is case study showed that our industrial
participants felt that they had a better understanding of their task aer creating a pragmatic
reuse plan, compared to what they would have understood investigating the task manually.

° Can developers more effectively locate structural dependencies using the tree-based Gilligan
prototype compared to their normal practice? ( , S .) In
this experiment we found that participants using Gilligan were able to identify  of relevant
structural dependencies for a set of given tasks while participants performing the same tasks
manually could only identify  of the relevant dependencies.

± Howmuch effort canGilligan save a developer by automating the enactment of their pragmatic
reuse plan? ( , S .) In this case study we found that, for two tasks, Gilligan
reduced the number of conceptual decisions they would have to make by at least .

² How many fewer errors does a developer have to manually fix when performing a pragmatic
reuse task whose enactment has been automated by Gilligan? ( , S .) In
this case study we found that, for two tasks, Gilligan reduced the amount of compilation errors
a developer would need to resolve by at least .

³ How does Gilligan’s automation of the enactment of pragmatic reuse plans affect a developer’s
productivity when they are performing these tasks? ( , S .)
In this experiment we found that participants enacting pragmatic reuse tasks using Gilligan
took  to  less time and were much more likely to succeed compared to participants
performing the same tasks manually ( of  successful trials compared to  of ).

While each of these evaluations has added to the accumulation of evidence showing that indus-
trial developers do perform pragmatic reuse tasks, and that Gilligan can help developers with various
aspects of these tasks, none of the evaluations have directly addressed the thesis of this dissertation
in its entirety:

à By providing developers with a mechanism for creating and enacting pragmatic reuse plans,
can we help developers perform pragmatic reuse tasks more quickly and with greater confi-
dence?

is will be the subject of the final experiment described in this dissertation.

. Hypotheses
Each of our prior evaluations contributed to the body of knowledge that drove and informed the
refinement of our Gilligan prototypes. To substantiate the thesis of this dissertation, we performed
one comprehensive, final evaluation in the form of a controlled laboratory experiment. is evalu-
ation was more ambitious than all our previous evaluations because it was a complete, end-to-end
evaluation: participants had to plan and perform pragmatic reuse tasks, starting only with a task
description and seed element, and ending with a solution that passed an executable test harness.

We had three hypotheses that we wanted to validate or refute quantitatively:

H-: Developers using Gilligan to plan and perform a pragmatic reuse task will complete their
task in less time as compared to performing the task using standard IDE tools alone.

H-: Developers using Gilligan to plan and perform a pragmatic reuse task will be more likely
to successfully complete their task as compared to performing the task using standard IDE
tools alone.



H-: Developers using Gilligan will abandon an infeasible pragmatic reuse task in less time than
developers using standard IDE tools alone.

Based on the difficulties we encountered when industrial developers performed pragmatic reuse
tasks on their own systems (Section .), we decided that for this investigation we would provide,
and control for, the tasks that the developers would perform and the environment they performed
them within [Pfleeger, ]. We validated our hypotheses using a two-phase controlled laboratory
experiment. To gain further insight into how developers plan and perform pragmatic reuse tasks,
we collected as much qualitative data as possible for later analysis. As we were evaluating for a large
effect size, a moderate number of participants sufficed.

. Participants
Sixteen developers participated in our study (twelve male and four female). ese participants were
selected from the Calgary area. Each participant was an experienced user of the Eclipse IDE and
the Java programming language. Our participants had a varied background: seven were industrial
developers with various levels of experience (from  year to  years),  were undergraduate students,
and seven were experienced graduate students (with  years to  years of development experience).
We tried to select a sample representation of participants to portray an industrial workplacewith both
novice and expert developers. Some of the graduate students had worked in industrial positions
in the past. When asking about development experience, we stressed that the participants should
report values corresponding to years of “skilled” development; as an example of skilled development,
we asked them to think of how long they have understood, and correctly used, advanced language
features such as exception handling mechanisms.

To be eligible to partake in our experiment, each participant had to consider themselves ‘experi-
enced’ with both the Java language and with the Eclipse IDE. Ten of our participants indicated that
they used Java with Eclipse on a daily basis while the remaining  had done so at some point in the
recent past. Our participants were paid . for their participation in our experiment. Table .
provides an overview of our participants and their experience.

. Tasks
e participants performed realistic tasks chosen from deployed soware systems. Each of the tasks
consisted of a description that gave the participant insight into the functionality they were trying to
reuse, why they were performing the task, as well as background information about the system they
were investigating. e participants were also given a single structural element as a starting point for
their investigation.

Participants were given a small hint for each task; the intent of the hint was to help the partici-
pants stay focused on their task and to simulate normal guidance that may be given by a supervisor



Role Familiarity ( - ) Years Experience
P UG G I Eclipse Java In Industry Dev experience

P 3    
P 3    
P 3   – 
P 3    
P 3    
P 3    
P 3   – 
P 3   – 
P 3    
P 3    
P 3    
P 3    
P 3   – 
P 3    
P 3    
P 3   – 

Table .: Overview of participant experience.

or co-worker in an industrial setting. e starting point was given to help control variations be-
tween participants from the outset of the experiment. e same information was given for each trial,
regardless of the treatment the participant was employing for that trial.

e experimental tasks were not identical to one another; indeed, each system was from a dif-
ferent domain and none of the tasks are similar in the functionality they are reusing. While we may
have been able to construct identical tasks by creating our own systems to perform the tasks on, we
decided that it was important to validate Gilligan on real soware systems. Additionally, by using
independent tasks and systems we aimed to reduce the possibilities of learning effects between the
experimental trials.

.. Phase 

etwo tasks involved in the first phase of the experimentwere chosen to evaluate - and-. ese
tasks were chosen as ‘good’ pragmatic reuse tasks that made sense and could be effectively completed
in the experimental time available. e two tasks in the first phase were always performed before the
one task in the second phase.

... QIF parser (Q)

e Quicken Interchange Format (QIF) is a file format that Quicken, a financial management so-
ware package, can use to save and load financial data. In this task, the participants were given a



QIF file that they had to parse. e jGnash project¹ is an open source personal finance package
that has the ability to parse QIF files. e participants were tasked with identifying and extract-
ing the QIF parser from jGnash and integrating it into a project that contained the test file and an
executable jUnit² test case that could validate that the reused code worked correctly. Participants
were pointed to one specific structural element within jGnash to begin their investigation, the QIF-
Parser.parseFullFile(..) method. e test harness, sample QIF file, and our own pragmatic
reuse plan for this task have been included in Figure F.

jGnash consists of  kLOC,  classes,  interfaces, , fields, and , methods. Our
successful reuse plan for this task consisted of accepting  classes and interfaces,  fields and 
methods for a total of  LOC.³ We selected reusing the jGnash QIF parser for inclusion in this
experiment as this feature is relatively well modularized in the jGnash system; while it was not de-
signed with reuse in mind, it is somewhat self contained. ere is only one conceptual decision that
needs to be made for this task to be completed successfully; if the QifTransaction._account field
is rejected, many potential dependencies that are not relevant to this reuse task are avoided. If the
participant tries to reuse this dependency then they become dependent upon many other irrelevant
classes. We also selected this task because it is an example of a task that is very easy to accomplish
with standard IDE tools; in this sense we expected that participants using the manual treatment
would succeed at this task in less time than participants using Gilligan given their greater experience
with standard IDE tools.

For this task, participants were only given one hint: “All you want to do is to parse a QIF file into a
programmatically-accessible format; you do not need to reuse any other banking functionality.” is
hint was provided to try to keep the participants focused on the intent of their reuse task.

... Related artists (RA)

e aTunes project⁴ is a comprehensive, open-source music player and manager written in Java. One
nice feature of aTunes is thatwhen youplay a song by a particular artist, the interface populates a small
windowwith a list of related artists in which youmight also be interested. In this task, the participant
was tasked with reusing the functionality that retrieves the related artist list. ey were given the
aTunes source code and a project that contained an executable jUnit test case that could validate that
the reused code worked correctly by asking for related artists and checking to see if a list of artists
was retrieved. e participants were pointed to one specific structural element within aTunes to
begin their investigation, the method AudioScrobblerService.getSimilarArtists(..). e
test harness has been included in Figure F.

aTunes consists of  kLOC,  classes,  interfaces, , fields, and , methods. Our

¹http://jGnash.sf.net v..
²http://junit.org v.
³A complete description of our pragmatic reuse plan for this task is included in Figure F
⁴http://atunes.sf.net v..



successful reuse plan for this task consisted of accepting  classes and interfaces,  fields, and 
methods for a total of  LOC.⁵ We selected reusing the related artists feature from aTunes for
inclusion in the experiment as this feature represented a much more difficult reuse case than the
jGnash QIF feature. e feature itself is more complicated, is spread throughout the system much
more, and is co-located with many other features within aTunes. While it is co-located with other
features, it is not necessarily coupled to them and thismeans that the code appears to bemore coupled
than it actually is. In this task the participant must carefully reject many structural elements that are
a part of the classes the participant wants to reuse but are not actually a part of the feature they want
to reuse.

For this task, participants were only given two hints: “You are only interested in retrieving a list
of related artists, other data such as related albums is not of interest” and “How well the reused code
performs is not of concern for this task.” e first hint was to remind the participants that a lot of
the other co-located functionality was not relevant to their task; the second hint was because aTunes
aggressively caches related artists and we did not want to require the participants to reuse the caching
mechanism.

.. Phase 

e third task was used only in the second phase of the experiment; it was chosen because we con-
sidered it to be a ‘bad’ task: not only could the task not be finished in the experimental timeframe,
we do not believe any developer would really try to complete this task due to the degree to which the
feature is coupled to its underlying system. is ‘poison pill’ was inserted to see how long it would
take the participants to decide that the task was ill-advised and that they should give up. is phase
was directed at testing -.

e third task was the main reason we split the experiment into the two phases: we were con-
cerned that the participants may become overly pessimistic for the two ‘good’ pragmatic reuse tasks
if they performed one of them aer the ‘bad’ task, particularly given their lack of experience using
Gilligan. At the same time, we hoped that the experience they gained in the first phase (with both
treatments) would help them to better assess the suitability of the third task.

... Torrent downloader (TD)

e Azureus project⁶ is an open source BitTorrent peer-to-peer file transfer program written in Java.
For the past several years, Azureus has provided a full-featured, robust UI for transferring files on
the BitTorrent network. In this task, the participant was tasked with reusing the core BitTorrent file
transfer functionality from Azureus without any of its UI elements. e participants were given the
Azureus source code and a project that contained an executable jUnit test case that could validate that

⁵A complete description of our pragmatic reuse plan for this task is included in Figure F.
⁶http://azureus.sf.net v...



the reused code worked correctly. e participants were pointed to one specific structural element
within Azureus to begin their investigation, the method TorrentDownloaderImpl.run(). e
test harness and has been included in Figure F.. Azureus consists of  kLOC, , classes, 
interfaces, , fields, and , methods. We do not include our reuse plan for this task as we do
not believe it is possible to create one.

For this task, participants were given two hints: “Do not worry about security-related aspects of
the Azureus system”, and “You do not need to reuse magnet functionality, just the basic torrent trans-
fer feature.” ese hints were added to restrict the amount of code the participants had to consider
reusing.

. Experimental procedure
Each participant took approximately  hours to complete the experiment; during this time they com-
pleted  discrete steps:

. Orientation. Upon settling in our experimental space we started (aer allowing them to read
and sign the requisite ethics forms) with a quick questionnaire to gain an understanding of the
participant’s development experience. e complete text of this questionnaire can be found
in Section F. (p. ). All the data in Table . was collected from this initial interview. We
then gave the participants a quick verbal overview about the terminology we would be using
during the study and explained what they would be doing during the study. e orientation
took between  and  minutes.

. Training. e training task had two phases: first we would quickly demonstrate Gilligan to the
participant explaining the  structural views, how to make decisions about elements, how the
source code highlighting worked, and how the validation and automatic enactment features
worked. We then set the participants to work on a sample task. During this period they were
free to ask as many questions as they wished. Once they felt that they understood how Gilli-
gan worked we proceeded with the experimental trials. Participants spent between  and 
minutes on the training task.

. Phase .

(a) Trial . e first trial was always one of the randomized trials for the Phase  tasks; the
trials are described in Section ... e time limit for this trial was  minutes.

(b) Trial . e second trial was always one of the randomized trials for the Phase  tasks.
e second trial always balanced the treatment with the first trial such that they never
had the same treatment for both tasks.; the trials are described in Section ... e time
limit for this trial was  minutes.



. Phase .

(a) Trial . e third trial was always the trial for the Phase  task with only the treatment
being randomized; the trials are described in Section ... e time limit for this trial
was  minutes.

. Debriefing. Each participant completed an exit questionnaire reflecting on their experiences
for each task and the different treatments. e complete text of this questionnaire can be found
in Section F. (p. ). e exit questionnaire took between  and  minutes to complete.

.. Performing a trial

For each trial, we first described the task to the participant and showed them the source and target
projects. Participants could ask for clarifications on the task if they wanted any, although in the
course of the experiment none of the participants asked for more detail than was already provided.
We encouraged participants not to examine the test harness; we did not want the participants to
investigate this in depth as there were additional clues in each test harness that we would rather they
discover on their own while performing the task. Each trial involved  minutes of development
time and up to  minutes of questioning. Participants were encouraged to talk to themselves aloud
while they were performing their tasks so we could better understand their thought processes.

Participants were interrupted at specific intervals during their task to answer mid-task question-
naires; these questionnaires were the same regardless of the trial or the intervention interval.⁷ e
first questionnaire was given aer  minutes; we chose  minutes because we wanted to see if the
participants had any initial ‘gut feelings’ about their task. e second questionnaire was aer 
minutes, the third at the end of the task at  minutes. Participants did not have to answer any of
our questions if they had finished a task before the interval for the questionnaire had happened. e
time taken to answer the mid-task questionnaires was not deducted from the participant’s total time
(e.g., every participant was able to work on the task for the same amount of time, regardless of their
level of verbosity).

Participants were able to ask us questions while they performed a task, but we only gave clarifica-
tions on the original task description. While performing a task, if the participant decided they could
not, or would not, continue this task, they were allowed to proclaim that they ‘gave up’.

Aer completing (or giving up) on a task, the participant was again asked a series of questions.⁸

.. Data collection

A large variety of data was collected while this experiment was underway; some of it was automati-
cally recorded by our heavily-instrumented IDE environment while the rest was recorded by hand.

⁷e complete text of the mid-task questionnaires can be found in Section F. (p. ).
⁸e complete text of the end-of-task questionnaire can be found in Section F. (p. )



All the questionnaires were treated as short ‘interviews’ to give the participants the most opportunity
to provide detailed answers; if they said too much, we asked them to stop so we could catch up with
our hand-written notes. We opted not to record the tasks either with video or audio for two reasons:
() we wanted our participants to be as comfortable as possible; and () we did not think the added
analysis burden was worth the effort over attentively-collected hand-written notes.

We took a variety of notes during the trials while the participants were working through their
assigned tasks. We recorded: significant comments, questions they asked themselves aloud, com-
ments they made, strategies of note, the number of editors open and compilation errors present at
various intervals, major milestones, and specific problems they were having. e note-taking pro-
cess was fairly flexible according to the specifics of the trial. Time stamps were recorded along with
most of the observations. We also recorded time stamps according to when the task began, when
we interrupted for each interview, when the participant resumed work on their task, and when they
succeeded or gave up. e ultimate success or failure of the task was also recorded.

Our instrumented version ofGilligan recorded every structural element the participant navigated
through, what decisions theymade, when they requested to see an annotated source editor, and noted
whenever they validated or enacted their plan. If the participants ever changed their mind about a
decision this was also captured. e Eclipse IDE itself was further instrumented to include basic
navigation data between various views and the source code editor. When the participants completed
a task with Gilligan the reuse plan was automatically saved for later analysis.

Aer the participants had completed all three trials, we saved their evaluation workspace. is
enabled us to further analyze their solutions for each task. Using their solutions we could see which
structural elements they reused, which elements they did not, howmany lines-of-code were involved
in their solutions, and investigate any other specific question about the state of their solution.

. Experimental design
In the first phase of the experiment we considered two factors:

• Tool: Gilligan () and IDE-only ().

• Task: QIF Parser  and Related Artists .

For both phases of our experiment, the tool factor had two levels: using Gilligan to plan and
perform the pragmatic reuse task (called ) and the default manual case (called ), whereby the
participants would use standard IDE tools.

e task factor for the first phase consisted of two levels, each of which were an independent
reuse tasks,  and .

Both the tool order and task order were counterbalanced to account for confounding effects in-
troduced by the varying skill levels of our subjects and learning effects in the experiment as each



participant completed trials with both treatments their individual skills would be spread across all
treatments.

A full within-participants factorial design involving these two factors would require participants
to repeat both tasks twice, which would not yield valid results in our case, since they would already
be familiar with the solution to the task they were repeating. us, each participant completed one
task with Gilligan and the other with only the IDE. is design is best understood by considering the
second factor to ‘order’, resulting in a mixed design on the following two factors:

• Tool: Gilligan () and IDE-only (); within-participants.

• Order:  and ; between-participants.

e first phase of the experiment consisted of  trials: each of our  participants would perform
 trials. e trials were assigned in four blocks , , , , each of which corresponded to a
task–treatment–order tuple. ese tuples are listed in Table .. Participants were randomly assigned
to a block although we balanced the assignments to ensure that each of the blocks was replicated an
equivalent number of times ( each). is first phase was designed to help us evaluate hypotheses
- and -.

Block Name No. of Trials First Task Second Task

  – –
  – –
  – –
  – –

Table .: Four blocks for the first phase of the experiment.

e second phase of the experiment used a between-subjects design on the tool factor. e two
levels were Gilligan and IDE-only. In this phase, only one task was used ().

is phase of the experiment consisted of  trials: each participant only performed one trial in
this phase. ese trials were assigned to two blocks  and , each of which just specified which
treatment ( or ) was used. All the trials in the second phase always happened aer the trials for
the first phase had been completed. Each block was performed  times although we balanced the
assignment to ensure that each  block came aer each of the four  blocks  times. Again, this
balancing was to account for learning effects from the first phase.

In accordance with Sadler and Kitchenham [], we tried to control for learning effects using
techniques they recommend. Gilligan represents a sophisticated departure from our participants’
regular development activities. Prior to beginning the experiment, each participant performed the
same training task using Gilligan. While performing this task, they were free to ask any questions
they wished about the tool and how it worked. Our alternative hypotheses for -, -, and - have



all been arranged such that the alternative hypothesis is favoured by our participants’ experience;
they all have years of experience using standard IDE tools but will only have had minimal (less than
minutes’) experience using Gilligan. We arranged the experiment this way so that if we did find an
effect in favour of Gilligan it would not have been unduly influenced by a learning effect. To further
minimize learning effects we randomized the orders of the tasks and treatments during the  blocks.

Each of the three tasks used by the two phases of the experiment used independent developed
systems, shared no common code, andwas from a different domain; this was tominimize the chances
of any memory-effect interactions between the different tasks.

We used the mid-task and post-task questionnaires as a way to provide our participants with
short breaks; this was to reduce fatigue effects that may have arisen from having them work for three
hours on complex tasks.

. Quantitative results
e quantitative results for each of our hypotheses are discussed in Section .., Section .. and
Section ... We were interested primarily in effects involving the tool factor, but not in the effect
of task order (which was randomized to account for bias). We therefore analyze differences only for
the tool factor.

.. - analysis

To test hypothesis - we first examined the amount of time the participants took while performing
the block  trials. Figure . shows the relationship, for the jGnash and aTunes tasks, between
the treatment condition and control in terms of time. For each column, the thick line inside each
rectangle represents the median while the upper and lower bounds of the rectangle represent the
th and th percentiles respectively; the rectangle represents the middle  of the data points.
e upper and lower fences represent the maximum .× inter-quartile range; points above the top
fence and below the bottom fence can be considered outliers.

For the block  trials, there was only one outlier data point; this represented a participant
who completed the jGnash task using Gilligan in only  minutes. We did not remove this outlier
because the participant successfully completed the task; although they were fast they managed to
create a functional solution. For five of the trials (one trial for jGnash–Manual and four trials for
aTunes–Manual) the participant was unable to complete their task within the allotted  minutes;
while none of these points were outliers, they represent numerical values that may have been higher
if the participants had longer to finish their tasks. For both manual boxplots, this has caused the area
of the boxplot to be more compressed than it might have otherwise been if the participant had been
able to keep working on their task. As this compression was only present for manual tasks, difference
could only have been greater if the participants had been given more time.

We ran a repeated measures factorial ANOVA on tool and task order. ere is a significant



jGnash
Manual

jGnash
 Gilligan

aTunes
Manual

aTunes
Gilligan

5
10

15
20

25
30

35
40

Task / Treatments

T
im

e
(m

in
)

Task Time

Supported Reuse
Manual Reuse
Task Success
Task Failure

Figure .: Block  time to completion by treatment. Data points on the blue bar columns
represent trials that used Gilligan, the clear columns represent the control. Triangle icons
represent successful tasks while boxes with an ‘x’ through them represent failures.

main effect of tool (F(1,14) = 5.1, p = 0.04). Participants were significantly faster using Gilligan
(M = 18.7 minutes, SE = 2.2 minutes) than using no tool (M = 28.8 minutes, SE = 2.7 minutes).
e main effect of task order was not significant (F(1,14) = 0.9, p = 0.35) nor was the interaction
(F(1,14) = 0.0, p = 0.94). Because of this, we reject the null hypothesis with respect to - and
consider Gilligan to be a significant influence on the amount of time required to plan and perform a
pragmatic reuse task.

.. - analysis

To test hypothesis - we performed Fisher’s exact test; we chose this method as Pearson’s Chi-
squared test requires larger samples than we had available in this study. e contingency table used
for this evaluation is given in Table .. Participants succeeded significantly more oen when using
Gilligan (p = 0.043).



Success Failure TOTAL

Manual   
Gilligan   
TOTAL   

Table .: Contingency table for success and failure compared to treatment.

azureus
Manual

azureus
Gilligan

15
20

25
30

35
40

Task / Treatments

Ti
m

e
(m

in
)

Task Time

Figure .: Block  time to completion by treatment. Data points on the blue bar columns
represent trials that used Gilligan, the clear columns represent the control.

.. - analysis

To accept or reject hypothesis - we examined the amount of time it took for a participant perform-
ing a block  trial to abandon their task. is task had one outlier wherein a participant performing
the manual case gave up aer only  minutes. As this developer gave up not because they felt they
had good reason to do so, but because they became overwhelmed during their investigation, we have
chosen to eliminate this data point from our analysis. is decision is consistent with Chauvenet’s
criterion [Taylor, ] for identifying an outlier (0.4 < 0.5).



Aer eliminating the outlier data point, we applied the Mann-Whitney-Wilcoxon (MWW) test
and received a statistically significant result (U = 8, p = 0.012).⁹ We chose this conservative, non-
parametric test, as phase  was a between-participants design, effectively reducing our sample size
by a half. As we believe eliminating the outlier data point mentioned previously is appropriate, we
use this p-value and reject the null hypothesis with respect to -.

It is also noteworthy that only  of the  participants performing the manual trials gave up on
their experimental task before the  minute time limit while  of the  participants performing
the Gilligan trials gave up during this time period. Anecdotes provided by the participants for this
experiment are given in Section ...

jGnash
Manual

jGnash
 Gilligan

aTunes
Manual

aTunes
Gilligan

azureus
Manual

azureus
Gilligan

0
10

20
30

40

Task / Treatments

P
ea

k
O

pe
n

E
di

to
rs

Peak Open Editors

Supported Reuse
Manual Reuse
Task Success
Task Failure

Figure .: Peak open editors by task–treatment. Data points on the blue bar columns represent
trials that used Gilligan, the clear columns represent the control. Triangle icons represent
successful tasks while boxes with an ‘x’ through them represent failures.

⁹is test yields a less dramatic result if this outlier is considered (U = 16, p = 0.072).



.. Other quantitative analyses

While we found a huge variation along other metric axes (such as LOC and errors), one interesting
metric we recorded was the peak number of source code editors a participant had open during their
task. Figure . shows, for each task in both  blocks and  blocks themaximumnumber of editors
the participant had open. We have not conducted statistical tests for this relationship, we show it only
out of interest. is strongly confirms that developers performingGilligan-supported tasks were able
to work effectively with the abstract representation provided by Gilligan as they were successful, yet
managed not to open a plethora of editors.

. Qualitative results
During the final experiment  pages of hand-written notes were taken while the participants per-
formed their experimental tasks; these notes primarily comprised of statements made by the partic-
ipants but also included some observations. e notes were transcribed onto  type-written pages
that were split into individual comments, thoughts, or actions. e resulting  comments and ob-
servations were analyzed using a grounded theory approach [Corbin and Strauss, ]. Grounded
theory allowed us to group the comments according to their content using some coding criterion. We
used an an open coding approach [Miles and Huberman, ] to assign codes to the collected data;
by not pre-defining our coding strategy we allowed the categories to be iteratively developed and re-
fined. e groups were identified by iterating on the comments four times. Aer the first iteration,
 individual themes were delineated that contained between two and  comments. e second it-
eration shrunk the number of themes to  but further subdivided these into  sub-themes; during
this process many sub-themes were merged and split as further commonalities and divergences were
found. During the final phase, the  themes were grouped into  individual concept categories;
each of these represented a high-level concept that unified its constituent themes. ese concept
categories comprised between  and  themes.

Five of these concept categories were organic— that is, they naturally arose from the data; the
developers were not answering specific questions that were asked of them. ese concept cate-
gories each pertained to a different aspect of exploring, analyzing, and performing a pragmatic reuse
task. ree of the concept categories (including  themes and  sub-themes) were prompted as
they were a result of both observation and participant answers to specific questions that were asked
of them. Section .. describes the organic concept categories while Section .. describes the
prompted concept categories.

An overview is provided for each concept category, along with its themes and sub-themes. For
each theme the total number of comments given and the number of individual participants who gave
them is enumerated as an indicator of the support for that theme. A synthetic quote is provided for
each theme; the intent of this quote is to give a general understanding of what that theme represents.
ese synthetic quotes were generated by combining portions of the collected quotes and integrating



them into a single cohesive statement. A number of significant, interesting, or demonstrative quotes
are also included to further reinforce each sub-theme.

It is important to note that each of these categories was derived from observations of developers
performing trials using both the Gilligan treatment and using standard IDE tools.

Appendix G contains a detailed  page analysis of the qualitative findings from this experiment.
In this section, we present an overview of these findings as well as several interesting specific points.
For more data and additional analysis, please see Appendix G.

.. Organic concept categories

efive organic concept categories that arose from the card sort were both surprising and interesting.
ey do not map directly to the steps that developers undertake while performing pragmatic reuse
tasks; rather they comprise a combination of actions and mental processes that developers must per-
form while considering these tasks. Each of the concept categories is intertwined; a short overview
of each of them is given here, along with a quick discussion of how they are related. As the concept
categories were derived from the data, not fit into pre-defined bins, they do not fit together in a way
that supports a natural, linear progression through them. ey are presented in an order that tries
to be as natural as possible for the reader; however, forward referencing is unavoidable and each of
these categories takes place concurrently and iteratively as the developer progresses through their
reuse task.

e high-level concept categories are dependency identification (Section G..), understanding
(Section G..), maintaining mental models (Section G..), hypothesis testing (Section G..), and
performing pragmatic reuse tasks (SectionG..). ese categories can be further collected into three
groups: those pertaining to actions, those pertaining to understanding, and those that are a hybrid.
e dependency identification and performing categories both involved the participant commenting
on actions they were making to move throughout the source code. e understanding and mental
models categories focused on the participant building an accurate representation of the source code
so they could be effective in their task. e hypothesis testing category is a hybrid of these other
categories: the participants were actively performing small-scale tasks to further their understanding
of what they were doing.

Dependency identification. Dependency identification is a specialized form of information gath-
ering. Participants in this phase were trying to identify what structural dependencies were in the
system and where the code representing these dependencies existed. ey would use the depen-
dencies they found to build their understanding of the source code and translate this understanding
into their mental model of how the system was structured and functioned. e methodologies the
participants used to identify dependencies were remarkably different depending on the experimen-
tal treatment they were using for each task; in the manual treatment the participants spent most of



their time poring over the source code in a line-by-line fashion, while in the Gilligan treatment the
developers quickly navigated throughout the system.

Understanding. eparticipants built their understanding of how the systemworked andwas struc-
tured by investigating the dependencies and the source code within the system. e treatments did
not diverge very much from how the participants built this understanding; in both cases the partic-
ipants would try to rely on the naming of the structural elements as much as possible to infer some
element’s functionality to avoid having to read the code in an in-depthmanner. With both treatments
the participants would sometimes need to resort to looking very carefully at the individual lines of
source code, as the names alone were not enough. e need to understand was prompted by the
developer identifying a dependency that seemed interesting; the participant would then incorporate
this dependency into their mental model of the reuse task.

Mental models. Building an effectivemental model was of critical importance for the participants to
be successful in their reuse task; without amodel of how the code worked that the participant wanted
to reuse, they lost track of the details and ended up following false paths, getting lost, and making
more work for themselves. Ultimately, Gilligan provided far greater support for encoding the deci-
sions that the participants made while building up their understanding of the task and consequently
the participants felt like they were much better able to focus on the task without being distracted
while performing the Gilligan-supported treatments.

Hypothesis testing. Performing a pragmatic reuse task is a heavily iterative process. One of the main
reasons for this iterative process was the testing of hypotheses. Once a participant had determined
that a structural element was relevant to their reuse task they would attempt to reuse it by copying it
to their system. ey would then analyze the resulting errors and decide whether the errors induced
by reusing the code outweighed the benefits of reusing the structural element or not. e results of
this process both built their understanding of the system and contributed to their mental model. e
treatment employed by the participants had a huge effect on the participant’s willingness to investigate
different hypotheses; manually this process was very difficult to do in an in-depthmanner, while with
Gilligan the participants could easily change their mind if necessary. While this could be viewed as
a specialization of performing the pragmatic reuse task, its emphasis on developing the participant’s
understanding and building their mental model makes this category significant and independent.

Performing pragmatic reuse tasks. emes related strictly to performing pragmatic reuse tasks fell
into this concept category. Of the five concept categories this is the least surprising. ese themes
concern strategies andmethodologies used by the participants in both treatments to turn theirmental
model into a complete pragmatic reuse task. e approaches used by the participants for the treat-



ments are unsurprisingly divergent, as Gilligan automated the majority of this work for the partici-
pant; however, Gilligan’s support for rejecting structural elements had an impact on the participants
and how they understood and built their mental models for their tasks.

Table . lists the  themes encapsulated by the  concept categories. Each theme is listed in the
order they appear in the subsequent text. e table also reports the number of participants whomade
quotes that fell into each theme, the total number of quotes in the theme, and the theme’s synthetic
quote.

 Participants  Quotes Synthetic Quote

Dependency
Identification
 

  It is frustratingly difficult to manually identify the
relevant dependencies for a pragmatic reuse task. �

  It can be overwhelming and disorienting to manu-
ally navigate through unfamiliar source code. �

  Using Gilligan it is easy to locate and navigate
through source code dependencies. �

  It is important to be able to measure and track
progress while performing complex reuse tasks. �

  Gilligan provides the majority of the information
necessary to make informed decisions about reuse
plan alternatives. �

  Gilligan’s validation view can help developers avoid
spending large amounts of time wading through
lengthy lists of compilation errors. �

  Being systematic helped developers feel that they
were better able to manage large, complex tasks. �

  Gilligan helped developers spend less time investi-
gating irrelevant common dependencies. �



 Participants  Quotes Synthetic Quote

Understanding
 

  e source code is the authoritative source of infor-
mation. Gilligan reduces the burden of having to
read the code but provides access to it as needed. �

  Understanding the functionality provided by the
source code is key to determining whether it should
be considered for reuse. �

  Manual investigations tend to be breadth-first while
Gilligan enables a more explorative methodology. �

  Poorly named or modularized source code can ob-
scure its functional role from a developer. �

Mental Models
 

  Gilligan explicitly encodes reuse decisions; this re-
duces overhead required to manually remember all
of the salient details. �

  By providing a high-level view of a reuse task, Gilli-
gan makes it easier for a developer to get a global
understanding of the source code they are reusing.�

  Gilligan helps developers focus on their reuse task
rather than being overwhelmed by numerous com-
pilation errors. �

  Gilligan helps developers manage the complex de-
tails that arise during pragmatic reuse tasks. �

  Developers are encouraged and supported in mak-
ing explicit, consistent, decisions using Gilligan. �



 Participants  Quotes Synthetic Quote

Hypothesis Testing
 

  Developers frequently make poor decisions while
performing pragmatic reuse tasks; these are difficult
to reverse manually. �

  Gilligan encourages and assists developers in inves-
tigating alternative reuse strategies. �

  By helping developers progress through a pragmatic
reuse task one decision at a time, Gilligan enables
them to better track their successes and failures. �

  Developers using Gilligan are more confident in the
quality of their solutions. �

Performing Pragmatic
Reuse Tasks

 

  Most of the manual work required during a prag-
matic reuse task is conceptually simple but labour
intensive. �

  Reuse tasks require less time, effort, and frustration
when they are performed with Gilligan. �

  Developers are likely to copy entire packages while
manually performing a reuse task, even though they
know it is likely to backfire on them. �

  Being able to easily remove elements that are not re-
lated to the reuse task is essential to reusing only rel-
evant source code. �

Table .: Overview of the organic concept categories.



.. Interesting themes and quotes

We have selected six of the themes outlined in Table . for further discussion.

It is frustratingly difficult to manually identify the relevant dependencies for a pragmatic reuse task.
Before a developer can reuse a dependency, or even decide whether they want to reuse it or not, they
have to know that it exists. In an earlier evaluation (Section .) we found that developers had trouble
locating dependencies manually; this was further reflected in the comments made by all  partic-
ipants in this experiment. Two comments were emblematic of the problems the participants faced
in the manual treatments: “Resolving the dependencies was hard: something that looked innocuous
to reuse proved to be a nightmare.” (P-T; TD-M), “e dependency cycle is almost endless! You
never know the ramifications of reusing a class” (P-T; Q-M).e primary problemwas the devel-
opers’ inability to determine the transitive costs associated with any dependency just by investigating
the source code alone.

UsingGilligan it is easy to locate and navigate through source code dependencies. In contrast to the last
category, here seven participants specifically commented about howGilliganmade it easy to navigate
through the dependencies in the system. ey commented that “It was easy to see what dependen-
cies existed and navigate to them directly” (P-T; Q-G), and “[I liked] that I could just browse
through the dependencies instead of using the editor, which would have taken forever” (P-T;
TD-G). Using Gilligan’s direct and transitive views, the participants would quickly scan for prob-
lematic dependencies: by considering the direct and indirect dependency counts they could quickly
consider whether a dependency was worth investigating or would be inexpensive to reuse.

Manual investigations tend to be breath-first while Gilligan enables a more explorative methodology.
Surprisingly, four participants specifically commented on how they explored their pragmatic reuse
task in a more depth-first manner using Gilligan compared to a more breadth-first approach when
investigating them manually; during the experiment we noted that many of the participants changed
their behaviours in similar ways. “Manually it was really a breadth-first process whereas withGilligan
I could jump around more to consider what I wanted without losing that higher perspective. is is
more natural because it allows you to follow your way throughout the code without stopping your-
self in fear of getting lost or forgetting where you were” (P). is comment sums up the difference
Gilligan affords developers: exploring specific dependency chains is straightforward as it is easier to
get back to the starting state; developers do not need drill down through many source code editors
which may obscure from where they started their investigation. It is important to note that these
strategies were not strict depth-first and breadth-first traversals of the dependency tree but had gen-
eral tendencies consistent with these approaches. It could be considered that developers performed
a best-first navigation strategy; what is interesting in this light is that the strategies were so divergent
between the two treatments.



Gilligan helps developers manage the complex details that arise during pragmatic reuse tasks. Main-
taining an accurate mental model of a pragmatic reuse task becomes more difficult as task size in-
creases; however, the larger the reuse task, the greater the potential benefit of performing the task
(in terms of productivity). By tracking decisions and supporting dependency investigation, Gilligan
helped the participants feel more on top of their tasks; even in the case of the  task, which was
chosen specifically to be overwhelming: “Gilligan gave me a chance with [the third task] instead of
rejecting [the task] right away. is way I know for sure that the task is bad instead of going by a gut
feeling” (P), and “For the [third task] I might have given up sooner but with Gilligan there is little
risk in trying to reuse the code; it didn’t matter if the task was huge because I could still keep track
of what I was doing” (P).

Gilligan encourages and assists developers in investigating alternative reuse strategies. When per-
forming pragmatic reuse tasks manually, participants were reluctant to investigate alternative plan
decisions, “In the manual case there was a lot of hesitiation to trying new things due to the level of
commitment it would require” (P). In contrast,  participants commented about how Gilligan
encouraged them to variations on their reuse plan to find the best solution for their task: “[Using
Gilligan] I can quickly see the results [of my decisions]; this is useful because it doesn’t take  min-
utes to implement a single decision [as itmightmanually]” (P-T; RA-G).is had a positive impact
on their task as they thought that, “Because I tried different plan alternatives [with Gilligan] I think
my overall quality is better” (P). Being able to rapidly prototype a decision using Gilligan and
instantly see the ramifications of that decision on the reused source code helped participants avoid
many of the pitfalls that befell the manual participants.

Most of the manual work required during a pragmatic reuse task is conceptually simple but labour
intensive.  participants commented that manually performing the reuse task took longer than
it should have. ese comments all had similar themes, in that the steps they had to follow were
not complicated, just tedious: “[e task] was difficult due to the robotic interactions; it was very
repetitive” (P-T; Q-M). In contrast,  participants also noted that Gilligan greatly reduced the
amount of manual effort they had to invest in a pragmatic reuse task, “Gilligan didn’t force me to do
anything I didn’t want to do. Manually it was just more work,  orders of magnitude more” (P-T;
Q-M).

.. Prompted concept categories

e three prompted concept categories are comprised of  themes and  sub-themes. e first two
originated in questions that were asked of the participants, one before the study and one aer. Before
the participants started they were asked some background questions about pragmatic reuse tasks.
Aer they had finished they were asked how they thought Gilligan could be further improved in the
future. Finally, a large number of task-specific observations were made as the participants worked



through the experimental treatments.
e results for these three categories are reported more quantitatively than in the last section; the

participants’ answers were grouped and enumerated and are reported in more succinct form than for
the organic concept categories. A complete description of each of these tables, and other prompted
reuse categories can be found in Section G..

Answers to questions about pragmatic reuse. At the beginning of the experiment we asked each par-
ticipant about their experience with pragmatic reuse tasks. During the card sort we distilled their
responses down to the following tables.

Pragmatic Reuse Frequency  of Participants

Frequently 
Sometimes 

Rarely 

Table .: Frequency that participants perform pragmatic reuse tasks (see Section G... for
complete details).

Pragmatic Reuse Rationale  of Participants

e code I need already exists. 
It is faster than writing the code from scratch. 

To use the existing code as an exemplar. 
It is easier than writing the code from scratch. 

To preserve existing encapsulation of the existing code. 

Table .: Participant’s rationale for performing pragmatic reuse tasks (see Section G... for
complete details).

Pragmatic Reuse Impediments  of Participants

Uncertainty: Will it take a lot of work to reuse the code? 
Propagating future changes can be difficult. 

Keeping variable names consistent between systems. 
Risk reusing badly-written code. 

Might reuse source code you don’t understand. 

Table .: Impediments to pragmatic reuse tasks identified by participants (see Section G...
for complete details).



Suggested changes to Gilligan. Aer having participants performing  experimental trials and ap-
proximately  hours worth of development time using the third Gilligan prototype, we received a
great deal of feedback about how the tool was effective and how it could be improved. ese changes
can be split into general feature requests (Table .) and specific usability fixes (Table .).

Suggested Gilligan Improvement  of Participants

Increase navigation performance. 
Provide an explicit indication of progress. 

Link validation and enactment. 
Link the editor with the structural views. 

Support incremental building. 
Add a dependency cost recommender. 

Table .: Suggested improvements for Gilligan (see Section G... for complete details).

Gilligan User Interface Shortcomings  of Participants

Validation view is backwards. 
Selection behaviour is awkward. 

Views can be confusing. 
Greyed-out text can hide details. 

Table .: Gilligan user interface shortcomings (see Section G... for complete details).

. Discussion

.. Characterization of good tasks as bad ones

Both of the block  taskswere considered to be ideal candidates for pragmatic reuse. FromTable .
we can see that only one participant, performing the manual reuse case, thought the QIF parser was
a poor reuse task. For the aTunes task  of  manual developers felt the reuse task was poor. In
both cases we would disagree. ese feelings lend evidence to the fact that developers manually
performing a pragmatic reuse task are more pessimistic about it. We posit that developers manually
performing a pragmatic reuse task are more likely to give up than those developers using Gilligan for
the same task.

.. Giving up on bad tasks

In addition to the statistical findings that participants gave up on the third task more quickly using
Gilligan, there is also qualitative data than further expands on this finding.



Good Task Bad Task
QIF Parser
Manual  
Gilligan  
Total  

Related Artists
Manual  
Gilligan  
Total  

Torrent Downloader
Manual  
Gilligan  
Total  

Table .:  of participants who felt the task was good or bad.

Several developersmade explicit statements about assessing tasksmore confidently usingGilligan
(see Section G... for more details). P said “I explored the task for a shorter duration [using
Gilligan] but was more confident in my decision to surrender”, while P stated, “I would be more
confident predicting the eventual success or failure of a task [using Gilligan].”

One of our sub-themes identified from the qualitative data (see Section G... for full details)
found that developers felt Gilligan gave them more of a chance, even on a bad pragmatic reuse task,
than they would have had manually: “Gilligan gave me a chance with [the third task] instead of
rejecting [the task] right away” (P) and, “For the [third task] I might have given up sooner but with
Giligan there is little risk in trying to reuse the code” (P).

Anecdotally, we also mention that based on our timestamps that noted when a developer first
vocalized that a task was a bad idea, the participants performing the Gilligan-supported tasks first
stated that the task might be a bad idea early in the reuse task, generally within the first  minutes.

.. Gilligan improvements

Most of the recommended improvements our participants made for both Gilligan and its UI can
be resolved with simple engineering work. Of all the recommended changes two of them stand out
most prominently: better integration with the IDE and a recommendation system for pragmatic
reuse plans. e integration aspect is interesting because our participants recommended several
ways to better integrate Gilliganwith the standard Eclipse tool suite that wewould not have otherwise
considered. ey wanted the ability to navigate from the Eclipse problem view back into the Gilligan
structural views; they also wanted to navigate from the editor to the abstraction in the structural
views. ese desires show great promise as they demonstrate how comfortable the participants were
with the Gilligan environment; this integration would enable them to comfortably exist within the



Gilligan perspective without any specific external tool support.
e recommendation system is also interesting becausewe can definitely see how a recommender

could keep a developer from pursuing ill-advised paths, or to make it clearer to them when depen-
dencies were very cheap and could be reused without penalty.

.. Limitations

is experiment had two main limitations. Because block  comprised only two tasks it is difficult
for us to generalize our results to the wider arena of pragmatic reuse tasks. While we believe that
there was nothing special about these two tasks, further evaluation on a wider variety of tasks would
be needed to gain confidence in the generalizability of these results.

Similarly, for block , we only had one task. is certainly is not enough to generalize the
findings but provides initial evidence that is promising.

While our study consisted of only  participants, we believe that theywere from a heterogeneous
sample that would generalize at least to Eclipse-using Java developers. is study could have involved
more participants, but considering the time required of the participants for this experiment it was
deemed excessively taxing to further widen the study as gaining access to industrial developers, even
for three hours at a time, is difficult.

. Summary
In this chapter we have described a holistic evaluation of the Gilligan tool suite. is evaluation
builds on all of the findings from our previous investigations (Chapter , Section ., Section .,
and Section .) by having  participants perform  complete pragmatic reuse tasks each. ese
tasks involved both planning and performing pragmatic reuse tasks and the tasks were considered
successful if the reused code was able to be executed by a test harness.

Based on this evaluation we make these quantitative findings:

• We accept our hypothesis -: through an ANOVA analysis, we reject the null hypothesis
relative to -, meaning that participants using Gilligan were able to complete their tasks in
significantly less time than developers performing the same tasks with standard IDE tools.

• We accept our hypothesis -: Fisher’s test rejects the null hypothesis relative to -, meaning
that participants using Gilligan were significantly more likely to successfully complete their
pragmatic reuse tasks ( of  treatments were successful for Gilligan trials while only  of
 were successful for the manual trials).

• We accept our hypothesis -: theMWWtest rejects the null hypothesis relative to -, mean-
ing that participants spent significantly less time investigating an infeasible reuse task than
those investigating the same task manually.



e evaluation presented in this chapter did not only focus on quantitative approaches but also
leveraged qualitative techniques through the large volume of participant statements we collected over
the  hours we spent with them while performing this experiment. Using a grounded-theory ap-
proach we found five key conceptual categories that were on developers’ minds as they were per-
forming these tasks. While some of them, such as program understanding and the mechanics of
performing a pragmatic reuse task are not all that surprising, the importance of the other three—
dependency identification, mental models, and hypothesis testing— were surprising.

Two groups of statements in particular, from the qualitative side of this experiment, jumped out
at us: “Gilligan didn’t force me to do anything I didn’t want to do. Manually it was just more work,
 orders of magnitude more”, and “I explored the task for a shorter duration [using Gilligan] but
was more confident in my decision to surrender. Manually would have taken longer but I would be
less confident in my decision to give up.” ese statements represent sentiments that many of our
participants had in this experiment: Gilligan can help one understand and to perform these tasks in
ways that are much more effective than standard development practice.





Chapter 

Discussion

. Alternative reuse strategies
is dissertation has mainly presented reuse strategies involving the reuse of a feature by carefully
building a reuse plan from some small fragment (usually a method) of source code. While Gilligan
is well-suited to this type of reuse strategy, there are two-other approaches that developers may want
to employ:

• Top-down reuse. Rather than build up from a small kernel of knowledge, a developer could
choose to accept large amounts of functionality and then to trim down the parts they do not
need to reuse. In this way they would be selectively cutting out functionality, rather than se-
lectively including it.

• Hybrid reuse. Alternatively to carefully adding or removing functionality, a developer could
choose to build up the code they want to reuse by balancing the necessity of the functionality
against the ease of reuse. at is, the developerwould not worry about reusing limited amounts
of extraneous functionality if it were cheap to reuse. is approach can make it easier to ac-
complish a reuse task, especially to evaluate the effectiveness of a prototype and to ensure that
the code actually does what is desired before a more considered approach is taken. We have
found this approach to be effective in practice, although care must be taken to ensure that too
much extraneous functionality is not reused.

While we have not discussed Gilligan in terms of these alternative strategies within this disserta-
tion, both strategies can be easily employed by a developer using Gilligan.

A fourth approach, involving taking a dependency on a whole system, is not complementary to
these other three approaches and generally not an acceptable reuse technique in practice. Reusing an
entire system generally leads to the phenomenon known as bloat in which the footprint of a soware
system grows enormously with unneeded functionality; in addition to adding a large body of unused

code to the system, this approach also complicates comprehension activities as it can be difficult to
identify which portions of the reused system must be investigated to fix a defect or add a new feature.
Instead, we can see active attempts in industry to strip away unnecessary functionality, for example,
in the Eclipse Rich Client Platform [Edgar, a,b].

. Limitations of approach
ere are two main limitations of our approach to pragmatic soware reuse:

. Planning overhead can overwhelm performance benefits for small reuse tasks. A developer must
expend a certain amount of effort to create a pragmatic reuse plan; when the effort required
exceeds the amount of time the developer would need to perform the reuse task manually, our
approach does not make sense. As such, performing pragmatic reuse tasks using our approach
for small tasks is not recommended. As a guideline, we have found that tasks that only reuse
a self-contained set of a handful of methods or less are generally easier to perform by hand.
Interestingly, we expected that the QIF Parser task outlined in Chapter  would be easier to
perform manually due to the fact that the functionality was well contained; however, even in
this case, developers were much quicker using Gilligan.

. Non-code artifacts are not analyzed and cannot be reused. Our approach to planning pragmatic
reuse tasks only considers the static structure of the code. Because of this, Gilligan cannot help
developers reuse documentation, configuration settings, data files, or any other infrastructure
associated with a project. While ‘design-level’ features can be reused using Gilligan, our intent
was not to explicitly enable the reuse of designs themselves, but of the code that embodies those
designs.

. Evaluation
We conducted many surveys, case studies, and controlled experiments while investigating how de-
velopers perform pragmatic reuse tasks using our Gilligan prototypes. Industrial developers were
involved at each significant phase of these evaluations and we relied heavily on their opinions and
insights to guide our research. While none of these studies were excessively large, we are confident
that our results truly demonstrate that our approach improves the state-of-the-art for developers
performing pragmatic reuse tasks. e breadth of tasks and developers who have participated in
our experiments and case studies has given us confidence that our approaches can be effective in
industrial settings.

As mentioned in Section ., we encountered several organizational obstacles when getting in-
dustrial developers to performpragmatic reuse tasks on their own code. ese problemsmainly arose



from concerns raised by our participant’s managers and their company’s legal departments with re-
spect to releasing important internal data to us. As we needed this data to understand both the nature
of the tasks they were performing, as well as the process by which they undertook them, we opted in
later studies to get developers to partake in controlled experiments rather than case studies to avoid
such problems. e consequence of this choice was increased internal validity as we could much
more effectively compare how these industrial developers performed relative to one and other with
various treatments, but at the expense of decreased external validity as the developers were perform-
ing far fewer and more constrained pragmatic reuse tasks.

One issue that commonly arises in evaluations of developer productivity is that of the extreme
range of abilities of developers. While this range of abilities certainly exists, we never encountered
a situation in any of our experiments where we considered it to be a problem. In each experiment,
developers performed two or more tasks using various treatments and the situation where a single
developer failed at all their assigned tasks never occurred.

. Future work
Based on all our observations and conversations with developers throughout this research process,
we have identified three design requirements that a fourth prototype of Gilligan should consider.

DG .: Support identifying sub-type relationships more effectively. Currently, Gilligan shows par-
ent classes and interfaces as direct dependencies of a class; however, for a calling rela-
tionship where a method may be declared within a subclass, this support is insufficient.
In this case, Gilligan simply shows the call relationship to the statically-derivablemethod
in the super type. Gilligan should perform additional analysis to help developers avoid
being trapped by complexities that may be obscured by the type hierarchy.

DG .: Adaptively update direct and indirect dependency counts. e direct and indirect depen-
dency counts provided within Gilligan give the developer an indication of how many
individual dependencies one structural element has. ese counts are currently static,
but should not be; if a developer rejects an expensive dependency, the count for that
element (and all other elements depending on the newly-rejected element) should be
dynamically updated to reflect this change.

DG .: Provide an active recommendation system to help developers avoid expensive structural
elements. Gilligan currently acts as a mechanism to help developers plan and perform
pragmatic reuse tasks. While the tool can help them to be more systematic and guide
them to dependencies they should investigate, it does not currently explicitly help them
avoid those dependencies that could be expensive to reuse. Gilligan should incorporate
a recommendation system that considers not only the structural relationships within the



system, but also all the decisions the developer has already made in their reuse plan; as
the developer makes further decisions, the recommendations can be refined to better
match the developer’s context.

ere are also several other directions we would like to consider for the Gilligan tool as well as
pragmatic reuse research in general:

• Create reusable components using Gilligan. Gilligan aims to help developers extract some func-
tional unit that was not necessarily designed in a reusable fashion from an existing system and
integrate it into their own project. Gilligan could be adapted to take a reuse plan and extract
the code into a standalone component, instead of integrating it into the developer’s project.
e developer could then use the component in a black-box manner, thus enabling other de-
velopers to reuse the same component in the future.

• Use Gilligan to compose new systems. We have advocated pragmatic reuse as a mechanism to
reuse code within existing systems; however, we have not investigated using pragmatic reuse
to reuse code within empty systems. While Gilligan does not impose any restrictions on the
target project that would limit this approach, additional support would enable the source code
from multiple pragmatic reuse tasks to be integrated more effectively.

• Support reusing and adapting existing test suites applicable for reused code. While we would
argue that reusing tested, proven source code is generally better than writing new code from
scratch, this belief would be further reinforced if test cases associated with reused source code
could be detected and reused as well.

• Provide feedback to original source code authors when their code is reused pragmatically. One
of the main reasons developers perform pragmatic reuse tasks is that they lack the ability to
change the original code; that said, providing feedback to the owner of the code about the
pragmatic reuse task could both help them understand how their code is being used in reality
and give them data to consider future changes to the code to make it more reusable by others.

• Enable changes to the original code to be applied to the reused code. e primary negative
property associated with code clones is that having clones increases maintenance effort as any
change must be made many times to propagate throughout a system. In the pragmatic reuse
scenario this is even more complex as the reused code may be spread between many projects,
some of which the original developer may not even know about. While developers who have
reused code may explicitly not want to have their code updated (Cordy [] mentions this
explicitly), the ability to do so could still be supported for those who want it; by tracking ex-
actly where Gilligan got the source code that was reused, as well as where the reused code was
placed, Gilligan could be augmented to guide a developer through the application of changes
that were made to the original code to the relevant locations within the reused code.



Chapter 

Conclusion

Reusing soware artifacts has been demonstrated to be an effective mechanism to decrease develop-
ment times, soware product costs, and defect rates. While black-box reuse is most oen promoted
as the “way” reuse should be effected in an organization, practice shows that a large proportion of
reused soware artifacts are reused in a pragmatic way from source code that was not designed for
reuse.

Unfortunately, pragmatic reuse tasks are oen stigmatized as the “wrong” way to reuse code; this
stigma has developed over time due to the non-systematic, ad hoc nature of these tasks that can lead
to their lack of proper consideration and performance.

e thesis of this dissertation is that by providing developers with mechanisms to plan prag-
matic reuse tasks and capture their intent in a structured way, we can enable developers to perform
pragmatic reuse tasks in less time and with greater confidence. We conducted five evaluations to
accumulate evidence in support of our thesis.

rough a survey of  industrial developers we found that these developers do perform prag-
matic reuse tasks. An uncontrolled industrial case study later found that four industrial developers
were able to create pragmatic reuse plans with the first prototype of our pragmatic reuse tool, called
Gilligan.

A controlled experiment found that developers frequentlymake errors locating structural depen-
dencies in source code manually, finding only  of structural dependencies from an initial seed
while developers using our second Gilligan prototype were able to find  of the correct dependen-
cies.

rough a case study evaluating our third prototype of Gilligan we found that through automat-
ing the enactment of a pragmatic reuse plan we could greatly reduce the number of compilation
errors a developer must fix while enacting a pragmatic reuse plan bymore than  and decrease the
number of cognitive decisions they must consider by more than . rough another controlled
experiment we found that developers enacting pragmatic reuse plans were significantlymore likely to
succeed ( of  cases with Gilligan compared to  of  cases without) and in much less time (between

 and  less time) using Gilligan.
Finally, we performed a large-scale controlled experiment that found a statistically significant

time savings () for developers using Gilligan to perform a holistic pragmatic reuse task involving
both planning and performing the reuse task. rough qualitative observations made during this
experiment we also identified five conceptual areas that are of keen concern to developers performing
pragmatic reuse tasks.

By employing ourmodel of pragmatic reuse through our tool suite, we havemade pragmatic reuse
tasks less ad hoc and more systematic. is has increased the likelihood of a developer successfully
completing a pragmatic reuse task. is increased likelihood translates into the potential for greater
adoption of pragmatic reuse tasks within industrial projects which could lead to better productivity,
lower costs, and lower rates of defects over soware written from scratch.

. Contributions
is dissertation has made five main contributions:

. A model for capturing developer intent while planning a pragmatic reuse task (the pragmatic
reuse plan).

. e Gilligan prototype tool that provides a visual representation of a pragmatic reuse plan and
a mechanism to help developers explore and triage the dependencies within the source code
they are investigating for reuse as well as semi-automatically transforming the reused code
according to the reuse plan.

. Evidence that developers can much more accurately identify structural dependencies using
Gilligan than standard tools.

. Evidence that Gilligan can make a statistically-significant impact on the amount of time re-
quired to perform pragmatic reuse tasks.

. A categorization of the key cognitive aspects facing developers as they performpragmatic reuse
tasks.



Bibliography

Jean-Raymond Abrial (). e B-book: Assigning Programs to Meanings. New York, NY, USA:
Cambridge University Press → p. 

Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer (). Specification language.
In R. M. McKeag and A. M. Macnaughten (Eds.), On the Construction of Programs, –.
Cambridge University Press → p. 

Samuel A. Ajila and Di Wu (). Empirical study of the effects of open source adoption on
soware development economics. Journal of Systems and Soware ():–.
doi:./j.jss... → p. 

Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo (). How reuse influences productivity
in object-oriented systems. Communications of the ACM ():–.
doi:./. → p. 

Paul G. Bassett (). e theory and practice of adaptive reuse. SIGSOFT Soware Engineering
Notes ():–. doi:./. → p. 

Ira D. Baxter (). DMS: Program transformations for practical scalable soware evolution. In
Proceedings of the International Workshop on Principles of Soware Evolution (IWPSE), –.
doi:./. → p. 

William Berg, Marshall Cline, and Mike Girou (). Lessons learned from the os/ oo project.
Communications of the ACM ():–. doi:./. → p. 

T. J. Biggerstaff (). e library scaling problem and the limits of concrete component reuse. In
Proceedings of the International Conference on Soware Reuse (ICSR), –.
doi:./ICSR.. → p. 

Barry Boehm (). Managing soware productivity and reuse. Computer ():–.
doi:./. → p. 

Fred P. Brooks, Jr. (). No silver bullet: Essence and accidents of soware engineering.
Computer ():–. doi:./MC.. → p. 

Gianluigi Caldiera and Victor R. Basili (). Identifying and qualifying reusable soware
components. Computer ():–. doi:./. → p. 

http://dx.doi.org/10.1016/j.jss.2007.01.011
http://dx.doi.org/10.1145/236156.236184
http://dx.doi.org/10.1145/258368.258371
http://dx.doi.org/10.1145/512035.512047
http://dx.doi.org/10.1145/226239.226253
http://dx.doi.org/10.1109/ICSR.1994.365806
http://dx.doi.org/10.1109/2.789755
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/2.67210

Kunrong Chen and Václav Rajlich (). Case study of feature location using dependence graphs.
In Proceedings of the International Workshop on Program Comprehension (IWPC), –.
doi:./WPC.. → p. 

Y.-F. R. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wallach (). Ciao: A graphical navigator for
soware and document repositories. In Proceedings of the International Conference on Soware
Maintenance (ICSM), –. doi:./ICSM.. → p. 

Juliet M. Corbin and Anselm Strauss (). Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative Sociology ():–. doi:./BF → p. , 

James R. Cordy (). Comprehending reality: Practical barriers to industrial adoption of
soware maintenance automation. In Proceedings of the International Workshop on Program
Comprehension (IWPC), –. doi:./WPC.. → p. , , 

James R. Cordy (). e TXL source transformation language. Science of Compuer
Programming ():–. doi:./j.scico... → p. 

Rylan Cottrell (). Semi-automating Small-Scale Source Code Reuse via Structural
Correspondence. Master’s thesis, University of Calgary → p. 

Rylan Cottrell, Robert J. Walker, and Jörg Denzinger (a). Jigsaw: A tool for the small-scale
reuse of source code. In Companion of the International Conference on Soware Engineering
(ICSE), –. doi:./. → p. 

Rylan Cottrell, Robert J. Walker, and Jörg Denzinger (b). Semi-automating small-scale source
code reuse via structural correspondence. In Proceedings of the International Symposium on the
Foundations of Soware Engineering (FSE), –. doi:./. → p. 

Brian de Alwis and Gail C. Murphy (). Using visual momentum to explain disorientation in
the Eclipse IDE. In Proceedings of the Visual Languages and Human-Centric Computing
(VLHCC), –. doi:./VLHCC.. → p. 

Edsger W. Dijkstra (). Notes on structured programming. In Structured Programming, chap. ,
–. London, UK: Academic Press Ltd. → p. , 

omas Drake (). Measuring soware quality: A case study. Computer ():–.
doi:./. → p. 

Ekwa Duala-Ekoko and Martin P. Robillard (). Tracking code clones in evolving soware. In
Proceedings of the International Conference on Soware Engineering (ICSE), –.
doi:./ICSE.. → p. 

Nick Edgar (a). Bug : Enable Eclipse to be used as a rich client platform.
https://bugs.eclipse.org/bugs/show_bug.cgi?id=. Last checked December . → p. 

Nick Edgar (b). Eclipse Rich Client Platform UI.
http://www.eclipse.org/rcp/generic_workbench_summary.html. Last checked December . →
p. 



http://dx.doi.org/10.1109/WPC.2000.852498
http://dx.doi.org/10.1109/ICSM.1995.526528
http://dx.doi.org/10.1007/BF00988593
http://dx.doi.org/10.1109/WPC.2003.1199203
http://dx.doi.org/10.1016/j.scico.2006.04.002
http://dx.doi.org/10.1145/1370175.1370194
http://dx.doi.org/10.1145/1453101.1453130
http://dx.doi.org/10.1109/VLHCC.2006.49
http://dx.doi.org/10.1109/2.544241
http://dx.doi.org/10.1109/ICSE.2007.90
https://bugs.eclipse.org/bugs/show_bug.cgi?id=36967
http://www.eclipse.org/rcp/generic_workbench_summary.html

omas Eisenbarth, Rainer Koschke, and Daniel Simon (). Locating features in source sode.
IEEE Transactions on Soware Engineering ():–. doi:./TSE.. →
p. 

Jacky Estublier and German Vega (). Reuse and variability in large soware applications.
SIGSOFT Soware Engineering Notes ():–. doi:./. → p. 

Martin S. Feather (). Reuse in the context of a transformation-based methodology. In Ted J.
Biggerstaff and Alan J. Perlis (Eds.), Soware Reusability, vol. : Concepts and Models, chap. ,
–. Addison–Wesley → p. 

G. Fischer (). Cognitive view of reuse and redesign. IEEE Soware ():–.
doi:./MS.. → p. 

William B. Frakes and Christopher J. Fox (). Sixteen questions about soware reuse.
Communications of the ACM ():–. doi:./. → p. 

William B. Frakes and Kyo Kang (). Soware reuse research: Status and future. IEEE
Transactions on Soware Engineering ():–. doi:./TSE.. → p. , 

William B. Frakes and Giancarlo Succi (). An industrial study of reuse, quality, and
productivity. Journal of Systems and Soware ():–. doi:./S-()-
→ p. 

John E. Gaffney, Jr. and R. D. Cruickshank (). A general economics model of soware reuse. In
Proceedings of the International Conference on Soware Engineering (ICSE), –.
doi:./. → p. 

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (). Design Patterns: Elements
of Reusable Object-Oriented Soware. Boston, MA, USA: Addison-Wesley → p. 

David Garlan, Robert Allen, and John Ockerbloom (). Architectural mismatch: Why reuse is
so hard. IEEE Soware ():–. doi:./. → p. , , , 

E. S. Garnett and J. A. Mariani (). Soware reclamation. Soware Engineering Journal
():– → p. 

Mohamed G. Gouda and Ted Herman (). Adaptive programming. IEEE Transactions on
Soware Engineering ():–. doi:./. → p. 

William G. Griswold and David Notkin (). Automated assistance for program restructuring.
ACM Transactions on Soware Engineering and Methodology ():–.
doi:./. → p. 

Brian Henderson-Sellers (). Object-Oriented Metrics: Measures of Complexity. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc. → p. 

Johannes Henkel and Amer Diwan (). CatchUp!: Capturing and replaying refactorings to
support API evolution. In Proceedings of the International Conference on Soware Engineering
(ICSE), –. doi:./. → p. 



http://dx.doi.org/10.1109/TSE.2003.1183929
http://dx.doi.org/10.1145/1095430.1081757
http://dx.doi.org/10.1109/MS.1987.231065
http://dx.doi.org/10.1145/203241.203260
http://dx.doi.org/10.1109/TSE.2005.85
http://dx.doi.org/10.1016/S0164-1212(00)00121-7
http://dx.doi.org/10.1145/143062.143150
http://dx.doi.org/10.1109/52.469757
http://dx.doi.org/10.1109/32.92911
http://dx.doi.org/10.1145/152388.152389
http://dx.doi.org/10.1145/1062455.1062512

Reid Holmes and Gail C. Murphy (). Using structural context to recommend source code
examples. In Proceedings of the International Conference on Soware Engineering (ICSE),
–. doi:./. → p. 

Reid Holmes and Robert J. Walker (a). Supporting the investigation and planning of pragmatic
reuse tasks. In Proceedings of the International Conference on Soware Engineering (ICSE),
–. doi:./ICSE.. → p. , 

Reid Holmes and Robert J. Walker (b). Task-specific source code dependency investigation. In
Proceedings of the International Workshop on Visualizing Soware for Understanding and Analysis
(VISSOFT), –. doi:./VISSOF.. → p. 

Reid Holmes and Robert J. Walker (). Lightweight, semi-automated enactment of
pragmatic-reuse plans. In Proceedings of the International Conference on Soware Reuse (ICSR),
–. doi:./----_ → p. 

Reid Holmes, Robert J. Walker, and Gail C. Murphy (). Approximate structural context
matching: An approach to recommend relevant examples. IEEE Transactions on Soware
Engineering ():–. doi:./TSE.. → p. , 

Katsuro Inoue, Reishi Yokomori, Hikaru Fujiwara, Tetsuo Yamamoto, Makoto Matsushita, and
Shinji Kusumoto (). Component Rank: Relative significance rank for soware component
search. In Proceedings of the International Conference on Soware Engineering (ICSE), –.
doi:./ICSE.. → p. 

Patricia Jablonski and Daqing Hou (). CReN: A tool for tracking copy-and-paste code clones
and renaming identifiers consistently in the IDE. In Proceedings of the Workshop on Eclipse
Technology eXchange (eTX), –. doi:./. → p. 

Ralph E. Johnson and Brian Foote (). Designing reuseable [sic] classes. Journal of
Object-Oriented Programming ():– → p. 

Cory Kapser and Michael W. Godfrey (). “Cloning considered harmful” considered harmful.
In Proceedings of the Working Conference on Reverse Engineering (WCRE), –.
doi:./WCRE.. → p. 

Gregor Kiczales, , Jim des Rivières, and Daniel Bobrow (). e Art of the Metaobject Protocol.
MIT Press → p. 

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold
(). An overview of AspectJ. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), –. doi:./--- → p. 

Miryung Kim and David Notkin (). Program element matching for multi-version program
analyses. In Proceedings of the International Workshop on Mining Soware Repositories (MSR),
–. doi:./. → p. 

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy (). An empirical study of code
clone genealogies. In Proceedings of the Joint European Soware Engineering Conference and the
International Symposium on the Foundations of Soware Engineering (ESEC/FSE), –.
doi:./. → p. , 



http://dx.doi.org/10.1145/1062455.1062491
http://dx.doi.org/10.1109/ICSE.2007.83
http://dx.doi.org/10.1109/VISSOF.2007.4290707
http://dx.doi.org/10.1007/978-3-540-68073-4_35
http://dx.doi.org/10.1109/TSE.2006.117
http://dx.doi.org/10.1109/ICSE.2003.1201184
http://dx.doi.org/10.1145/1328279.1328283
http://dx.doi.org/10.1109/WCRE.2006.1
http://dx.doi.org/10.1007/3-540-45337-7
http://dx.doi.org/10.1145/1137983.1137999
http://dx.doi.org/10.1145/1081706.1081737

Charles W. Krueger (). Soware reuse. ACM Computing Surveys ():–.
doi:./. → p. , , 

Charles W. Krueger (). Soware product line reuse in practice. In Proceedings of the
Symposium on Application-Specific Systems and Soware Engineering Technology (ASSET), .
doi:./ASSET.. → p. , 

B. M. Lange and T. G. Moher (). Some strategies of reuse in an object-oriented programming
environment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI), –. doi:./. → p. 

Filippo Lanubile and Giuseppe Visaggio (). Extracting reusable functions by flow graph-based
program slicing. IEEE Transactions on Soware Engineering ():–.
doi:./. → p. 

J. L. Lawrence (). Why is soware always late? SIGSOFT Soware Engineering Notes
():–. doi:./. → p. 

Bongshin Lee, Cynthia S. Parr, Catherine Plaisant, Benjamin B. Bederson, Vladislav D. Veksler,
Wayne D. Gray, and Christopher Kotfila (). TreePlus: Interactive exploration of networks
with enhanced tree layouts. IEEE Transactions on Visualization and Computer Graphics
():–. doi:./TVCG.. → p. 

Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher (). CodeGenie:
A tool for test-driven source code search. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), –.
doi:./. → p. 

Karl J. Lieberherr, Ignacio Silva-Lepe, and Cun Xiao (). Adaptive object-oriented
programming using graph-based customization. Communications of the ACM ():–.
doi:./. → p. 

Steve McConnell (). Code Complete. Redmond, WA, USA: Microso Press, nd ed. → p. 

D. Mcilroy (). Mass-produced soware components. In Soware Engineering: Report on a
Conference by the NATO Science Committee, – → p. , , 

Bertrand Meyer (). On to components. Computer ():–. doi:./. →
p. , 

Mira Mezini and Klaus Ostermann (). Integrating independent components with on-demand
remodularization. In Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), –. doi:./. → p. 

Matthew B. Miles and Michael Huberman (). Qualitative Data Analysis: An Expanded
Sourcebook (nd Edition). ousand Oaks, CA.: Sage Publications, Inc. → p. , 

M. Morisio, M. Ezran, and C. Tully (). Success and failure factors in soware reuse. IEEE
Transactions on Soware Engineering ():–. doi:./TSE.. → p. 



http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1109/ASSET.2000.888062
http://dx.doi.org/10.1145/67449.67465
http://dx.doi.org/10.1109/32.588543
http://dx.doi.org/10.1145/1012443.1012445
http://dx.doi.org/10.1109/TVCG.2006.106
http://dx.doi.org/10.1145/1297846.1297944
http://dx.doi.org/10.1145/175290.175303
http://dx.doi.org/10.1109/2.738312
http://dx.doi.org/10.1145/582419.582426
http://dx.doi.org/10.1109/TSE.2002.995420

H. A. Müller and K. Klashinsky (). Rigi: A system for programming-in-the-large. In
Proceedings of the International Conference on Soware Engineering (ICSE), – → p. , 

J. M. Neighbors (). Draco: A method for engineering reusable soware systems. In Ted J.
Biggerstaff and Alan J. Perlis (Eds.), Soware Reusability, vol. : Concepts and Models, –.
New York, NY, USA: Addison–Wesley. doi:./. → p. 

William F. Opdyke (). Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of
Illinois at Urbana-Champaign → p. 

D.L. Parnas (). On the design and development of program families. IEEE Transactions on
Soware Engineering ():–. doi:./TSE.. → p. , 

Jeffrey Parsons and Chad Saunders (). Cognitive heuristics in soware engineering: Applying
and extending anchoring and adjustment to artifact reuse. IEEE Transactions on Soware
Engineering ():–. doi:./TSE.. → p. , 

Shari Lawrence Pfleeger (). Design and analysis in soware engineering—Part : e language
of case studies and formal experiments. SIGSOFT Soware Engineering Notes ():–.
doi:./. → p. 

Jeffrey S. Poulin, Joseph M. Caruso, and Debera R. Hancock (). e business case for soware
reuse. IBM Systems Journal ():– → p. , 

Lutz Prechelt (). An empirical comparison of seven programming languages. Computer
():–. doi:./. → p. 

Rubén Prieto-Díaz (). Status report: Soware reusability. IEEE Soware ():–.
doi:./. → p. , 

iagarajan Ravichandran and Marcus A. Rothenberger (). Soware reuse strategies and
component markets. Communications of the ACM ():–. doi:./. →
p. , , 

S. P. Reiss (). e paradox of soware visualization. In Proceedings of the International
Workshop on Visualizing Soware for Understanding and Analysis (VISSOFT), .
doi:./VISSOF.. → p. , 

Martin P. Robillard (). Representing Concerns in Source Code. Ph.D. thesis, University of British
Columbia → p. 

Martin P. Robillard (). Automatic generation of suggestions for program investigation. In
Proceedings of the Joint European Soware Engineering Conference and the International
Symposium on the Foundations of Soware Engineering (ESEC/FSE), –.
doi:./. → p. 

Martin P. Robillard and Gail C. Murphy (). Concern graphs: Finding and describing concerns
using structural program dependencies. In Proceedings of the International Conference on
Soware Engineering (ICSE), –. doi:./. → p. 



http://dx.doi.org/10.1145/73103.73115
http://dx.doi.org/10.1109/TSE.1976.233797
http://dx.doi.org/10.1109/TSE.2004.94
http://dx.doi.org/10.1145/190679.190680
http://dx.doi.org/10.1109/2.876288
http://dx.doi.org/10.1109/52.210605
http://dx.doi.org/10.1145/859670.859678
http://dx.doi.org/10.1109/VISSOF.2005.1684306
http://dx.doi.org/10.1145/1081706.1081711
http://dx.doi.org/10.1145/581339.581390

Martin P. Robillard and Gail C. Murphy (). Representing concerns in source code. ACM
Transactions on Soware Engineering and Methodology ():. doi:./. →
p. 

Mary Beth Rosson and John M. Carroll (). Active programming strategies in reuse. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP), –.
doi:./---_ → p. 

Mary Beth Rosson and John M. Carroll (). e reuse of uses in Smalltalk programming. ACM
Transactions on Computer-Human Interaction ():–. doi:./. → p. 

Marcus A. Rothenberger, Kevin J. Dooley, Uday R. Kulkarni, and Nader Nada (). Strategies for
soware reuse: A principal component analysis of reuse practices. IEEE Transactions on Soware
Engineering ():–. doi:./TSE.. → p. 

Chris Sadler and Barbara Ann Kitchenham (). Evaluating soware engineering methods and
tools—Part : e influence of human factors. SIGSOFT Soware Engineering Notes ():–.
doi:./. → p. 

orsten Schafer, Michael Eichberg, Michael Haupt, and Mira Mezini (). e SEXTANT
soware exploration tool. IEEE Transactions on Soware Engineering ():–.
doi:./TSE.. → p. 

Richard W. Selby (). Enabling reuse-based soware development of large-scale systems. IEEE
Transactions on Soware Engineering ():–. doi:./TSE.. → p. , , , 

Arun Sen (). e role of opportunism in the soware design reuse process. IEEE Transactions
on Soware Engineering ():–. doi:./. → p. , 

Susan Elliott Sim and Margaret-Anne D. Storey (). A structured demonstration of program
comprehension tools. In Proceedings of the Working Conference on Reverse Engineering (WCRE),
–. doi:./WCRE.. → p. 

Janice Singer (). Practices of soware maintenance. In Proceedings of the International
Conference on Soware Maintenance (ICSM), . doi:./ICSM.. → p. 

omas A. Standish (). An essay on soware reuse. IEEE Transactions on Soware Engineering
():– → p. 

Neal Stephenson (). Snow Crash. Bantam Books → p. 

M.-A. D. Storey, K. Wong, and H. A. Müller (). How do program understanding tools affect
how programmers understand programs? Science of Compuer Programming (-):–.
doi:./S-()- → p. 

Giancarlo Succi, Luigi Benedicenti, and Tullio Vernazza (). Analysis of the effects of soware
reuse on customer satisfaction in an RPG environment. IEEE Transactions on Soware
Engineering ():–. doi:./. → p. 

Clemens Szyperski (). Component soware: Beyond object-oriented programming. New York,
NY, USA: ACM Press → p. , 



http://dx.doi.org/10.1145/1189748.1189751
http://dx.doi.org/10.1007/3-540-47910-4_2
http://dx.doi.org/10.1145/234526.234530
http://dx.doi.org/10.1109/TSE.2003.1232287
http://dx.doi.org/10.1145/235969.235972
http://dx.doi.org/10.1109/TSE.2006.94
http://dx.doi.org/10.1109/TSE.2005.69
http://dx.doi.org/10.1109/32.605760
http://dx.doi.org/10.1109/WCRE.2000.891465
http://dx.doi.org/10.1109/ICSM.1998.738502
http://dx.doi.org/10.1016/S0167-6423(99)00036-2
http://dx.doi.org/10.1109/32.922717

John R. Taylor (). An Introduction to Error Analysis: e Study of Uncertainties in Physical
Measurements. University Science Books, nd ed. → p. 

Suresh ummalapenta and Tao Xie (). Parseweb: A programmer assistant for reusing open
source code on the web. In Proceedings of the International Conference on Automated Soware
Engineering (ASE), –. doi:./. → p. 

Michael Toomim, Andrew Begel, and Susan L. Graham (). Managing duplicated code with
linked editing. In Proceedings of the Symposium on Visual Languages and Human Centric
Computing (VLHCC), –. doi:./VLHCC.. → p. 

Will Tracz (). Where does reuse start? SIGSOFT Soware Engineering Notes ():–.
doi:./. → p. 

Jilles van Gurp and Jan Bosch (). Design erosion: Problems and causes. Journal of Systems and
Soware ():–. doi:./S-()- → p. 

Bruce W. Weide, William F. Ogden, and Stuart H. Zweben (). Reusable soware components,
vol. , –. San Diego, CA, USA: Academic Press Professional, Inc. → p. 

Daniel M. Yellin and Robert E. Strom (). Protocol specifications and component adaptors.
ACM Transactions on Programming Languages and Systems ():–.
doi:./. → p. 



http://dx.doi.org/10.1145/1321631.1321663
http://dx.doi.org/10.1109/VLHCC.2004.35
http://dx.doi.org/10.1145/382296.382702
http://dx.doi.org/10.1016/S0164-1212(01)00152-2
http://dx.doi.org/10.1145/244795.244801

Appendix A

Industrial Pragmatic Reuse Survey

is chapter includes the supporting materials from the industrial survey performed at the outset
of the research contained in this dissertation. e intent and findings of this survey is described
in Chapter . We include the survey provided to the industrial developers (p. ). e complete
results of the Likert Scale questions are given in Table A. while the aggregate results are provided
in Table A..

e supportingmaterials for the case studies discussed in Section . are provided in Section A.
(p. ). e industrial developers involved in this study were asked to return one copy of the second
page of this questionnaire for each task they attempted.

 1 of 9

Software Reuse Questionnaire

Please email responses to rtholmes@cs.ucalgary.ca

Thank you for filling out this questionnaire. This is the first part of a study I am

conducting that examines whether developers reuse source code, and if so, how they do

it, and how the reuse experience can be improved. Your feedback is critical to ensuring

that this research is relevant to how industrial developers reuse source code.

Just to be clear, the definition I’m using for reuse may a little different than you’re used

to. This is what I mean by both reuse and the reuse process:

Use/Reuse: The distinction between use and reuse is somewhat subtle. Calling a

method within a framework or reusable library is not reuse, it is simply

using it. Reuse involves taking code and employing it in a new

context. This definition of reuse does not make any statement about

size: I am interested in the reuse of any code, from single lines and

functions to full classes, packages, and features.

 Examples of reuse:

- Extracting and integrating the code from Azureus that

implements graph drawing functionality you want

- Copying and modifying a class from another project in your

company that implements an AST visitor that performs a

similar operation you want to support.

- Extracting a wizard from Eclipse that creates new projects and

modifying it to create new templates in your system.

Reuse Process: By this definition of reuse the reuse process entails four primary steps:

1) Locating source code to be reused

2) Identifying which portions of the code are relevant to the task and
make the decision to proceed (or not) with reusing the code

3) Extracting the code from the context in which it was developed

4) Integrating the code into a new development context

This questionnaire will be an important part of my investigation into the second step of

the reuse process. Gilligan, the tool I am developing, will eventually address steps 2-4 in

this process. The current prototype of Gilligan (the one I will get you to use) is only

posed to address step 2.



 2 of 9

Only I will have access to the raw results from this survey. I will process the results so

that they cannot be attributed to individual developers / organizations. I will not quote

you without your permission.

The goal of this questionnaire is to identify some background information about your

development practices, determine whether you have reused source code in the past, and

determine the nature of the code you have reused (if you have).

I will happily call you at anytime to conduct this questionnaire on the phone, or to follow

up on the answers you gave me, if it is more convenient for you. Due to the time-

sensitive nature of this work (paper deadline) I would appreciate your responses as soon

as possible. When answering the multiple choice questions please mark your selection in

bold. For the free form answers, feel free to delete the underlined sections and fill in your

response. Please use as much space as you need.

Your responses are very important to me as I will use them to guide the rest of my

research. I will incorporate your feedback into my tool as much as possible. While my

tool will remain a research prototype, you are entitled to any future versions (if you want

them). Furthermore, if you know any other developers (in your organization or not) who

you think would be interested in answering this questionnaire (or performing the full

evaluation) please let me know; I am always looking for new participants.

I am also preparing a tool demonstration so you can test out the Gilligan system (as it

exists at least) and give me feedback. If you are interested in trying the demo, please let

me know. This will involve a short demo and then you will be able to use the tool to

explore any existing code you would be interested in reusing. If, while you are working,

you could keep an eye out for code you would be interested in reusing (or are reusing)

write them down so you can test my tool on these cases when I get it to you.

Thanks again for your help. I really look forward to reading your responses and am

excited to see how the tool works for you.

--Reid Holmes

(rtholmes@cs.ucalgary.ca)



 3 of 9

Background Questionnaire

Please answer based on your experiences in industry. This does not need to be

constrained to your current job, project, or the tasks you are working on.

1. Name: ______________________

2. Job Title: ____________________

3. Company: ___________________

4. Do you write code on a daily basis? Yes No

5. How long have you been writing code in industry? ______ months/years

6. Have you ever reused code from another project? Yes No

Note: The definition of reuse I am using means copying any amount code
from the location in which it was developed into a new context. Even reusing

code within a project is reuse itself. (see the page 1 para. 3 for more detail)

If no, please skip questions 6 a-g and continue to question 7.

a. When you reuse code, why do you do it?

b. How often do your development tasks involve source code reuse in
any form? Does the task you are working on influence whether or
not you reuse code?



 4 of 9

c. Generally, how large are these reuse tasks (in terms of lines of
code, # of methods / classes / packages, etc.)? What is the
smallest / largest they have been?

d. Do you use any tools to complete these reuse tasks? What
services do these tools provide that help you reuse code?

e. Are these tools sufficient for completing these tasks? How could
they be improved? What support do you need from a tool when you
are planning / executing a reuse task?



 5 of 9

f. What factors do you consider when you decide whether to reuse a
piece of source code or re-implement it from scratch?

g. Are there any specific questions do you want answered about the
code you are considering reusing? What challenges / questions do
you face when you are trying to make the decision from (f) for a
particular piece of code?

7. Do you consider reusing source code features to be good or bad practice?
Specifically, do you consider copying portions of code from existing systems
to use within new ones to be advantageous or disadvantageous?



 6 of 9

8. Do you use any form of abstraction to keep track of the relevant details and
decisions you have made about a feature while you are navigating its source?
Is having a coherent mental picture of a piece of software important for
successfully completing a task? Do you use any specific tools or techniques
(notes, pictures, annotations in the code, etc.) to codify this model?

The next three tables include specific questions about development in general,
IDE’s (in particular Eclipse), and finally reuse itself. Please answer based on your
experiences in industry. Feel free to insert comments below each table if you
have any specific comments you would like to make about a particular question.



 7 of 9

Comments:

Comments:

Development Questions:

s
tr
o
n
g
ly

d
is
a
g
re
e

d
is
a
g
re
e

s
o
m
e
w
h
a
t

d
is
a
g
re
e

n
o
 o
p
in
io
n

s
o
m
e
w
h
a
t

a
g
re
e

a
g
re
e

s
tr
o
n
g
ly

a
g
re
e

I primarily develop new features. 1 2 3 4 5 6 7

I primarily maintain existing features. 1 2 3 4 5 6 7

I have flexibility in choosing how to complete
my development tasks.

1 2 3 4 5 6 7

Creating reusable software is encouraged in
my organization.

1 2 3 4 5 6 7

Reusing software is encouraged in my
organization.

1 2 3 4 5 6 7

My organization has a large amount of code
available to be reused.

1 2 3 4 5 6 7

Portions of features I am developing already
exist in other software systems (and I have
access to the source code) .

1 2 3 4 5 6 7

Environment Questions:

s
tr
o
n
g
ly

d
is
a
g
re
e

d
is
a
g
re
e

s
o
m
e
w
h
a
t

d
is
a
g
re
e

n
o
 o
p
in
io
n

s
o
m
e
w
h
a
t

a
g
re
e

a
g
re
e

s
tr
o
n
g
ly

a
g
re
e

I use an IDE (while working with code). 1 2 3 4 5 6 7

I use advanced IDE tools (e.g. refactoring
support, type hierarchy navigation).

1 2 3 4 5 6 7

My primary development environment is
Eclipse.

1 2 3 4 5 6 7

My primary development language is Java. 1 2 3 4 5 6 7

I use program understanding tools (beyond
those provided by Eclipse itself) to help me
complete my tasks.

1 2 3 4 5 6 7

I prefer using a suite of general purpose tools
that I can apply to many tasks.

1 2 3 4 5 6 7

I prefer targeted tools that are designed to help
me accomplish specific tasks.

1 2 3 4 5 6 7



 8 of 9

Reuse Questions:

s
tr
o
n
g
ly

d
is
a
g
re
e

d
is
a
g
re
e

s
o
m
e
w
h
a
t

d
is
a
g
re
e

n
o
 o
p
in
io
n

s
o
m
e
w
h
a
t

a
g
re
e

a
g
re
e

s
tr
o
n
g
ly

a
g
re
e

I have reused source code (any scope). 1 2 3 4 5 6 7

I have reused whole classes. 1 2 3 4 5 6 7

I have reused whole features. 1 2 3 4 5 6 7

The reuse process as outlined on page one is
similar to how I think of the reuse process.

1 2 3 4 5 6 7

When I reuse source code I am careful to only
reuse exactly those portions that are relevant
to the task I am completing.

1 2 3 4 5 6 7

When reusing code I worry about not fully
understanding the code I am reusing.

1 2 3 4 5 6 7

I rely on IDE tools to help me complete reuse
tasks.

1 2 3 4 5 6 7

I reuse source code to save myself time. 1 2 3 4 5 6 7

I reuse source code to increase the reliability of
my code.

1 2 3 4 5 6 7

I reuse source code to increase the robustness
of my code.

1 2 3 4 5 6 7

Given the choice of implementing a feature or
reusing one from an existing system, I would
choose to roll my own (aka. not reuse).

1 2 3 4 5 6 7

The size of the feature I am working on would
influence my decision to try to reuse it or re-
implement it from scratch.

1 2 3 4 5 6 7

Keeping track of the relevant details of a piece
of source code while navigating its text can be
difficult.

1 2 3 4 5 6 7

Understanding what dependencies a feature
has on its context is important for me to
determine whether I should reuse it.

1 2 3 4 5 6 7

I am more inclined to reuse smaller features
about which I have a complete understanding,
than larger features that are harder to reason
about.

1 2 3 4 5 6 7

I prefer reusing smaller features because it is
difficult to both build an understanding of a
complex reuse task, and carry it out.

1 2 3 4 5 6 7

Reusing smaller features provides less benefit
to me than reusing large features.

1 2 3 4 5 6 7

The definition of reuse outlined on page one is
reasonable to me.

1 2 3 4 5 6 7



 9 of 9

Comments:

9. Do you have any follow up questions / comments? Specifically, any
comments about how you reuse code and the processes you use to
investigate, evaluate, and carry out the reuse process are welcomed. Might
you reuse code more often with the proper tool support? What would that
support look like? Of course, any other comments would also be appreciated.

Thank you for your help with this study. I really appreciate your taking the time to
fill it out and help me try to direct my research in such a way that it can hopefully
be applicable to you and the work you do.



Question P P P P P P P P P P P P
Development

D            
D            
D            
D            
D            
D            
D            
Environment

E            
E            
E            
E            
E            
E            
E            
Reuse

R            
R            
R            
R            
R            
R            
R            
R            
R            
R            
R            
R            
R            
R            
R            
R            
R            
R            

Table A.: Pragmatic reuse industrial survey responses.



Question Min Max Median Mode Avg Stddev(Avg)
Development

D     . .
D     . .
D     . .
D     . .
D     . .
D     . .
D     . .
Environment

E     . .
E     . .
E     . .
E     . .
E     . .
E     . .
E     . .
Reuse

R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .
R     . .

Table A.: Pragmatic reuse industrial survey aggregate responses.



Gilligan Tool Questionnaire
Please email responses to rtholmes@cs.ucalgary.ca

Thanks for trying out my tool. These questions are designed to be answered after filling out the pre-questionnaire and
trying out my tool on some tasks that are of interest to you. Please fill out one reuse task page for each task you
attempted! When you email me your responses, include this document as well as the XML stats files created by the tool
(will be *-stats.xml in the directory you set as your persistence location in the wizard).

Name:

Overall Comments:

1. Did Gilligan improve your ability to plan your reuse tasks?

2. Was Gilligan able to give you a global overview of your reuse tasks?

3. Did Gilligan help you decide whether or not to proceed with the reuse tasks?

4. What aspects of Gilligan were most helpful for you?

5. What aspects of Gilligan were least helpful?

6. How can Gilligan be improved to help you most with your reuse tasks?



Reuse Task

1. What did this task consist of?

2. Have you attempted this task in the past?

3. How large was your reuse task (in # of units)?

 Methods Classes Packages

Accept

Reject

Remap

Already Provided

4. How many lines of code were reused in this task?

5. Do you have any other comments?

Task Questions: strongly
disagree disagree somewhat

disagree
no

opinion
somewh
at agree agree strongly

agree

Gilligan helped me understand this task 1 2 3 4 5 6 7

Gilligan helped me decide whether or
not to proceed with the reuse activity 1 2 3 4 5 6 7

Gilligan helped me discover the
dependencies in the code 1 2 3 4 5 6 7

I was able to make decisions (accept,
reject, etc) based on the information
provided by the tool

1 2 3 4 5 6 7

Using Gilligan could help me attempt
larger, more complex reuse tasks 1 2 3 4 5 6 7



Appendix B

Sample Graph Layout Algorithms

is appendix contains four examples of graph layout strategies we investigated for the first iteration
of the Gilligan prototype (Chapter ). We decided that Figure B. would be best suited to our needs.
e notations that have been added to the figures have been lost to the sands of time.

Figure B.: Tree layout.

Figure B.: Tree layout enforcing a depth hierarchy.



Figure B.: Box-style tree layout.



Figure B.: Radial layout.



Appendix C

Planning evaluation

e laboratorymaterials for the case study described in Section . is provided in SectionC. (p. ).

Initial Gilligan Evaluation

Overview

Thank you for participating in the evaluation of Gilligan, the reuse tool I am developing. The ultimate goal
of the Gilligan system is to help you navigate source code abstractly to enable you to formulate a reuse plan.
This plan can then be used to automatically migrate the code you want to reuse into your system.

The current prototype of Gilligan focuses on the first part of that plan: it is designed to help you navigate
through the source code in a system and decide which portions are relevant to you and which are not. The
goal of this evaluation is to determine if the visual metaphor we are using for the code enables developers to
have fine-grained enough control to make relevant decisions without being overwhelmed by the complexity
of the software they are trying to reuse.

What do we want to find out?

The primary question we’re trying to answer at this stage is:

Can developers use Gilligan effectively to make reasonable reuse decisions/plans?

Specific sub-questions include:

Using the visual tools provided, can I navigate the source code effectively to both gain the fine-grain
understanding necessary while allowing me to abstract away unnecessary details?
Can I decide whether or not to reuse this source code feature? Why or why not?
Does encoding the decisions I have made about the dependencies within the system into the diagram
make it easier to understand the reuse task I am attempting to perform?

What we want to do is make a case that using Gilligan, as it currently exists, developers can plan out reuse
tasks better than doing it manually. We want to use this finding to setup the rest of our work that will
support the extraction of the feature its integration into your target code. This work will be forthcoming.

What do we want you to do?

Ultimately, we want to know what your experience using Gilligan is like. Specifically, we’d like to know
how the answers to the three questions above in relationship to how you used the tool. How was it
successful? How did it fail? How can it be improved? The more specific, the better.

The intent of this evaluation is for you to use the tool on cases of reuse that you are investigating at work. If
you’re not currently looking at reusing any code, try it out on you code base by trying to see if you can use
the tool identify and manage a feature within the code. Please try it on a few different tasks, of different
scopes, we’d really like to know where this approach will work and where it won’t.

When you’re done you can send us some logs that the tool will make of your progress so we can measure
the size of the problems you investigated and how the tool performed for them.



How to install Gilligan

We have created an Eclipse update site for Gilligan.

1. Open Eclipse and using the help menu: go to “Help->Software Updates->Find and Install”.
2. Select “Search for New Features to Install” and press next.
3. Press the “New Remote Site” button. Call the update site “Gilligan” and set the site to be:

http://pages.cpsc.ucalgary.ca/~rtholmes/gilligan/ And press “OK”.
4. Select the Gilligan update site you just created and press finish; follow the remaining prompts.

* If you get a message about Gilligan requiring the Graphical Editor Framework (GEF), you can install
install it by selecting the Eclipse.org update site (use the Callisto discovery site with 3.2) as well as Gilligan
in the last step. You can then choose GEF under Graphical Editors, in addition to the Gilligan components.

How to use the tool

Using Gilligan comes down to a few primary steps:

1. Start a Gilligan Session
2. Navigate the graph, making decisions about the various nodes and edges as you go
3. Determine whether or not you would proceed with the reuse task
4. Save your session and send it back to me with your feedback

If you want to see what a Gilligan task looks like after a few minutes of navigation click here . In this
example I am navigating a graph drawing feature from within Azureus that I want to reuse within a GPS
application.

The Wizard

Gilligan is always started through a wizard that is activated by choosing the “Start Gilligan” button on the
toolbar. In the wizard you will be asked to select the project that contains the code you want to reuse as well
as the project you want to reuse the code within. This will allow Gilligan to extract the structural
dependencies within the source system as well as identify those that are similar to your target environment.

On the “Select Element” page of the wizard where you are presented with a tree view of the packages,
classes and methods in your source system it is important that you select only one class as your starting
context. This is just a tooling limitation but if you select a package, method, or a class that isn’t actually
within your project (such as java.lang.Integer) the tool won’t work correctly.

On the Select Element page you’re really selecting the point from which you want to start navigating the
feature you want to reuse, so choose a class that you think is important to the task you are trying to
accomplish. If you’re only interested in a method or a few methods, don’t worry about it, you can start from
the class and only investigate those methods you are interested in.

The Perspective

The Gilligan perspective will open up once you’ve selected your starting point. This perspective contains 5
parts. The leftmost navigator view will show a tree view of all of the nodes you have visited. Even if you
make some go away on the picture they will still be there (and can be searched with the box at the top



(wildcards allowed)). Below that is a properties box that allows you to view specifics about a node, as well
as edit some of its properties. The main view (top right) provides a graphical depiction of the source code
you’re looking at, while below that is the source view (source for the node or edge you’ve selected) and the
reuse summary view.

Using the Graphical View

The main view shows a graphical depiction of the class you initially selected. Nodes in this abstraction can
be either packages, classes, or methods. Edges between nodes can represent declares relationships (sold gray
line with an unclosed arrow), calls relationships (dotted black lines with small sold arrow), or inheritance
relationships (blue line with a large solid arrow).

Node Colours: The graphical view is supposed to give you a visual depiction of both the code and the
decisions you made about different parts of the system. As you look at nodes you can classify them into one
of three categories:

1. Accept: You want to reuse this code, it is applicable to your task.
2. Reject: This node is not at all useful to you, you don’t want it reused.
3. Remap: This node implements functionality you need but that you want to do in a different way. You

will remap this to existing code in your system (or you will write new code to meet this dependency).

A fourth state, Already Provided, also exists. This state means that the dependency from the source system
is already met in the target (for instance anything marked java.*). This is more flexible than it looks. If you
Accept node A which had dependencies on B and C but you only want B but not C, we can treat references
to B from within A specially when it comes to extracting the code. You can select the state of a node either
through the context menu, the properties view, or by selecting the appropriate box when hovering over a
node.

Navigation: You can navigate through a nodes dependencies either by double clicking on them, or though
the context menu. The primary navigation actions are open (shows a nodes dependencies) and collapse
(collapse a nodes children into itself or collapse the node into its parent). When you hover over a node you
can also click on the X to collapse, up arrow to see classes/interfaces that are extended/implemented, and
the down arrow to see classes/interfaces that extend/implement the current node).

Edges: You can double click on most edges to get the source that realizes that edge. For instance, if you
double click on the edge representing a call from method A to method B you will be presented with the
source for method A highlighted by the calls to method B. This can be handy to show you _specifically_
why an edge exists between nodes so you don’t need to read the whole method and figure it out yourself.
This also works if you click on an edge from a class to a package for instance to see all the portions of that
class that depend on the package. This doesn’t work for all edges, we’re working on this.

Tips: The most important thing using the visual view is to try to avoid becoming overwhelmed by all of the
nodes and edges that are on the screen. The tool tips provided when you hover over a node gives you a good
indication of how ‘busy’ that node is (number of classes / methods used). Usually, it is best to collapse
yellow nodes down to their package level, unless those nodes are particularly interesting to you. This gets
them out of the way as you don’t really need to act on them. Similarly, if you choose to reject functionality
it is usually helpful to collapse them down to the class or package level if the diagram is getting
complicated.



PLEADING VOICE Please try not to get too distracted by the current layout situation. Currently there
are some bugs causing nodes to overlap one and other. Also, parent nodes tend to gravitate toward the
center of the screen which causes things to get a little muddled. It can often be helpful to drag nodes out of
the way when they’re there. These problems will be fixed, but we’re more interested in providing actual
extraction and integration features at this point than fixing these bugs.

Using the other views

The source code view shows you the source for any node (click on the S box when hovering). It also shows
a highlighted version of the source if you click on an edge. The summary view gives a simple overview of
the size of the reuse task. This is a last minute feature so at the moment it doesn’t have a whole lot of
functionality. Specific feedback about the types of information you’d like to see in this view is appreciated.

How to submit your experiences

1. Start a Gilligan Task
2. Explore the code, annotating it as you go
3. Save the Gilligan Session
4. Email me your -stats.xml file, as well as your impressions for that task. did it work? did it not? Feel

free to send multiple -stats.xml files and your impressions at once if you’d prefer.

When you start a new Gilligan task it automatically saves a file to the persistence location you selected in
the wizard. However, it is important that you press the ‘Save Gilligan Session’ button at the end of your
work as well so it can record some statistics (how many nodes you looked at, how many you decorated etc).
These statistics are saved in the same folder as the persistence file you chose (say “c:\task1.gil”) but with “-
stats.xml” appended to the end.

Limitations of the tool

The prototype version of Gilligan has a number of limitations. While these can be annoying, please try to
see past them when you are using the tool, we are more interested in limitations of the approach rather than
limitations of our tooling. However, we do want to improve the tool so please make any suggestions you’d
like to see.

Gilligan can only be opened once without restarting the IDE (this is horrible, I know)
Nodes on the visual diagram occlude each other
The visual layout is frustrating. Particularly, types tend to gravitate to the center and overlap
Sometimes the animations can be a little overwhelming, particularly when many nodes are being
added / collapsed
No undo/redo
LOC isn’t computed work in the reuse summary
Feature extraction / integration not implemented





Appendix D

Visualization evaluation

e data table used to construct the graphs presented in Section . is given in Table D.. e ‘gold
standard’ result set we used to assess precision and recall is also included for each task (Table D.,
Table D., Table D., Table D.).

net.sf.ganymede.Ganymede
net.sf.ganymede.Ganymede.getDefault()
net.sf.ganymede.Ganymede.plugin
net.sf.ganymede.GanymedeUtilities
net.sf.ganymede.GanymedeUtilities.getSite()
net.sf.ganymede.GanymedeUtilities.getStartAction()
net.sf.ganymede.GanymedeUtilities.getStopAction()
net.sf.ganymede.GanymedeUtilities.initActions()
net.sf.ganymede.GanymedeUtilities.isActionsInited()
net.sf.ganymede.GanymedeUtilities.mActionsInited
net.sf.ganymede.GanymedeUtilities.mSite
net.sf.ganymede.GanymedeUtilities.mStartAction
net.sf.ganymede.GanymedeUtilities.mStopAction
net.sf.ganymede.GanymedeUtilities.setActionsInited(Z)
net.sf.ganymede.GanymedeUtilities.setStartAction(Lorg.eclipse.jface.action.IAction;)
net.sf.ganymede.GanymedeUtilities.setStopAction(Lorg.eclipse.jface.action.IAction;)
net.sf.ganymede.logj.LogjServer
net.sf.ganymede.logj.LogjServer.<init>()
net.sf.ganymede.logj.LogjServer.getLogjServer()
net.sf.ganymede.logj.LogjServer.getServerSocket()
net.sf.ganymede.logj.LogjServer.isServerUp()
net.sf.ganymede.logj.LogjServer.mLogjServer

net.sf.ganymede.logj.LogjServer.mServerSocket
net.sf.ganymede.logj.LogjServer.mServerUp
net.sf.ganymede.logj.LogjServer.setLogjServer(Lnet.sf.ganymede.logj.LogjServer;)
net.sf.ganymede.logj.LogjServer.setServerSocket(Ljava.net.ServerSocket;)
net.sf.ganymede.logj.LogjServer.setServerUp(Z)
net.sf.ganymede.logj.LogjServer.startListener()
net.sf.ganymede.preferences.LogjPreferencePage
net.sf.ganymede.preferences.LogjPreferencePage.P_PORT

Table D.: Answer key for assessing precision and recall for Task . ese structural ele-
ments represent the transitive closure of the structural elements of Log4JServer.start-
Listener(), excluding the common dependencies between the source and target systems.

org.apache.commons.httpclient.Cookie
org.apache.commons.httpclient.Cookie.<init>(...)
org.apache.commons.httpclient.Cookie.LOG
org.apache.commons.httpclient.Cookie.cookieComment
org.apache.commons.httpclient.Cookie.cookieDomain
org.apache.commons.httpclient.Cookie.cookieExpiryDate
org.apache.commons.httpclient.Cookie.cookiePath
org.apache.commons.httpclient.Cookie.hasDomainAttribute
org.apache.commons.httpclient.Cookie.hasPathAttribute
org.apache.commons.httpclient.Cookie.isSecure
org.apache.commons.httpclient.Cookie.setComment(Ljava.lang.String;)
org.apache.commons.httpclient.Cookie.setDomain(Ljava.lang.String;)
org.apache.commons.httpclient.Cookie.setDomainAttributeSpecified(Z)
org.apache.commons.httpclient.Cookie.setExpiryDate(Ljava.util.Date;)
org.apache.commons.httpclient.Cookie.setPath(Ljava.lang.String;)
org.apache.commons.httpclient.Cookie.setPathAttributeSpecified(Z)
org.apache.commons.httpclient.Cookie.setSecure(Z)
org.apache.commons.httpclient.HeaderElement
org.apache.commons.httpclient.HeaderElement.<init>()
org.apache.commons.httpclient.HeaderElement.<init>(...)
org.apache.commons.httpclient.HeaderElement.<init>([C)
org.apache.commons.httpclient.HeaderElement.<init>([C,I,I)
org.apache.commons.httpclient.HeaderElement.LOG
org.apache.commons.httpclient.HeaderElement.getParameters()
org.apache.commons.httpclient.HeaderElement.parameters



org.apache.commons.httpclient.HeaderElement.parseElements([C)
org.apache.commons.httpclient.NameValuePair
org.apache.commons.httpclient.NameValuePair.<init>(...)
org.apache.commons.httpclient.NameValuePair.getName()
org.apache.commons.httpclient.NameValuePair.getValue()
org.apache.commons.httpclient.NameValuePair.name
org.apache.commons.httpclient.NameValuePair.setName(Ljava.lang.String;)
org.apache.commons.httpclient.NameValuePair.setValue(Ljava.lang.String;)
org.apache.commons.httpclient.NameValuePair.toString()
org.apache.commons.httpclient.NameValuePair.value
org.apache.commons.httpclient.cookie.CookieSpec
org.apache.commons.httpclient.cookie.CookieSpec.PATH_DELIM
org.apache.commons.httpclient.cookie.CookieSpecBase
org.apache.commons.httpclient.cookie.CookieSpecBase.LOG
org.apache.commons.httpclient.cookie.CookieSpecBase.datepatterns
org.apache.commons.httpclient.cookie.CookieSpecBase.parse(...)
org.apache.commons.httpclient.cookie.CookieSpecBase.parseAttribute(...)
org.apache.commons.httpclient.util.DateUtil
org.apache.commons.httpclient.util.DateUtil.DEFAULT_PATTERNS
org.apache.commons.httpclient.util.DateUtil.DEFAULT_TWO_DIGIT_YEAR_START
org.apache.commons.httpclient.util.DateUtil.parseDate(...)
org.apache.commons.httpclient.util.DateUtil.parseDate(...)
org.apache.commons.httpclient.util.ParameterParser
org.apache.commons.httpclient.util.ParameterParser.<init>()
org.apache.commons.httpclient.util.ParameterParser.chars
org.apache.commons.httpclient.util.ParameterParser.getToken(Z)
org.apache.commons.httpclient.util.ParameterParser.hasChar()
org.apache.commons.httpclient.util.ParameterParser.i
org.apache.commons.httpclient.util.ParameterParser.i
org.apache.commons.httpclient.util.ParameterParser.isOneOf(C,[C)
org.apache.commons.httpclient.util.ParameterParser.len
org.apache.commons.httpclient.util.ParameterParser.parse([C,I,I,C)
org.apache.commons.httpclient.util.ParameterParser.parseQuotedToken([C)
org.apache.commons.httpclient.util.ParameterParser.parseToken([C)
org.apache.commons.httpclient.util.ParameterParser.pos



Table D.: Answer key for assessing precision and recall for Task . ese structural ele-
ments represent the transitive closure of the structural elements of CookieSpecBase.-
parse(..), excluding the common dependencies between the source and target systems.

net.sourceforge.ganttproject.GanttCalendar
net.sourceforge.ganttproject.GanttCalendar.<init>(I,I,I)
net.sourceforge.ganttproject.GanttCalendar.Clone()
net.sourceforge.ganttproject.GanttCalendar.add(I)
net.sourceforge.ganttproject.GanttCalendar.getDay()
net.sourceforge.ganttproject.GanttCalendar.getMonth()
net.sourceforge.ganttproject.GanttCalendar.getYear()
net.sourceforge.ganttproject.GanttCalendar.isFixed
net.sourceforge.ganttproject.GanttCalendar.isFixed()
net.sourceforge.ganttproject.GanttCalendar.setFixed(Z)
net.sourceforge.ganttproject.GanttProject
net.sourceforge.ganttproject.GanttProjectTaskManagerConfigImpl
net.sourceforge.ganttproject.GanttProjectTaskManagerConfigImpl.getCalendar()
net.sourceforge.ganttproject.GanttProject.HUMAN_RESOURCE_MANAGER_ID
net.sourceforge.ganttproject.GanttProject.ROLE_MANAGER_ID
net.sourceforge.ganttproject.GanttProject.getActiveCalendar()
net.sourceforge.ganttproject.GanttProject.getHumanResourceManager()
net.sourceforge.ganttproject.GanttProject.getRoleManager()
net.sourceforge.ganttproject.GanttProject.managerHash
net.sourceforge.ganttproject.GanttProject.myFakeCalendar
net.sourceforge.ganttproject.GanttProject.myUIConfiguration
net.sourceforge.ganttproject.calendar.GPCalendar
net.sourceforge.ganttproject.calendar.GPCalendar.isNonWorkingDay(...)
net.sourceforge.ganttproject.task.Task
net.sourceforge.ganttproject.task.Task.getManager()
net.sourceforge.ganttproject.task.TaskImpl
net.sourceforge.ganttproject.task.TaskImpl.getManager()
net.sourceforge.ganttproject.task.TaskImpl.myManager
net.sourceforge.ganttproject.task.TaskManager
net.sourceforge.ganttproject.task.TaskManager.getCalendar()
net.sourceforge.ganttproject.task.TaskManagerConfig
net.sourceforge.ganttproject.task.TaskManagerConfig.getCalendar()
net.sourceforge.ganttproject.task.TaskManagerImpl



net.sourceforge.ganttproject.task.TaskManagerImpl.getCalendar()
net.sourceforge.ganttproject.task.TaskManagerImpl.getConfig()
net.sourceforge.ganttproject.task.TaskManagerImpl.myConfig
net.sourceforge.ganttproject.task.dependency.TaskDependency
net.sourceforge.ganttproject.task.dependency.TaskDependency.getDependant()
net.sourceforge.ganttproject.task.dependency.TaskDependency.getDifference()
net.sourceforge.ganttproject.task.dependency.TaskDependencyImpl
net.sourceforge.ganttproject.task.dependency.TaskDependencyImpl.getDependant()
net.sourceforge.ganttproject.task.dependency.TaskDependencyImpl.getDifference()
net.sourceforge.ganttproject.task.dependency.TaskDependencyImpl.myDependant
net.sourceforge.ganttproject.task.dependency.TaskDependencyImpl.myDifference
net.sourceforge.ganttproject.task.dependency.constraint.ConstraintImpl
net.sourceforge.ganttproject.task.dependency.constraint.ConstraintImpl.addDelay(...)
net.sourceforge.ganttproject.task.dependency.constraint.ConstraintImpl.myDependency
net.sourceforge.ganttproject.time.gregorian.GregorianCalendar
net.sourceforge.ganttproject.time.gregorian.GregorianCalendar.<init>(I,I,I)
net.sourceforge.ganttproject.time.gregorian.GregorianCalendar.add(I,I)

Table D.: Answer key for assessing precision and recall for Task . ese structural ele-
ments represent the transitive closure of the structural elements of ConstraintImpl.add-
Delay(..), excluding the common dependencies between the source and target systems.

org.apache.commons.collections.bidimap.TreeBidiMap
org.apache.commons.collections.bidimap.TreeBidiMap.<init>()
org.apache.commons.collections.bidimap.TreeBidiMap.get(Ljava.lang.Object;)
org.jajuk.Main
org.jajuk.Main.bIdeMode
org.jajuk.base.FileManager
org.jajuk.base.FileManager
org.jajuk.base.FileManager.<init>()
org.jajuk.base.FileManager
org.jajuk.base.FileManager.<init>()
org.jajuk.base.FileManager.<init>()
org.jajuk.base.FileManager.alBestofFiles
org.jajuk.base.FileManager.alNovelties
org.jajuk.base.FileManager.bRateHasChanged
org.jajuk.base.FileManager.getInstance()
org.jajuk.base.FileManager.rateComparator



org.jajuk.base.FileManager.scoreComparator
org.jajuk.base.FileManager.singleton
org.jajuk.base.History
org.jajuk.base.History.addItem(Ljava.lang.String;,J)
org.jajuk.base.History.vHistory
org.jajuk.base.HistoryItem
org.jajuk.base.HistoryItem.<init>(Ljava.lang.String;,J)
org.jajuk.base.HistoryItem.getFileId()
org.jajuk.base.HistoryItem.lDate
org.jajuk.base.HistoryItem.sFileId
org.jajuk.base.IPropertyable
org.jajuk.base.ItemManager
org.jajuk.base.ItemManager.<init>()
org.jajuk.base.ItemManager.bLock
org.jajuk.base.ItemManager.getItem(Ljava.lang.String;)
org.jajuk.base.ItemManager.getLock()
org.jajuk.base.ItemManager.hmItems
org.jajuk.base.ItemManager.hmPropertiesMetaInformation
org.jajuk.base.ItemManager.registerProperty(...)
org.jajuk.base.PropertyMetaInformation
org.jajuk.base.PropertyMetaInformation.<init>(...)
org.jajuk.base.PropertyMetaInformation.bConstructor
org.jajuk.base.PropertyMetaInformation.bCustom
org.jajuk.base.PropertyMetaInformation.bEditable
org.jajuk.base.PropertyMetaInformation.bMergeable
org.jajuk.base.PropertyMetaInformation.bShouldBeDisplayed
org.jajuk.base.PropertyMetaInformation.cType
org.jajuk.base.PropertyMetaInformation.format
org.jajuk.base.PropertyMetaInformation.getName()
org.jajuk.base.PropertyMetaInformation.oDefaultValue
org.jajuk.base.PropertyMetaInformation.sHumanType
org.jajuk.base.PropertyMetaInformation.sName
org.jajuk.in.Messages
org.jajuk.in.Messages
org.jajuk.in.Messages.<init>()
org.jajuk.in.Messages.<init>()
org.jajuk.in.Messages.alDescs



org.jajuk.in.Messages.alLocals
org.jajuk.in.Messages.getErrorMessage(Ljava.lang.String;)
org.jajuk.in.Messages.getInstance()
org.jajuk.in.Messages.getProperties()
org.jajuk.in.Messages.getPropertiesEn()
org.jajuk.in.Messages.getString(Ljava.lang.String;)
org.jajuk.in.Messages.isInitialized()
org.jajuk.in.Messages.mesg
org.jajuk.in.Messages.parseLangpack(Ljava.lang.String;)
org.jajuk.in.Messages.properties
org.jajuk.in.Messages.propertiesEn
org.jajuk.in.Messages.sLocal
org.jajuk.util.ConfigurationManager
org.jajuk.util.ConfigurationManager.getProperty(Ljava.lang.String;)
org.jajuk.util.ConfigurationManager.properties
org.jajuk.util.ITechnicalStrings
org.jajuk.util.ITechnicalStrings.CONF_HISTORY
org.jajuk.util.ITechnicalStrings.DATE_FORMAT_
org.jajuk.util.ITechnicalStrings.FEEDBACK_LINES
org.jajuk.util.ITechnicalStrings.FILE_LANGPACK_PART
org.jajuk.util.ITechnicalStrings.FILE_LANGPACK_PART
org.jajuk.util.ITechnicalStrings.MAX_HISTORY_SIZE
org.jajuk.util.ITechnicalStrings.XML_DIRECTORY
org.jajuk.util.ITechnicalStrings.XML_FILE_DATE
org.jajuk.util.ITechnicalStrings.XML_ID
org.jajuk.util.ITechnicalStrings.XML_NAME
org.jajuk.util.ITechnicalStrings.XML_QUALITY
org.jajuk.util.ITechnicalStrings.XML_SIZE
org.jajuk.util.ITechnicalStrings.XML_TRACK
org.jajuk.util.Util
org.jajuk.util.Util.getExecLocation()
org.jajuk.util.Util.sExecLocation
org.jajuk.util.log.Log
org.jajuk.util.log.Log.alSpool
org.jajuk.util.log.Log.debug(Ljava.lang.String;)
org.jajuk.util.log.Log.error(Ljava.lang.String;,Ljava.lang.String;,Ljava.lang.rowable;)
org.jajuk.util.log.Log.error(Ljava.lang.rowable;)



org.jajuk.util.log.Log.logger
org.jajuk.util.log.Log.spool(Ljava.lang.String;)
org.jajuk.util.log.Log.spool(Ljava.lang.rowable;)

Table D.: Answer key for assessing precision and recall for Task . ese structural elements
represent the transitive closure of the structural elements of History.addItem(..), ex-
cluding the common dependencies between the source and target systems.



Ta
sk


Ta

sk


Ta
sk


Ta

sk


M
an

ua
l

G
ili

ga
n

M
an

ua
l

G
ili

ga
n

M
an

ua
l

G
ili

ga
n

M
an

ua
l

G
ili

ga
n

Ti
m

e





































Av
er

ag
e


.


.



.



.



.


.



.


Re
ca

ll
.



.



.


.


.



.



.



.


.


.


.


.



.


.


.


.


.




Av
er

ag
e

.



.


.


.


.


.


.


Pr
ec

is
io

n
.



.


.








.





.


.



.








.





.




Av
er

ag
e

.



.


.


.



.




A
gg

re
ga

te
Va

lu
es

M
an

ua
l

G
ili

ga
n

M
an

ua
l

G
ili

ga
n

M
an

ua
l

G
ili

ga
n

M
an

ua
l

G
ili

ga
n

Av
er

ag
eR

ec
al
l

.



.


.


.


.


.


.


Av
er

ag
eT

im
e


.


.



.



.



.


.



.


Ta
bl

e
D
.
:D

at
a
va

lu
es

fo
rt

im
e,

re
ca

ll,
an

d
pr

ec
isi

on
fo

rt
he

se
co

nd
pr

ot
ot

yp
e
ev

al
ua

tio
n

(S
ec

tio
n

.
)

.





Appendix E

Enactment evaluation

Section E. specifies the nature of all of the edits that contributed to the results presented in Sec-
tion ... e pragmatic reuse plans provided to the participants in the experiment described in
Section .. are included in Figure E. and Figure E.. e experimental instructions provided to
our participants for this experimentare included in Section E. (p. ).

E. Effort

E.. Extracting the Metrics Lines-of-Code Calculator

Creating this pragmatic reuse plan involved balancing the flexibility provided by theMetrics plug-in’s
framework to support an array of measurements about source code against our desire to reuse only
one of them. More than any other element, we wanted to be able to reuse the method Abstract-

LinesOfCode.calculateNumberOfLines(String). is one method contains a token parser to
count the number of lines of source code, taking into consideration white-space and comments.
When we created the reuse plan we decided to include a total of eight classes. Reusing these classes
balanced the requirements of AbstractLinesOfCode against our desire to keep the reuse task as
compact as possible.

To better provide uswith the needed data, we also included portions of AbstractMetricSource
as this class provides handles for passing IJavaElement objects (Eclipse’s key representation of Java
source code entities) to the calculator. At the same time, AbstractMetricSource provides addi-
tional functionality for aggregating and storing metric scores, neither of which were useful to us and
so, we wanted to discard them. Ultimately, this pragmatic reuse task involved reusing portions of
 classes for a total of  loc.  loc were rejected from the reused classes in order to eliminate
functionality we did not need.

To manually perform this task, the  classes were copied ( copy operations),  of these (Metric,
Calculator, AbstractMetricSource, and AbstractLinesOfCode, TypeMetrics, and Max) re-

quired manual editing in order to fully compile.  compiler errors result from copying the source
classes into the target project.

FixingMetric involved removing the reference to its supertypeConstantswhichwas not reused
( edit). Also, its reference to FRACTION_DIGITS had to be remapped from its old target (inside
Constants) to its new location (inside AbstractLinesOfCode) ( edit). Finally, the import state-
ments needed to be updated ( edit). Resolving the problems in Calculator involved removing
the reference to its supertype Constants ( edit), as well as removing the calculatorDescriptor
field and the two methods (setDescriptor(Descriptor) and getDescriptor()) that used this
field ( edits). We rejected this field and its two supporting methods because they did not provide
any functionality we needed to reuse. e getPreferences() method was also removed for the
same reason ( edit). Again, the import statements were updated to reflect the changes to the code
( edit). e most changes were made to AbstractMetricSource because, while this class pro-
vided functionality we wanted to reuse, it also provided many features we were not interested in
reusing. First, we removed the supertype reference to Constants ( edit). en we removed  fields
and  methods that were associated with functionality we were not reusing ( edits). Next, we
added a new field corresponding to the logging functionality we were using in our system ( edit)
and remapped the calls from Metric’s original logger to our own ( edit). Next we managed calls to
methods that had been rejected; this required removing two blocks corresponding tomethod calls to
metricsInterrupts() and isWarningsEnabled(), and one block corresponding to a reference
to a rejected field childHandles ( edits). Finally the import statements were updated ( edit). e
last class that needed modification was AbstractLinesOfCode. First, we extracted the field FRAC-

TION_DIGITS from Constants ( edit). is field was extracted so that it could be reused without
having to reuse the remainder of Constants (which included  additional constants). Next, a field
for our logging functionality was added ( edit) and references to logError and logMessage were
remapped to reference our added field instead of the default metrics logging harness ( edits). Lastly,
the import statements were updated ( edit). In addition to these edits, onemethod TypeMetrics.-
getCalculators() needed to be modified to make the reused code function outside of the metrics
system. is involved inserting a short  line block of code ( edit).

In enacting this pragmatic reuse plan semi-automatically, Gilligan resolves all but two of the
compilation errors. By trying to reject two overlapping statements, Gilligan created a code fragment
that did not comply to the Java Language Specification. In this case both isWarningsEnabled()

and checkRange(Metric)were rejected. We resolved the error by fixing the overlapping comments
( edit). e code for the snippet is in Figure E., prior to the manual edit. Gilligan took less than 
seconds to extract and integrate the code; the requiredmanual edit took less than minute to resolve.

e manual treatment of this task required  manual edits. Of these, only  were not purely
mechanical. at is, for the  references to fields or methods that had been rejected, we actually
had to make changes to bodies of methods. In the th instance, we had to remap the reference



/** GILLIGAN: Invocation rejected in reuse plan

if (MetricsPlugin.isWarningsEnabled()) {

/** GILLIGAN: Invocation rejected in reuse plan

checkRange(value);

*/

}

*/

Figure E.: Error caused when Gilligan rejects structural elements that are nested in the source
code.

to the extracted field FRACTION_DIGITS. Finally,  sets of calls to the logging functionality were
remapped. e other  changes simply required us to copy code from the old system to the new
one and remove fields and references we were not interested in reusing. Performing the manual task
took approximately  minutes. In contrast, using Gilligan we only had to make  edits spending less
than  minutes; the tool resolved  of  compiler errors.

E.. Extracting the Azureus Network roughput View

In themanual case, we had to copy the classes ( copy operations) to the target environment;  com-
piler errors result from copying the source classes into the target project.

Of these, BackgroundGraphic, ScaledGraphic, and SpeedGraphic each needed modifica-
tion as together they caused  compiler errors. BackgroundGraphic had a field of type AEMonitor
that managed network locks in the core of Azureus. is functionality was not relevant to our task
and so, it was rejected. Aer removing the field ( edit), we also extracted two fields (Colors.black
and Colors.white) into SpeedGraphic ( edits). e references to these two fields were remapped
using search and replace (Colors.black to SpeedGraphic.black and Colors.white to Speed-

Graphic.white) ( edit). Finally, the import statements were updated to replace the reference to
AEMonitor with SpeedGraphic ( edit). As we had already extracted Colors.black, we only
needed to remap its reference ( edit) and repair the import statements ( edit) in ScaledGraphic.
In SpeedGraphic, we first removed the supertype reference to ParameterListener ( edit). We
also removed themethods getInstance() and parameterChanged() ( edits). As SpeedGraphic
makes heavy use of fields from Colors,  more fields were extracted ( edits) to SpeedGraphic,
and their references remapped using search and replace (Colors.xyz with SpeedGraphic.xyz)
( edit). As the AEMonitor-typed field had been removed from the supertype BackgroundGraphic,
we also had to remove the  locations in the code that called methods on this field ( edits). One
call to ParameterListener.parameterChanged()was removed from the class constructor as well
( edit). Finally, the import statements were updated ( edit).

Gilligan performed the extraction and integration process in  seconds.  compiler errors re-
sulted which required four edits to fix. One edit had to be applied to SpeedGraphic class to repair



an error caused by Gilligan when the fields were extracted. is problem is shown in Figure E.; the
field declaration order had been inverted so that BLUES_DARKEST was referenced before it was de-
fined ( edit). e second problem was that SpeedGraphic instantiates several custom colour fields
in a static initializer. Currently, Gilligan cannot remap these references and as such we had to use
search and replace to fix them manually ( edit). ese  errors took one minute to resolve.

/** GILLIGAN: Field extracted in reuse plan. */

static Color[] blues = new Color[BLUES_DARKEST + 1];

/** GILLIGAN: Field extracted in reuse plan. */

static final int BLUES_DARKEST = 9;

Figure E.: Error caused by Gilligan not considering field ordering.

In total,  edits and  minutes were required to complete the task manually. ese changes
were less amenable to simple edit support than in the Metrics case study. is is because the changes
involved more code modifications than removal. In the end,  fields were extracted and their ref-
erences remapped. In addition, removing references to AEMonitor and ParameterListener re-
quired changing several references, declarations, and calls within BackgroundGraphic and Speed-
Graphic. In contrast, Gilligan detected and remedied most of these situations.



Figure E.: Pragmatic reuse plan for the Metrics task. Common dependencies have been elided
to save space.



Figure E.: Pragmatic reuse plan for the Azureus task. Common dependencies have been elided
to save space.



Procrustes Summer 2007 Study Appendix

This page provides additional details of our Procrustes Summer 2007 pragmatic-reuse user experiment. If
you have any questions, feel free to contact rtholmes@cs.ucalgary.ca. The content of this page is a slightly
abbreviated version of the description given to the participants of the experiment. It has been modified to
remove the download instructions for the tool itself.

To look at the reuse plans themselves you can look in this zip file

Gilligan/Procrustes Study: Quick Start Guide

The document is split into lots of sections so you can read it choose-your-own-adventure style. From now
until you’re done should take between one and two hours.

Table of Contents

1. Study overview
2. Preparing your environment
3. The tasks

Task 1
Task 2

4. The treatments
Automated enactment
Manual enactment

5. The tools
Gilligan reuse planning environment
Procrustes reuse plan enactment tool

6. Questionnaire

Study overview

This is a remote study, you will install the tool on your machine, perform 2 tasks, and send me the results.
You can contact me at any time for information or to ask any questions. In this study you will be asked to
undertake two tasks. If possible, try out the tools before you start your first task so you feel comfortable with
how they work. After completing the tasks, please fill out the questionnaire given at the end of this page;
this questionnaire is the most important part of the evaluation for me, please take your time and be as
verbose as possible. Timing is important for this evaluation, so if possible, please pick two time-blocks
where you could devote 1 hour each time. Just so you don’t worry, 1 hour is an upper bound; some tasks
and treatments are much faster.

When you’re done you’ll be sending me (rtholmes@cs.ucalgary.ca) three things (see the Submitting results
section):

Your questionnaire answers
A zip of the Gilligan log files
A zip of the two target workspaces from your tasks

If you have time, and feel so inclined, I’d also appreciate it if you’d try Gilligan/Procrustes on one of your
own tasks. If you try it out on something of your own just send me a quick description of what it was and
include your thoughts about how the tools helped/hindered you for this task. I welcome any of your
feedback and suggestions.



Preparing your environment

My primary development environment is Eclipse 3.3 on the Mac. I’ve tried it on 3.3 on Windows and it
should be OK and there’s nothing in there that should stop it from working on Eclipse 3.2. If you’re using
3.2, don’t bother upgrading, it should be fine. If you suspect you have found any bugs, please let me know.

1. Download the study workspace projects.
2. Import the projects into Eclipse. For Eclipse 3.3 you can just go File->import->general->existing

projects, choose ’select archive’ and give it the study-workspace.zip file. Select all four projects and
press import. This may work for 3.2 as well but I haven’t tried it. If you prefer you can manually
import each project into your workspace as well.

3. Install Gilligan/Procrustes using its update site. Help->Software Updates->Find and Install. Choose
‘Search for new features to install’ and select ‘New Remote Site’. You can name the remote site
anything you choose, in the url enter ***UPDATE SITE INFORMATION REMOVED***. Follow
the install wizard through; this will download the necessary files and install them. A restart of Eclipse
will be required to get the plug-in installed.

4. After restarting, start the Gilligan/Procrustes interface. Window->open perspective->other, choose
‘Gilligan/Procrustes Reuse Environment’.

You now should be good to go. If you’re going to be doing the eval on a plane or on the road with a laptop,
save this page and you can head offline (until you send me the results).

The Tasks

The goal of Gilligan/Procrustes is to help you complete reuse tasks easier. As such, you will be performing
two reuse tasks for this evaluation. Each task involves reusing source code (that was not designed or
modularized for reuse) from an open-source project within your own (simulated by the target projects)
project. To complete the tasks you will reuse the source code as described in the provided reuse plans and
resolve any compilation errors (don’t worry about warnings) in the target project and run a test harness
against it to make sure the reused code works. You will be attempting each task using one of two treatments
(as I specified in my email to you).

Task 1: Reusing the LOC calculator from metrics.sf.net plug-in

The goal of this task is to reuse the lines-of-code (LOC) calculator from the Eclipse metrics plug-in from
metrics.sf.net. The metrics plug-in computes the LOC using the Eclipse AST and its associated source text.
The plan for this task has been included in the task “LOC Calculator - net.sourceforge.metrics in
net.sourceforge.metrics_target”. Your source project for this task is the project net.sourceforge.metrics; the
project you want to reuse the code in is net.sourceforge.metrics_target.

The target project contains a couple of utility classes: TheLog for logging functionality, LOCTest is a
harness for evaluating the feature, and JavaModelUtilities, a utility class used by LOCTest. This harness is
actually set up as an Eclipse plug-in itself. The easiest way to run it is to open the Manifest.mf file from the
META-INF folder in the root directory of the project. Then click on the overview page tab (bottom left of
the editor). On this page there should be a ‘Testing’ sub-section and you can click ‘Launch an eclipse
application in debug-mode’. This will start up a runtime workspace in which the harness will be running. If
you don’t have a runtime workspace available just select a new empty directory and it’ll create one for you.
Once the runtime workbench loads, you’ll need to make sure you have a java project in there, either create a
dummy project with some code (make sure it compiles and is not in the default package), or just import one
of the projects (the metrics project itself is nice and is not too large) as described in the initial setup. The
test harness should have added a button ‘Test LOC Counter’ to the menu bar. When pressed, this should go
through all of the java source files in all of the projects in your runtime workspace and print out a LOC
count for each one. This count will appear in the console view of your original workbench (aka. _not_ the
runtime workbench). Make sure the code at least compiles before you try running the test harness; without



compilation nothing is going to work. The key method that does all of the work in the test harness is
LOCTest.computeLOC(icu). You do _NOT_ need to modify this in any way.

By default, simply resolving the compilation errors may not result in code that works in the test harness.
However, the compilation errors that remain _should_ give you a hint as to what needs to be done to get the
code to work. Do not take more than 1 hour to do the task, if you can’t finish that’s alright, just write about
it in the questionnaire; let me know what worked, what didn’t, and what your thoughts are about why it
did/didn’t work.

Again, success for this task is a) resolving all of the compilation errors, and b) pressing the ‘Test LOC
Counter’ button computing lines of code in the console view of the workbench. When you’re done, press
the Save plan button in Gilligan.

Task 2: Reusing the network throughput view from Azureus

The goal of this task is to reuse the line-graph view in Azureus that is used to visualize its network
throughput. The developer wants to use this view in their own application. The reuse plan for this task has
been included in the task “Network View - azureus in azureus_target”. Your source project for this task
azureus; the project you want to reused the code in is azureus_target.

The target project contains a couple of utility classes: TheLog for logging functionality, and MyColours for
keeping track of the target application’s colour scheme. In addition, there is a test harness (in the form of an
RCP application) in the test package. The main part of the test suite that interacts with the reused code is in
test.View.createPartControl(parent). To run this test suite, perform the reuse task and ensure the code
compiles. You should not have to alter the test code at all. Open the Manifest.mf file in the META-INF
folder of the target project. On the overview page tab (bottom left of the editor) is a ‘Testing’ sub-section in
which you can click ‘Launch an eclipse application in debug-mode’. This will start up an RCP application
which should display a line chart with a whole bunch of random data in it.

The success criteria for this task is a) resolving all of the compilation errors in the reused source code, and
b) running the provided RCP application and seeing a randomly-generated line graph in its view. Do not
take more than 1 hour to do the task, if you can’t finish that’s alright, just write about it in the questionnaire;
let me know what worked, what didn’t, and what your thoughts are about why it did/didn’t work.

The Treatments

When I emailed you I specified which treatment you should use for each task; these two treatments provide
two alternative approaches. Both treatments work from a reuse plan described using the Gilligan tool. This
plan describes the classes, fields, and methods that will be reused and how their dependencies should be
managed. For details, see the Tools section. The automated treatment uses the Procrustes tool to
automatically enact the provided reuse plan. The manual treatment has you use the tools you would
normally use in your day-to-day programming activities to enact the provided plan. Please make sure you
use right the treatment for the right task (and that you don’t accidentally use Procrustes for the manual task).

To start either treatment, load up the provided reuse plan by pressing the caret menu in the Core Concern
View and selecting ‘Resume reuse task’. Select the task you are performing for this treatment from the
dialog and press the ‘Resume task’ button; the reuse plan will then load (this can take a while (but less than
5 minutes) and has minimal progress UI (sorry).



When you are finished with either treatment, save the reuse plan again (even though you would have not
modified it). This stops the clock and writes the log files to disk with a time-stamp so I know how long the
task took. To do this, press the caret menu in the Core Concern View and select the ‘Save reuse task’
option. Again, there is no progress reporting for this view but it goes pretty fast (30 seconds or less).

Automated enactment

The automated treatment involves using Procrustes to enact the provided reuse plan. Once you have loaded
the reuse plan (described in treatments), you can select the ‘enact plan’ (shopping cart) button in the Core
Concern View toolbar.

If you are performing the first task using this treatment you should have 3 errors to fix in the reusedCode
source folder in the target project; if you are performing the second, there should be 11. In addition to
resolving the compilation errors you need to make sure the code runs with the provided test harness (see
task descriptions). Often the compilation errors that exist can provide clues to help make the code function
correctly. In addition, Procrustes also makes simple mistakes which you can easily manually fix.

Procrustes will then enact the reuse plan, copying all of the required code to the target project, modifying it
as necessary. Procrustes is a light-weight tool and makes mistakes. Your goal for this treatment is to resolve
any compilation errors (not warnings) that still remain in the target project after running Procrustes and
make the reused code work with the test harness. All of the code will be copied into the ‘reusedCode’
source folder within the target project. You don’t particularly need to worry about the reuse plan for this
task, just go through the remaining errors and fix them so the code compiles and make any other
modifications you think are necessary to get the test harness to work.

When you are done, save the task (described in treatments). Please try to do the treatment in its entirety
from when you first load the reuse plan until saving the plan, without getting distracted.

Manual enactment

The manual treatment involves manually copying the classes to be reused into the target system and
modifying them according to the reuse plan. In this treatment it is important that you follow the reuse plan
as closely as possible. At the end of the task you should have no compilation errors remaining and the test
harness should work as described in the tasks section. Once you have loaded the reuse plan (described in
treatments) you can start using Gilligan to figure out which classes to reuse. Copy these classes (using cut
and paste) from the source project to the target project. Make _sure_ you use the same package structure
within the target project as the source project. Once you have copied the classes, remove the rejected fields
and methods from these classes and references to these fields and methods. Next, remove rejected
references to fields and methods from classes that were not reused. Finally, satisfy any remapped, extracted,
or injected decisions within the reuse task (what this all means is described in the Tools section. This
treatment will involve a lot of switching between the Gilligan perspective and the Java perspective. If you
are performing the first task (metrics) using this treatment you should have copied 10 classes to the target





The <init> and <clinit> methods represent constructors and static-constructors (aka the field-allocation etc)
respectively.

While exploring dependencies may be interesting, Gilligan is able to record your decisions about particular
dependencies; these are displayed using various colours in the decision column in each view. The decisions
you can make are listed below:

Accept (green): Any piece of source code you want to reuse must be marked as accepted. If you want
to reuse a method or field you must also mark its containing class as accepted (or else it wouldn’t
have anywhere to go). The one exception to this is extracted fields (see below).

For the manual treatment: copy any accepted class into the target project (with the same
package structure). All of the other annotations will be changes to these copied elements.

Reject (red): Rejected code are nodes you specifically do not want to reuse. You only need to reject
nodes that are depended upon by accepted nodes. e.g. if your accepted method foo() uses bar() but you
don’t want to reuse bar(), rejecting it will remove references (by commenting them out) from foo() (or
any other reused node) to bar().

For the manual treatment: Remove or comment out any rejected methods and fields from the
accepted classes. Also, any references to fields, or calls to methods from accepted methods to
rejected fields/methods should be removed/commented out. If a rejected method call is part of a
call-chain you can remove the whole chain (this is what Procrustes does). If a rejected method
call is part of a looping guard, you can remove the whole loop.

Remap (blue): You can remap field references and method calls to elements within your own system.
For example, you can remap references in the reused code to a field for its definition of the colour red
to your own. Alternatively, you can remap calls from one method (say SWT.error(String) to your
Logger.error(String)). Remapping fields works best if they are the same type, remapping methods
works best if the parameter lists are the same.

For the manual treatment: remaps often have two parts: a target method/field and an optional
element on which it is called. e.g. to remap error (in SWT) to error (in Logger) you need to
specify the optional element (Logger) or else the error call will think it’s a publicly available
method that doesn’t need a prefix (Logger). To see the annotation, right click on the
field/method being remapped and choose mark->remap->remap to existing target; the dialog
has two parts: the top part specifies the method/field the selected field should be remapped to.
The bottom part specifies the optional part (e.g. _log for the field _log (as in _log.error()) or
Logger for a static reference (as in Logger.error())). Make sure you press ok and not cancel
afterwards so you do not delete the annotation.

Remap - extract field (blue with ‘ext’ key word): If you want to reuse a field but not it’s containing
class, you can extract it from its class to another one you are reusing. This is especially handy if you
just want to reuse a few constant fields from a large class or interface.

For the manual treatment: This just means: pull the method from the class it was declared into
the class specified in the plan. You will also have to update any references from the old field
location to the new location. To see the annotation right click on the field being extracted and
choose mark->remap->extract; you can then see what the target for the remapping is. Make sure
you press ok and not cancel afterwards so you do not delete the annotation.

Inject code (Inj keyword): Code can only be injected on reused classes. You can inject any number
of methods or fields on a type; these injections are put in the class right after its declaration. Injecting
code is particularly effective when combined with method remapping. For example (if you’re using
Log4J), you can inject a field Logger _log = Logger.getLogger(this.getClass()) and remap any method
call from the reused code’s error-handling code (say SWT.error(String)) to _log.error(String).

For the manual treatment: Just create the methods/fields as specified by the annotation box. To
see what should be injected, right click on the class showing the ‘inj’ decision annotation and
choose mark->inject->inject code; the dialog will show what to do. Make sure you select ok and
not cancel afterwards so you do not delete the annotation.

Already provided (yellow): Any common elements between the source and target system (such as
java.lang.String) are automatically annotated as already provided.

For the manual treatment: you don’t have to do anything for this annotation.



You can also view an annotated version of the source code; for any node in the Gilligan views, right click
and select ’show source’. This will pop up an editor view that has been marked up according to the
decisions you have made. While this view is not perfect it gives a quick overview of which decisions
remain to be made and can be helpful to make the decisions you have made seem less abstract.

Procrustes Reuse Plan Enactor

Procrustes executes reuse plans created within Gilligan. Procrustes locates all of the accepted classes and
interfaces in the reuse plan and copies them to the target system within a source folder called ReusedCode.
It then modifies these reused elements according to the plan. Procrustes removes references to rejected
fields, calls to rejected methods, and updates calls and references for remapped fields and methods. By
automating the enactment of the reuse plan, Procrustes enables an iterative planning process. The developer
can change the plan and just click a single button to see what the effects of this change are on the source
code. You just won drinks at the grad lounge; let me know, or I'll have to give it to the students in the lab.

If you decide to try out your own tasks you may choose to iterate on your reuse plan. Procrustes currently
has a small bug; if you wish to iterate on a reuse plan you must manually delete the ReusedCode source
folder in the target project first; inconsistencies can arise if this step is not taken. Note: as only reused code
is stored in this folder, your code is in NO danger of being deleted or overwritten.

If you do decide to undertake your own tasks, here are some tips to help make your experience more
effective: As mentioned previously, Procrustes enables you to quickly investigate alternative reuse plans.
While Gilligan can be used to identify relevant structural dependencies, it may not be clear from a reuse
plan what the concrete ramifications of a particular reuse decision are in the source code. To see these
ramifications, simply change your plan and press the button to enact the reuse plan. You can then check out
the reusedCode folder in the target project and see how it varies from plan to plan. One particularly handy
way to do this is to look at the compilation errors that remain after the plan has been enacted: will these be
easy or hard to fix? how long might they take? might some other decision in my plan resolve many of these
errors and make my job easier? Small changes in the reuse plan can have dramatic effects on the source
code when the plan is enacted; test alternative decisions, see what works best for the task you are
investigating.

Questionnaire

These are open-ended questions and are very valuable to me; please take the time to answer as completely
as possible.

1. How good of a job do you think you did during the manual enactment of the reuse plan?
Do you have any other comments about this task (what was easy, what was hard, etc.)?

2. How good of a job do you think you did during the automated enactment of the reuse plan?
Do you have any other comments about this task (what was easy, what was hard, etc.)?

3. Do you have any other comments relating to the tasks/treatments you undertook?
4. Was there any difference between resolving the compilation errors and making the changes so test

harness work?
5. What was different about performing the reuse task manually vs. automatically?
6. Does Procrustes change the utility of Gilligan’s reuse plans?
7. Do you have any other comments about the Gilligan/Procustes approach?
8. If you tried any of your own tasks with Gilligan/Procrustes, can you describe them and do you have

any comments?

If you have any low-level tool complaints or suggestions, please give them here:

Submitting Your Results



When you’re done I’d like you to submit three things:

1. Your questionnaire answers. Please be as verbose as possible! I can call you on the phone as well, if
that makes it easier.

2. A zip of the Gilligan log files. These can be found {workspace
folder}/.metadata/.plugins/ca.ucalgary.cpsc.skipper.ui/log/ . In this folder you’ll see a bunch of
‘traceEvent’ files. Since it’s hard for me to tell you which ones to send, just zip them up and send
them all. If you really want to just send two, I’d like the one that was written right after you saved the
plan when you finished the first task and the one that was written right after you saved the plan when
you finished the second task.

3. A zip of the two target workspaces from your tasks. These can be found at {workspace
folder}/azureus_target and {workspace folder}/net.sourceforge.metrics_target. Just zip up the whole
directories.

Please email them to me at “rtholmes@cpsc.ucalgary.ca”. Please send it to me by Aug 5.



Appendix F

Full evaluation

is appendix contains all of the supporting materials for the evaluation detailed in Chapter . e
test harnesses provided to the participants for their tasks are each included (Figure F., Figure F.,
and Figure F.). e test data file used in the QIFParser task is also included (Section F.).

Four questionnaires were used in this experiment. e entrance questionnaire is included in
Section F. (p. ). e mid-task questionnaire, which was answered by the participants up to 
times is given in Section F. (p. ). e post-task questionnaire which was administered aer
each task ( times in total) is provided in Section F. (p. ). e final questionnaire is given in
Section F. (p. ).

Our pragmatic reuse plans for the QIFParser task (Figure F.) and the RelatedArtists task (Fig-
ure F.) from the first experiment are also included.

Figure F.: Pragmatic reuse plan for the QIF Parser task. Common dependencies have been
elided to save space.



Figure F.: Pragmatic reuse plan for the Related Artists task. Common dependencies have been
elided to save space.



!package test;

!

!import java.io.File;

!

!public class QIFTest {

!

! !@Test

! !public void testQIFParse1() {

! ! !try {

! ! ! !QifParser parser = new QifParser(QifUtils.US_FORMAT);

! ! ! !parser.parseFullFile(new File("ExportNoPrices2.qif"));

! ! ! !

! ! ! !Assert.assertTrue("Sample file contains 39 securities",

! ! ! ! ! !parser.securities.size() == 39);

! ! ! !Assert.assertTrue("Sample file contains 1 account",

! ! ! ! ! !parser.accountList.size() == 1);

! ! ! !Assert.assertTrue("Sample file contains 0 classes",

! ! ! ! ! !parser.classes.size() == 0);

! ! ! !Assert.assertTrue("Sample file contains 0 categories",

! ! ! ! ! !parser.categories.size() == 0);

! ! !} catch (NoAccountException nae) {

! ! ! !Assert.fail(nae.getMessage());

! ! !}

! !}

! !

! !@Test

! !public void testQIFParse2() {

! ! !try {

! ! ! !QifParser parser = new QifParser(QifUtils.US_FORMAT);

! ! ! !parser.parseFullFile(new File("Export.qif"));

!

! ! ! !Assert.assertTrue("Sample file contains 39 securities",

! ! ! ! ! !parser.securities.size() == 39);

! ! ! !Assert.assertTrue("Sample file contains 2 account",

! ! ! ! ! !parser.accountList.size() == 2);

! ! ! !Assert.assertTrue("Sample file contains 0 classes",

! ! ! ! ! !parser.classes.size() == 0);

! ! ! !Assert.assertTrue("Sample file contains 0 categories",

! ! ! ! ! !parser.categories.size() == 0);

! ! !} catch (NoAccountException nae) {

! ! ! !Assert.fail(nae.getMessage());

! ! !}

! !}

!}

!

Figure F.: Test harness for the QIF parser task.

!package test;

!

!import junit.framework.Assert;

!

!public class RelatedArtistTest {

!

! !@Test

! !public void getRelatedArtists() {

! ! !try {

! ! ! !String aName = "Dave Matthews";

!

! ! ! !AudioScrobblerService ass = new AudioScrobblerService(null);

! ! ! !AudioScrobblerSimilarArtists assa = ass.getSimilarArtists(aName);

!

! ! ! !Assert.assertFalse("Related artists not retrieved", assa == null ||

! ! ! ! ! !assa.getArtists() == null || assa.getArtists().size() < 1);

!

! ! ! !System.out.println("Artists related to: " + aName);

! ! ! !for (AudioScrobblerArtist asa : assa.getArtists()) {

! ! ! ! !System.out.println("\t" + asa.getName());

! ! ! !}

! ! !} catch (Exception e) {

! ! ! !// this should never happen

! ! ! !Assert.assertTrue("Unexpected exception thrown: " +

! ! ! ! ! !e.getMessage(), false);

! ! !}

!

! !}

!

!}

!

!

!

!

!

!

!

!

Figure F.: Test harness for the related artists task.



!package test;

!

!import junit.framework.Assert;

!

!public class TorrentDownloaderTest {

!

! !@Test

! !public void testTD() {

! ! !try {

! ! ! !TorrentDownloaderImpl tdi = new TorrentDownloaderImpl();

! ! ! !tdi.init(new TorrentDownloaderManager(),

! ! ! ! ! !"http://www.mininova.org/get/1020084", "",

! ! ! ! ! !"outFile.txt");

!

! ! ! !tdi.run();

! ! ! !tdi.join();

!

! ! ! !Assert.assertTrue((tdi.getDownloadState() ==

! ! ! ! !TorrentDownloader.STATE_DOWNLOADING ||

! ! ! ! !tdi.getDownloadState() ==

! ! ! ! ! !TorrentDownloader.STATE_FINISHED));

!

! ! ! !Assert.assertNotSame(tdi.getDownloadState(),

! ! ! ! ! !TorrentDownloader.STATE_ERROR);

! ! ! !

! ! !} catch (Exception e) {

! ! ! !Assert.fail("This should not happen: " + e.getMessage());

! ! !}

! !}

!}

!

Figure F.: Test harness for the torrent downloader task.



!Option:AutoSwitch
!Account
NZRet. - Fidelity - Mutual Funds
TPort
^
!Clear:AutoSwitch
!Type:Security
NMicrosoft Corp
SMSFT
TStock
^
!Type:Security
NFannie Mae
SFNM
TStock
^
!Type:Security
NFidelity National Financial
SFNF
TStock
^
!Type:Security
NJohnson & Johnson
SJNJ
TStock
^
!Type:Security
NPaycheck
SPAYX
TStock
^
!Type:Security
NSLM
SSLM
TStock
^
!Type:Security
NSysco
SSYY
TStock
^
!Type:Security
NCoca Cola Co
SKO
TStock
^
!Type:Security
NUnilever N V
SUN
TStock
^
!Type:Security
NColgate-Palmolive
SCL

TStock
^
!Type:Security
NNeenah Paper Inc
SNP
TStock
^
!Type:Security
NClipper
SCFIMX
TMutual Fund
^
!Type:Security
NExcelsior Value & Restructuring
SUMBIX
TMutual Fund
^
!Type:Security
NKeeley Small Cap Value Fd Inc
SKSCVX
TMutual Fund
^
!Type:Security
NThird Avenue Value
STAVFX
TMutual Fund
^
!Type:Security
NThird Avenue Intl Value
STAVIX
TMutual Fund
^
!Type:Security
NWeitz Partners Value
SWPVLX
TMutual Fund
^
!Type:Security
NMuhlenkamp Fund
SMUHLX
TMutual Fund
^
!Type:Security
NBerkshire Hathaway Cl B
SBRK-B
TStock
^
!Type:Security
NTweedy Browne Global Value Fund
STBGVX
TMutual Fund
^
!Type:Security
NBridgeway Ultra-Small Co Tax Advant



SBRSIX
TMutual Fund
^
!Type:Security
NThird Avenue Real Estate Value
STAREX
TMutual Fund
^
!Type:Security
NBridgeway Balanced Portfolio
SBRBPX
TMutual Fund
^
!Type:Security
NDelafield Fund Inc
SDEFIX
TMutual Fund
^
!Type:Security
NGeneral Amer Invstrs Co
SGAM
TMutual Fund
^
!Type:Security
NBridgeway Aggressive Investor 2
SBRAIX
TMutual Fund
^
!Type:Security
NDriehaus Emerging Markets
SDREGX
TMutual Fund
^
!Type:Security
NIcap International Fund
SICEUX
TMutual Fund
^
!Type:Security
NPerritt Emerging Opportunities Fund
SPREOX
TMutual Fund
^
!Type:Security
NExcelsior Real Estate
SUMREX
TMutual Fund
^
!Type:Security
NGamco Gold Fund
SGOLDX
TMutual Fund
^
!Type:Security

NIshares Inc Msci Switzerland Index Fd
SEWL
TOther
^
!Type:Security
NSsga International Stock Selection
SSSAIX
TMutual Fund
^
!Type:Security
NEBAY INC
SEBAY
TStock
^
!Type:Security
NIshares Inc Msci Mexico Free Index Fd
SEWW
TOther
^
!Type:Security
NVanguard Sector Index Fds Vanguard
Telecommunic
SVOX
TOther
^
!Type:Security
NIshares Inc Msci Singapore Index Fd
SEWS
TOther
^
!Type:Security
NISHARES INC MSCI BRAZIL FREE INDEX
FUND
SEWZ
TOther
^
!Type:Security
NJANUS CONTRARIAN FUND
SJSVAX
TMutual Fund
^



Pre-Study Questionnaire

Participant ID:

Current occupation?

 Undergraduate Student

 Graduate Student

 Industrial Developer

 If you are a student, have you ever been employed as a developer in industry?

 Yes

 No

 If yes, for how long?

Years of development experience (basic, pascal et al. do not count)?

Years developing with Java?

How familiar are you with Java?

 1 - Not familiar, have never used it

 2 - Have used it once or twice

 3 - I have used it for a short periods in the past

 4 - I often use it, or have actively used it in the past

 5 - It is my everyday development language

Do you regularly use an IDE while developing software?

 Yes

 No

 If yes, which IDE do you primarily use?

Have you ever used the Eclipse IDE?

How familiar are you with Eclipse?

 1 - Not familiar, have never used it

 2 - Have used it once or twice

 3 - I have used it for a short periods in the past

 4 - I often use it, or have actively used it in the past

 5 - It is my everyday development environment

Unanticipated Reuse Study - Spring 2008



Have you ever reused code using copy and paste?

 Yes

 No

 If yes, how often would you say you reuse code this way?

 What three adjectives would you use to describe the benefits of these reuse tasks?

 1)

 2)

 3)

 What three adjectives would you used to describe impediments to these reuse tasks?

 1)

 2)

 3)

Unanticipated Reuse Study - Spring 2008



Mid-Task Questionnaire
Participant ID:

Task:

 Reuse QIF parser from jGnash

 Reuse related artists feature from aTunes

 Reuse TorrentDownloader from Azureus

Treatment:

 Tool-supported

 Manual

Time interval:

 5 minutes

 15 minutes

 40 minutes

Task complete:

 Yes

 No

On the right track:

 Yes

 No

This should take < 60 seconds

I am making good progress:
1) Strongly disagree
2) Disagree
3) Neither agree nor disagree
4) Agree
5) Strongly agree

I will be able to complete this task:
1) Strongly disagree
2) Disagree
3) Neither agree nor disagree
4) Agree
5) Strongly agree

How much longer do you think it will take:

 1) Less than 5 minutes

 2) Between 5 and 10 minutes

 3) Between 10 and 20 minutes

 4) Over 20 minutes

Unanticipated Reuse Study - Spring 2008



What is the #1 problem you are currently having:

What is the #1 thing that is going right:

Any other comments?

Notes

Unanticipated Reuse Study - Spring 2008



Post-Task Questionnaire

Participant ID:

Task:

 Reuse QIF parser from jGnash

 Reuse related artists feature from aTunes

 Reuse TorrentDownloader from Azureus

Treatment:

 Tool-supported

 Manual

Time taken:

 Full 40 minutes

 Other:

Task complete:

 Yes

 No

Close:

 Yes

 Medium

 No

How did you find the task:

 1) Difficult

 2) Moderately Difficult

 3) Okay

 4) Moderately Easy

 5) Easy

Did the task take more time or less than you anticipated at the beginning:

 More

 Less

If you needed this functionality in your own line of work, would you perform this reuse task?

 Yes

 No

Why, or why not?

Unanticipated Reuse Study - Spring 2008



What three things made the task hard?

 1)

 2)

 3)

What three things made the task easy?

 1)

 2)

 3)

If performing the tool-assisted treatment:

 Did Gilligan help you perform this task?

 Did Gilligan hinder you in performing this task?

 What did you like about Gilligan, in this case?

 What did you dislike about Gilligan, in this case?

 Did you find the overhead in creating the plan overwhelming?

 Did automating the enactment of the plan helpful?

 Was validating your reuse plan useful?

 Did you iterate on your plan? Was this helpful?

Do you have any other comments?

Unanticipated Reuse Study - Spring 2008



Exit Questionnaire

Participant ID:

Manual

 Tool-Supported

 Reuse QIF parser from jGnash

 Reuse related artists feature from aTunes

 Reuse TorrentDownloader from Azureus

Compare and contrast your experience between the manual and tool-supported approaches:

List three concrete differences between the tool-supported approach compared to the manual approach:

 1)

 2)

 3)

 Why those three?

List three concrete differences between the manual-approach compared to the tool-supported approach:

 1)

 2)

 3)

 Why those three?

Were the tool-supported tasks easier or harder to perform? Why?

The overhead required to use Gilligan was too much:
1) Strongly disagree
2) Disagree
3) Neither agree nor disagree
4) Agree
5) Strongly agree

Unanticipated Reuse Study - Spring 2008



Using Gilligan, I was better-able to understand the scope and implications of my reuse task?
1) Strongly disagree
2) Disagree
3) Neither agree nor disagree
4) Agree
5) Strongly agree

Using Gilligan, I was more likely to succeed at an unanticipated reuse task?
1) Strongly disagree
2) Disagree
3) Neither agree nor disagree
4) Agree
5) Strongly agree

I feel I could attempt larger reuse tasks using Gilligan than if you were to perform them manually?
1) Strongly disagree
2) Disagree
3) Neither agree nor disagree
4) Agree
5) Strongly agree

Do you have any other comments?

Unanticipated Reuse Study - Spring 2008





Appendix G

Final Experiment: Card Sort Data

During the final experiment  pages of hand-written notes were taken while the participants per-
formed their experimental tasks; these notes primarily comprised of statements made by the partic-
ipants but also included some observations. e notes were transcribed onto  type-written pages
that were split into individual comments, thoughts, or actions. e resulting  comments and ob-
servations were analyzed using a grounded theory approach [Corbin and Strauss, ]. Grounded
theory allowed us to group the comments according to their content using some coding criterion. We
used an an open coding approach [Miles and Huberman, ] to assign codes to the collected data;
by not pre-defining our coding strategy we allowed the categories to be iteratively developed and re-
fined. e groups were identified by iterating on the comments four times. Aer the first iteration,
 individual themes were delineated that contained between two and  comments. e second it-
eration shrunk the number of themes to  but further subdivided these into  sub-themes; during
this process many sub-themes were merged and split as further commonalities and divergences were
found. During the final phase, the  themes were grouped into  individual concept categories;
each of these represented a high-level concept that unified its constituent themes. ese concept
categories comprised between  and  themes.

Five of these concept categories were organic— that is, they naturally arose from the data; the
developers were not answering specific questions that were asked of them. ese concept cate-
gories each pertained to a different aspect of exploring, analyzing, and performing a pragmatic reuse
task. ree of the concept categories (including  themes and  sub-themes) were prompted as
they were a result of both observation and participant answers to specific questions that were asked
of them. Section .. describes the organic concept categories while Section .. describes the
prompted concept categories.

An overview is provided for each concept category, along with its themes and sub-themes. For
each theme the total number of quotes given and the number of individual participants who gave
them is enumerated as an indicator of the support for that theme. A synthetic quote is provided for
each theme; the intent of this quote is to give an general understanding of what that theme represents.

ese synthetic quotes were generated by combining portions of the collected quotes and integrating
them into a single cohesive statement. A number of significant, interesting, or demonstrative quotes
are also included to further re-enforce each sub-theme.

G. Organic Concept Categories

efive organic concept categories that arose from the card sort were both surprising and interesting.
ey they do not map directly to the steps developers undertake while performing pragmatic reuse
tasks, rather they comprise of a combination of actions and mental processes that developers must
perform and consider while considering these tasks. Each of the concept categories is intertwined; a
short overview of each of them is given here, along with a quick discussion of how they are related.
As the concept categories were derived from the data, not fit into pre-defined bins, they do not fit
together in a way that supports a natural, linear progression through them. ey are presented in an
order that tries to be as natural as possible for the reader; however, forward referencing is unavoid-
able and each of these categories takes place concurrently and iteratively as the developer progresses
throughout their reuse task.

e high-level concept categories correspond to dependency identification (Section G..), un-
derstanding (Section G..), maintaining mental models (Section G..), hypothesis testing (Sec-
tion G..) and performing pragmatic reuse tasks (Section G..). ese categories can be further
grouped into three groups: those pertaining to actions, those pertaining to understanding, and those
that are a hybrid. e dependency identification and performing categories both involved the par-
ticipant commenting on actions they were making to move throughout the source code. e un-
derstanding and mental models categories focused on the participant building an accurate represen-
tation of the source code so they could be effective in their task. e hypothesis testing category
is a hybrid of these other categories: the participants were actively performing small-scale tasks to
further their understanding of what they were doing.

Dependency identification. Dependency identification is a specialized form of information gather-
ing. Participants in this phasewere trying to identifywhat structural dependencieswere in the system
and where the code representing these dependencies existed. ey would use the dependencies they
found to build their understanding of the source code and translate this understanding into their
mental model of how the system was structured and functioned. e methodologies the participants
used to identify dependencies remarkably different depending on the experimental treatment they
were using for each task; in the manual treatment the participants spent most of their time poring
over the source code in a line-by-line fashion, while in the Gilligan treatment the developers quickly
navigated throughout the system.



Understanding. eparticipants built their understanding of how the systemworked andwas struc-
tured by investigating the dependencies and the source code within the system. e treatments did
not diverge very much for how the participants built this understanding; in both cases the partici-
pants would try to rely on the naming of the structural elements as much as possible to infer some
element’s functionality to avoid having to read the code in an in depth manner. With both treat-
ments the participants would sometimes need to resort to looking very carefully at the individual
lines of source code; sometimes the names alone were not enough. e need to understand would be
prompted by the developer identifying a dependency that seemed interesting and would be persisted
by incorporating the dependency into the participants mental model of the reuse task.

Mental models. Building an effective mental model was of critical importance for the participants
to be successful in their reuse task; without a model of how the code the participant wanted to reuse
worked they lost track of the details and ended up following false paths, getting lost, and making
more work for themselves. Ultimately, Gilligan provided far greater support for encoding the deci-
sions the participants made while building up their understanding of the task and consequently the
participants felt like they were much better able to focus on the task without being distracted while
performing the Gilligan-supported treatments.

Hypothesis testing. Performing a pragmatic reuse task is a heavily iterative process. One of the main
reasons for this iterative process was in the pursuit of hypothesis testing. Once a participant had
determined that a structural element was relevant to their reuse task they would attempt to reuse
it by coping it to their system. ey would then analyze the resulting errors and decide whether
the errors induced by reusing the code outweighed the benefits of reusing the structural element or
not. e results of this process both built their understanding of the system and contributed to their
mental model. e treatment the participants were employing had a huge effect on the participant’s
willingness to investigate different hypotheses; manually this process was very difficult to do in an
in-depth manner, while with Gilligan the participants could easily change their mind if necessary.
While this could be viewed as a specialization of performing the pragmatic reuse task, its emphasis
on developing the participant’s understanding and building their mental model makes this category
significant and independent.

Performing pragmatic reuse tasks. emes related strictly to performing pragmatic reuse tasks fell
into this concept category. Of the five concept categories this is the least surprising. ese themes
concern strategies andmethodologies used by the participants in both treatments to turn theirmental
model into a complete pragmatic reuse task. e approaches used by the participants for the treat-
ments are unsurprisingly divergent, as Gilligan automated the majority of this work for the partici-
pant; however, Gilligan’s support for rejecting structural elements had an impact on the participants



and how they understood and built their mental models for their tasks.
Table G. lists the  themes encapsulated by the  concept categories. Each theme is listed in the

order they appear in the subsequent text. e table also reports the number of participants whomade
quotes that fell into each theme, the total number of quotes in the theme, and the theme’s synthetic
quote.

 Participants  Quotes Synthetic Quote

Dependency
Identification
 

  It is frustratingly difficult to manually identify the
relevant dependencies for a pragmatic reuse task. �

  It can be overwhelming and disorienting to manu-
ally navigate through unfamiliar source code. �

  Using Gilligan it is easy to locate and navigate
through source code dependencies. �

  It is important to be able to measure and track
progress while performing complex reuse tasks. �

  Gilligan provides the majority of the information
necessary to make informed decisions about reuse
plan alternatives. �

  Gilligan’s validation view can help developers avoid
spending large amounts of time wading through
lengthy lists of compilation errors. �

  Being systematic helped developers feel that they
were better able to manage large, complex tasks. �

  Gilligan helped developers spend less time investi-
gating irrelevant common dependencies. �



 Participants  Quotes Synthetic Quote

Understanding
 

  e source code is the authoritative source of infor-
mation. Gilligan reduces the burden of having to
read the code but provides access to it as needed. �

  Understanding the functionality provided by the
source code is key to determining whether it should
be considered for reuse. �

  Manual investigations tend to be breadth-first while
Gilligan enables a more explorative methodology. �

  Poorly named or modularized source code can ob-
scure its functional role from a developer. �

Mental Models
 

  Gilligan explicitly encodes reuse decisions; this re-
duces overhead required to manually remember all
of the salient details. �

  By providing a high-level view of a reuse task, Gilli-
gan makes it easier for a developer to get a global
understanding of the source code they are reusing.�

  Gilligan helps developers focus on their reuse task
rather than being overwhelmed by numerous com-
pilation errors. �

  Gilligan helps developers manage the complex de-
tails that arise during pragmatic reuse tasks. �

  Developers are encouraged and supported in mak-
ing explicit, consistent, decisions using Gilligan. �



 Participants  Quotes Synthetic Quote

Hypothesis Testing
 

  Developers frequently make poor decisions while
performing pragmatic reuse tasks; these are difficult
to reverse manually. �

  Gilligan encourages and assists developers in inves-
tigating alternative reuse strategies. �

  By helping developers progress through a pragmatic
reuse task one decision at a time, Gilligan enables
them to better track their successes and failures. �

  Developers using Gilligan are more confident in the
quality of their solutions. �

Performing Pragmatic
Reuse Tasks

 

  Most of the manual work required during a prag-
matic reuse task is conceptually simple but labour
intensive. �

  Reuse tasks require less time, effort, and frustration
when they are performed with Gilligan. �

  Developers are likely to copy entire packages while
manually performing a reuse task, even though they
know it is likely to backfire on them. �

  Being able to easily remove elements that are not re-
lated to the reuse task is essential to reusing only rel-
evant source code. �

Table G.: Overview of the organic concept categories.



G.. Dependency Identification

All  participants contributed  individual quotes related to identifying relevant structural de-
pendencies. ese quotes coalesced into  major themes, as shown below. e greatest problems the
participants hadwaswith locating all of the dependencies so they could decidewhat to do about them.
Identifying and locating dependencies is one of the most important tasks the participants needed to
perform to successfully complete their reuse tasks; before they could understand the implications of
reusing a dependency to decide whether or not they would reuse it they had to first figure out what
the dependencies were and then locate their representations in the source code. While all of the in-
formation necessary to find each dependency can be found in the code, the participants performing
the manual treatments had to expend much of their effort on investigative work, which negatively
affected the amount of time they had for understanding what they had found or performing the reuse
task.

e participants coped with these drawbacks by trying to keep appraised of their progress; this
helped them to feel better about their reuse task. One major way of remaining appraised used by
both treatments wasmonitoring the quantity of compilation errors present in the reused source code.
Being systematic was another mechanism the participants employed to try tomanage the complexity
of the reuse task; several of the participants found that Gilligan encouraged them to be even more
systematic than they were manually and that this was helpful for them.

Gilligan’s informationdeliverymechanismwas quoted by  of the participants as a helpfulmeans
for locating and traversing dependencies. ey felt that Gilligan helped to filter the information
so they could focus on the task which enabled them to make more informed decisions about the
relative costs of reusing a dependency. Participants also tended to get lost much less frequently while
performing the Gilligan treatments as the structural dependency views provided a natural “bread
crumb trail” that helped reduce disorientation.

G... Identifying Dependencies: It is frustratingly difficult to manually identify the relevant
dependencies for a pragmatic reuse task.

All  participants made  comments about their frustrations with finding the list of structural
dependencies for any piece of source code. While the source code does contain all of the details
necessary to identify all of the structural dependencies, this information would oen be scattered
throughout many files (especially when inheritance was involved). For the manual treatments this
meant many editor windows would flash open while the participant would investigate any depen-
dency. Particularly, the insidiousness of indirect dependencies to foil the participant’s reuse inten-
tions was bemoaned. Oen the participant would copy a class or method to their system only to find
out that it caused even more errors than they had before. One simple way participants used to get
an overview of the dependencies was to look at the import list for a class, although this was terribly
inadequate because classes do not list dependent classes in their own package and import lists are



frequently wild-carded (e.g, java.util.*).

Manually working through all of the dependencies is a lot of work.

Manually I had to sort through a lot of information to find what I needed. (P)

I’m [having trouble] trying to understand the system; there’s a lot of stuff to go through.
(P-T; TD-M)

ere are a lot of dependencies that look unrelated to my task but I’m not so sure. e
code isn’t the prettiest either! (P-T; TD-M)

Indirect dependencies are surprising and problematic.

Resolving the dependencies was hard: something that looked innocuous to reuse proved
to be a nightmare. (P-T; TD-M)

Every time I think I’m getting close [the  of errors] explodes! (P-T; Q-M)

By hand it’s very hard to tell by looking at the code what costs are associated with reusing
a dependency. (P)

e dependency cycle is almost endless! You never know the ramifications of reusing a
class in your system. (P-T; Q-M)

Using the import statements to find relevant dependencies is insufficient.

Copying the Debug class was harder than it looked because package-level dependencies
aren’t listed in the imports. (P-T; TD-M)

Not having fully-qualified import statements is impedingmy investigation. (P-T; RA-
M)

G... Navigation: It can be overwhelming and disorienting to manually navigate through
unfamiliar source code.

 participants made  comments about the problems they experienced navigating through depen-
dencies in the source system. Scrolling blindness was a problem for participants when they were
performing the manual treatment of the tasks as they were continually scrolling through different
editors and views and would frequently lose track of their position in the system. is was further



exacerbated as the number of editors they had open increased as they navigated along structural de-
pendencies to new parts of the system. Being lost was a major source of confusing for participants.
e primary kind of lost participants experienced was forgetting how they got to their current lo-
cation in the code; this meant they had forgotten aspects of their mental model (see Section G..
for more details about mental models) and caused the participants to waste time revisiting previous
pieces of code they had visited in an attempt to retrace their steps. Participants infrequently got lost
using Gilligan as they could usually just look to the structural view to the le of the one they were
using to see the path they had taken; if they were in the le-most view this would not work, but de-
velopers in this view were always looking at code they had previously annotated and made concrete
decisions about which they used to quickly ground themselves.

I’m doing an awful lot of scrolling here.

e tool felt easier because I didn’t have to scroll through and copy and paste using the
package explorer; without all of that manual work it was faster. (P)

ere are lots of things to navigate between.

I had a lot of files opening up; there were lots of editors to navigate through. (P-T;
RA-M)

Lots of [switching] back and forth between the source and target systems really inter-
rupted my workflow. (P-T; RA-M)

It’s easy to get lost in all of the editors I have open.

e manual approach is more “fly-by-wire” as you hop from thing to thing; it is easy to
get lost. (P)

Oen I lost track of the method I was investigating. (P-T; RA-M)

G... Gilligan — Finding dependencies: Using Gilligan it is easy to locate and navigate
through source code dependencies.

 participants made  comments about the benefits of Gilligan quickly displaying the structural de-
pendencies for source code element. Ultimately, these participants were comparing the Gilligan
experience to the frustrations they experienced while trying to locate and navigate through depen-
dencies manually using an editor. In addition to quickly outlining the dependencies, participants
used the dependency list to quickly navigate into new parts of the system to see how dependencies
spread out throughout the system.



It’s kind of like shopping; you can pick and choose what you want and see the depen-
dencies right away. (P-T; Q-G)

[I liked] that I could just browse through the dependencies instead of using the editor
which would have taken forever. (P-T; TD-G)

It was easy to see what dependencies existed and navigate to them directly. (P-T;
Q-G)

G... Measuring Progress: It is important to be able to measure and track progress while
performing complex reuse tasks.

 participants made  comments about being able to feel (or not feel) like they were making
progress in their reuse task. Participants who did not feel like they were making progress oen ex-
pressed frustration with the reuse task in general. e main way participants measured progress was
by monitoring the number of compilation errors that were le for them to consider. Participants
performing Gilligan-assisted treatments also used the number of elements in the Validation view as
a measure of their progress on a reuse task. By being able to quickly see progress in their reuse tasks
participants using Gilligan were oen more positive about their effectiveness on the reuse task and
felt more enthusiastic about the quality of the reused code.

I use the error count as a measure of how I’m doing.

e error count is going down. One class is error free. (P-T; RA-M)

e compilation errors guided me so I could see if I was making progress. (P-T;
RA-G)

With the tool errors would decrease, but manually I would keep getting more errors.
(P)

I’m having trouble estimating how I’m doing.

It’s so hard to tell [how I’m doing] at this point because there is so much I still need to
go through. (P-T; RA-M)

I cannot estimate how well I’m doing manually; with the tool I was more sure of my
scope. (P)



Gilligan’s validation view gave me a sense of progress.

Validation was very valuable to me; being able to check my progress and how things are
going was nice. (P)

Iterating [on my reuse plan] gives me a sense of what is remaining. If I do it piecemeal
I avoid making duplicate decisions and doing extra work. (P-T; Q-G)

I dig the validation and checkout views; being able to see progress allows for more pos-
itive and negative reenforcement so you know where you’re going. (P-T; RA-G)

G... Information Delivery: Gilligan provides the majority of the information necessary to
make informed decisions about reuse plan alternatives.

 participants made  comments about how Gilligan’s focus on providing information on struc-
tural dependencies, andmaking this data easily navigable, was key to the utility of the tool-supported
approach. By clearly highlighting dependencies, the participants could quickly see what dependen-
cies exist without having to resort to reading through the source code which was perceived to be a
slower way to find dependencies. Gilligan’s focus on providing quick, flexible dependency navigation
allowed participants to focus on the dependency itself, and estimating the costs of reusing it, without
having to first copy the code, compile it, and trying to identify the new compilation errors relevant
to the reuse code separate from all of those that existed beforehand. In effect, Gilligan could act as an
oracle, giving the participant a worst-case scenario about the potential costs of reusing a dependency
(it is worst-case because some of the dependencies listed in the view may already have themselves
been reused and therefore not really been a reuse burden). Ultimately, Gilligan enabled developers
to focus on the information itself, rather than the mechanics of collecting the information.

Highlighting dependencies is useful.

[Using the dependency views] was quicker than reading the source code. (P-T; RA-G)

With the tool I could see the dependencies right away; this gave me the foresight to see
if I might need other classes or if I should exclude a class. Manually this just hits you
aer the fact. (P)

Gilligan gave me the information I needed.

[Using Gilligan] all of the information you need is right in front of you. (P-T; RA-G)

e conceptual model of the tool is simple and maps to how I think about the code
anyways. (P-T; RA-G)



Gilligan gave me the pertinent information I needed to do the task and it did a lot of the
work for me automatically. (P)

Gilligan filtered the information for me, helping me to focus on the task at hand.

[Gilligan] filters the dependencies so you know what you need to concentrate on. (P-
T; RA-G)

[With Gilligan] all I have to do is focus on the dependencies; I don’t have to focus on the
code. is way I can quickly see how far along in the task I can get. (P)

Gilligan helped me to estimate the cost associated with reusing a dependency.

[Using Gilligan] I could see when something would be cheap to reuse. (P-T; Q-G)

e direct and indirect dependency views let me see, in advance, how hard it would be
to reuse something. (P)

Oh wow, this could be bad. [on looking at the classes in the direct dependency view in
the engine package]. (P-T; Q-G)

e dependency counts helped me to make my decisions.

Having the number of dependencies listed was good so I at least knewwhat I was getting
into instead of blindly accepting and rejecting things. (P-T; TD-G)

[Using Gilligan] you can actually see what the dependencies are. e number is actually
intimidating but looking at the dependencies [in the structural views] you can see the
source of them; if lots of them are self-referential ten it might not be a big deal. (P-T;
RA-G)

G... Gilligan — Validation View: Developers can avoid spending large amounts of time
wading through lengthly lists of compilation errors by using Gilligan’s validation view.

 participants made  comments about the role Gilligan’s validation view (see Section .. for
details about the validation view) had on how they identified and navigated through dependencies.
Many of the participants still relied on compilation errors to understand the problems they were
having, even with the Gilligan-supported treatments. is was because they were more familiar with
the compilation errors than with the validation view and because compilation errors are much more



expressive than the validation view could be. Participants frequently used the compilation error list to
choose an error thatwas frequently occurring; theywould then select this element from the validation
view because for a significant portion of frequently occurring errors could be attributed to a required
structural element that they had not yet triaged. e participant could then navigate directly back
into the structural views from the validation view; this loop (errors to validation view to structural
views) was employed by every participant on the Gilligan treatments. By following this approach the
developer could also avoid having to search through the structural views to find the elements they
were interested in. One of themain reasons the participants used the validation viewwas that instead
of bringing them to the source of the error (as the compilation view does), the validation view would
take them to the most likely source of the solution.

Even using Gilligan seeing the compilation errors is still important.

I’m comfortable dealing with compilation errors. (P-T; RA-G)

I mostly used the compilation errors to inform which element to choose from the vali-
dation view. (P-T; RA-G)

Gilligan points out what I haven’t looked at yet.

e validation view let me quickly see what things I’ve overlooked. (P-T; Q-G)

[e validation view] points out, “you haven’t looked at these yet”. It also gives you a way
of navigating back into the abstraction.

Gilligan points out where I should look next.

[Validating the plan] was a lightweight way to locate TODO items. (P-T; RA-G)

Manually it was too hard to prioritize what to look at next because I was already over-
whelmed with problems. (P)

Unlike the compilation errors that showed me the effect of what my decisions were, the
validation view provides feedback on where I should go next. (P-T; RA-G)

Gilligan’s validation view gives me a link back into the structural representation.

I did the checkout and validation together. I would look at the state of the code and use
the validation view to navigate back into the abstraction at the top. (P-T; Q-G)

e validation view helps you along. Manually I have to diagnose problems by looking
at all of the compilation errors. With the validation view I just navigate back into the
abstraction. (P)



G... Being Systematic: Developers felt they were better able to manage large, complex tasks by
performing them systematically.

 participants made  comments about how being systematic helped them to manage the complex-
ity of their reuse task. e participants frequently would say they ‘had a plan’ when they felt that
things were going well and they felt they were making forward progress. When the participants were
faced with a daunting number of errors or dependencies to triage they oen commented that being
methodical and ‘working through the list’ was an effective strategy to avoid becoming ‘bogged down’.
Many participants felt that Gilligan encouraged them to bemore systematic and the participants con-
sequently felt more effective on these tasks.

I feel like I have a plan.

I still have a plan. (P-T; TD-G)

Being methodical makes things easier.

Changing to a more methodical approach [made my task easier]. (P-T; RA-M)

Gilligan encourages me to be systematic.

e tool supported approach allowed me to consistently progress through the source
code to complete the reuse task. (P)

[I liked that] Gilligan helped me to be more systematic [for this task]. (P-T; Q-G)

G... Common Dependencies: Developers wasted time investigating irrelevant common
dependencies while performing their reuse tasks manually.

 participants made  comments about the importance of not re-investigating code that had already
been considered. While only two participantsmade these remarks, it was oen observed that partici-
pants undergoing the manual treatment would end up either ignoring or investigating dependencies
that were common to between the source and target systems. Participants would also express frus-
tration when they realized they had already investigated dependency they were considering and had
forgotten about it.

[Manually] there are less clues on which dependencies are common; if you don’t recog-
nize them you have to spend time thinking about what they are. (P)

I tend to waste time manually managing things that don’t matter. e yellow dependen-
cies keep me from getting confused. (P-T; Q-G)



G.. Understanding

All  participants contributed  individual quotes pertaining to understanding source code. ese
quotes broke down into four main themes: e role of the source code in a pragmatic reuse task,
how developers determined what role specific pieces of code had within the context of their reuse
task, strategies for navigating and understanding code, and the impact of the quality of the code’s
modularization on its understandability and reusability.

Pragmatic reuse tasks usually involve reusing source code not written by the developer perform-
ing the reuse task. is imposes a large burden in terms of understanding the source system for
the developer performing the reuse task. e experimental participants employed a variety of tech-
niques to develop an sufficient understanding of the code they were reusing to be able to complete
their tasks.

None of the participants had ever seen the source code being reused in the experimental tasks; to
make up for the lack of familiarity they spent a considerable portion of their time trying to understand
the code. In general, the participants did not initially try to determine how the systemworked, instead
theyweremore interested in trying to determinewhat functionality each piece of the systemprovided
so they could determine its relevance to their reuse task. Building this initial understanding is crucial
to performing pragmatic reuse tasks in a reasonable amount of time (see Section G.. for details of
how the participants performed these tasks) as the developer’s first goal in performing these tasks is to
identify the relevant code before they can consider how to reuse it. Once some code is determined to
be relevant, the participants tried to estimate the cost associated with reusing the code (SectionG..
outlines some specific approaches leveraged by developers to gain a firmer understanding of these
costs).

G... Role of source code: e source code is the authoritative source of information. Gilligan
reduces the burden of having to read the code but provides access to it as needed.

 participants made  comments about how they used the source code during their reuse tasks.
ese comments broke down into  main sub-themes. e participants felt that during the manual
treatments they felt closer to the source code; however, this also caused problems as spending all of the
time in the codemade it hard to gain a high-level perspective on the task (see Section G... for how
participants maintained this overview for Gilligan treatments). Even using Gilligan the participants
would look at the source code; this would generally take place when the participant was trying to
make a tricky decision, or at the end of the task when they were making changes to the code that
Gilligan could not do for them.

Manually I feel closer to the code.

Manually you have a real connection to what the code is actually doing. (P)



[Gilligan] tended to abstract away more, but I ended up feeling more detached from the
code. (P)

Reading too much code can be overwhelming.

It’s really slow to read the code; there’s a lot of scrolling throughmultiple editors involved.
(P-T; RA-M)

Even using Gilligan I need to look at the code sometimes.

e abstraction can hide things; sometimes I had to go to the code directly. (P-T;
TD-G)

Being able to view the annotated source code directly from the structural views [was
helpful]. (P-T; Q-G)

Using the tool I didn’t miss the fact that I wasn’t looking at the source code directly
because the abstraction was usually sufficient. (P)

With the tool I rarely looked at the code; mainly I looked at the code at the end to make
only the tricky decisions. (P)

G... Relevance of dependencies: Understanding the functionality provided by the source code
is key to determining whether it should be considered for reuse.

 participants made  comments about the role understanding the code had on their task. e
participants were continually trying to understand what each dependency in the source code did so
they could then decide whether they should be reusing it or not.

Understanding the code is important.

I don’t understand the code I’m reusing. (P-T; RA-M)

In the manual task I was thinking about what I was importing; with Gilligan I had more
of an understanding. (P)

How does this relate to my task?

I’m trying to understand what I need and what I can get rid of. (P-T; RA-G)

Trying to understand what each class does and which methods I care about. Is it related
or can I reject it? (P-T; Q-G)



G... Investigation Strategy: Manual investigations tend to be breadth-first while Gilligan
enables a more explorative methodology.

 participants made  comments about how their investigation strategy differed between the treat-
ments. Manually the developers explored the code in a breadth-first manner. is meant they would
look at a specific class or method in its entirety before continuing their investigation by navigating
to a dependency in another file; this was generally to contain the number of editors they had open
and keep themselves from getting lost. With Gilligan they tended to quickly travel down dependency
chains so they could get a sense whether the top-level method or class they were considering really
required the dependency chain they were investigating.

[Manually] I stayedwithin a realm; Iworked on immediate dependencies before I jumped
to the next because I didn’t want to get lost. (P)

With the tool I work through the dependencies in a depth-first manner to see what is
important; manually I traverse them breadth first to get a sense of each dependency
before I get lost in its children. (P)

Manually it was really a breadth-first process whereas with Gilligan I could jump around
more to consider what I wanted without losing that higher Perspective. is is more
natural because it allows you to follow your way throughout the code without stopping
yourself in fear of getting lost or forgetting where you were. (P)

G... Impact of code quality: Poorly named or modularized source code can obscure its
functional role from a developer.

 participantsmade  comments about the ability of the code’s quality to interfere with, or aid, their
reuse task. ese comments broke down into  main sub-themes. Poor naming conventions and a
lack of comments made it difficult for the participants to assess the functional role of a structural
dependency. is especially affected Gilligan users as they were not as connected to the source code
itself; the manual users were more likely to invest the effort to try to understand what a particular
piece of code that had a poor name did (see Section G...). e package structure affected devel-
oper’s global overview of how the system they were reusing code from was organized. is tended
to affect the manual participants more as they spent more time searching through the originating
system looking for dependencies (see Section G...). Participants in both treatments found it diffi-
cult to reuse poorly-modularized code, although participants in the manual treatment found it more
difficult (see Section G...).

Poor naming conventions and comments interfere with understanding.



e Process is easy but the code sucks and you can’t get around that. ere are limited
comments and the naming conventions are problematic. (P-T; TD-G)

is project has the worst names ever. (T-T; TD-M)

e structure of the code isn’t helpful. I had to do lots of guessing about the purpose of
dependencies. (P-T; TD-G)

Good naming conventions aid good decision making.

e naming conventions don’t lend themselves to understanding what the code is for.
(P-T; TD-G)

Since I spent so little of my time looking at the code I’m really reliant on a consistent
naming scheme and the code itself being of a reasonable quality. (P-T; RA-G)

Package structure can facilitate or deter system-level comprehension.

e class and package layout reenforced how the system was laid out. (P-T; Q-G)

e package structure was confusing. (P-T; TD-M)

Nobody likes spaghetti code. ( participants;  quotes)

e code kinda sucks. ere’s like dependencies everywhere; it’s just spaghetti code.
(P-T; TD-M)

e code is just a mess; it’s spaghetti code. (P-T; TD-G)

It is easier to reuse with well modularized source code.

e code is not modularized well enough to reuse it. (P-T; TD-G)

e structure of the code itself just doesn’t naturally lend itself to reuse. (P-T; TD-M)

Not much thinking required, the code was fairly well modularized. (P-T; Q-M)



G.. Mental Models

Of the  participants taking part in the experiment,  of them made  comments about devel-
oping, and maintaining, mental models. ese quotes can be further subdivided into five main
themes: ) e participant’s difficulty when they tried to maintain an accurate mental model for
a pragmatic reuse task; ) How they used the overview perspective provided by Gilligan; ) e im-
portance of explicit decision making to maintaining a clear mental model; ) How being focused on
the task rather than distracting details makes creating an accurate mental model more achievable;
and ) e participant’s ability to better handle complex reuse tasks using Gilligan.

One of the largest problems participants performing themanual treatment hadwas keeping track
of the details of their reuse task. As they identified and navigated throughout the dependencies in
the system, they decided on their relevance and added it to their mental mode; unfortunately, the
participants frequently either forgot important details, or made decisions that they had previously
made about the same structural elements. Sometimes the participants would also recall a decision
but be unable to recall their rationale for their initial decision.

e participants remarked on a number of aspects of Gilligan and how it aided their retention of
their mental model. By capturing all of the details about a reuse task in one place, Gilligan gives an
overview perspective that makes it easy to see what all of the details of the reuse task are at a glance.
e tool also ensures that decisions are consistently applied across a reuse task, a common problem
for the participants performing the manual treatment. To capture the reuse plan, Gilligan forces
the developers to explicitly annotate structural dependencies with their decisions; aer adjusting to
this requirement, the participants found that this was easier than making piecemeal modifications to
the code itself. e abstraction mechanism used by Gilligan enabled the participants to ‘step back’
from the code, enabling them to both see their decisions in context and to insulate them from the
syntatic and mechanical aspects of the reuse task; both of these enabled the participants to better
develop their mental model to handle complex pragmatic reuse tasks without being overwhelmed by
low-level issues.

G... Tracking task details: Gilligan explicitly encodes reuse decisions; this reduces overhead
required to manually remember all of the salient details.

 participants made  comments related to the difficulties they had keeping track of all of the details
of a pragmatic reuse task in their heads. Only  of the  participants chose to keep notes on a piece
of paper as they proceeded through the reuse task; the other  tried to remember all of the details.
e difficulty of remembering all of the details was exacerbated by the fact that the participants were
reusing code they were not familiar with and did not have a prior mental model of the systems to
fall back on. Having a strategy helped some of the participants keep track of the details; the main
method used was by trying to clear up all of the compilation errors for a file so they could “forget”
about it and not have to worry about it anymore; alternative strategies included only keeping editors



open for files that were important or still needed to be considered in some manner. Many of the
participants found that having Gilligan maintain the model for them, so they could only reference it
as they needed, enabled them to perform their reuse tasks.

Remembering all of the details of my reuse task is difficult.

[Manually] I had to do the same workflow, but by navigating all of these editors, AND I
had to remember everything for myself!. (P-T; Q-M)

Having to remember all of the details without forgetting something important was al-
most impossible. (P)

Gilligan maintains the model so I don’t have to.

I could set aside decisions I wasn’t ready to make because it wasn’t clear what the right
decision was until later and not lose track of them. (P-T; RA-G)

Caring about the details seemed more attainable with Gilligan than [manually]. (P-T;
Q-M)

[I liked] that I didn’t have to remember all of the decisions I had made. (P-T; Q-G)

You sort of browse through the whole system easier, you don’t have to retain the whole
model in your head; it lets you bounce around a bit more. (P)

I have a strategy to keep track of my mental model.

is strategy [considering the packages alphabetically] is probably not the best way to
do it but it’s just a way of keeping track. (P-T; TD-M)

I’m only going to keep editors open for files that still have errors. (P-T; TD-M)

Where did this dependency come from again?

Why did I copy this? Where is the dependency that required it? (P-T; RA-M)

What did AudioScrobblerService need from the Kernel again? (P-T; RA-M)



G... Gilligan — Overview Perspective: By provides a high-level view of a reuse task, Gilligan
makes it easier for a developer to get a global understanding of source code they are
reusing.

 participantsmade  comments about the high-level perspective Gilligan provided them for prag-
matic reuse tasks. Whereas manually the participants would could get lost within the numerous
source code editors and views they were navigating (Section G...) and would have trouble re-
membering the details of their reuse task (Section G...), Gilligan’s ability to provide a high-level
overview of the reuse task alleviated many of their problems. By working with an abstract represen-
tation of the problem, the participants were able to concentrate more on the high-level aspects of the
problem while worrying less about low-level issues such as syntax and compilation problems. ey
could get an overview of all of the decisions they had made by glancing at the decisions panel in the
structural dependencies views; if they ever forgot about a specific decision they had made they could
quickly refresh their memory here without having to go back to the source code and make the same
decision again. By working within Gilligan’s abstraction, participants were able to codify all of their
decisions in one place, rather than making numerous edits and copies to various source code files;
this helped them to ensure their decisions were always consistent and explicitly persisted.

Having a high-level view of the task was valuable.

[Gilligan] provided a high-level understanding of something you don’t want to consider
at a low level because it’s just huge. (P-T; TD-G)

I was able to work at a higher level without worrying about syntax or other little details.
(P-T; RA-G)

[e best aspect of Gilligan was] was the holistic perspective it gave me. e , foot
view to look at a dependency and see if reusing it would be painful without having to do
all of the work to discover that fact for myself. (P-T; TD-G)

[Using Gilligan] you could see what the whole problem was and never lose perspective
by being down some specific path. (P)

Working with an abstraction was helpful.

Having the overview perspective made the tasks more manageable. (P)

[Gilligan] gives you more abstraction so you can make it farther [in your task]. (P)



Gilligan’s colour coding helped me see what decisions I had made at a glance.

e colours made things clear, both in the trees and in the code view. (P-T; RA-G)

e decisions I had made were clearly visible which is a huge help for me. (P-T; Q-G)

I liked Gilligan’s colour coding; it makes it really easy to see what I’ve done so far. (P-
T; RA-G)

Reuse plans are beneficial.

[I liked that] Gilligan forced decisions into the plan instead of making piecemeal code
modifications. (P-T; Q-G)

e plan encapsulates what works and fails in one place. (P-T; Q-G)

Manually I started from the top and copied things; with Gilligan I planned things out
more. (P)

G... Gilligan — Task Focus: Gilligan helps developers focus on their reuse task rather than
being overwhelmed by numerous compilation errors.

 participants made  comments about how they felt they were better able to concentrate on their
task using Gilligan. ere were  main reasons for this: ) e participants were able to focus on the
dependencies involved in the task, instead of being distracted by the numerous compilations atten-
dant with a reuse-task in progress; ) Rather than having to think about the mechanics of their reuse
task they were able to consider their problem at a conceptual level. e second reason is particularly
valuable as Gilligan enabled the participants to think about the dependencies and their relevance to
their task without then having to invest a lot of manual effort to check to see if their decision was a
good idea or not.

[Gilligan] allowed me to focus more on the complex reuse issues and to modify the
system to fit into my overall reuse task. (P-T; Q-G)

Once I made a decision [with Gilligan] I never had to consider it again. I was able to
concentrate on making decisions than on compilation errors. (P)

[Gilligan] allows me to keep focused on the task and provides instantaneous feedback
on how the task is proceeding. (P-T; RA-G)



Interestingly,  participants made  opposite comments to these about how they focused while
performing the tasks manually. ese participants vocalized that they would focus exclusively on the
errors, rather than trying to figure out how things worked. ey would come back to consider the
functionality aer the code was compiling.

[Manually] I started by resolving all of the dependencies instead of focusing on the key
functionality. (P-T; RA-M)

[Manually] it ismore about fixing the compilation problems and seeing how things com-
pile, rather than worrying about how things work; that comes later. First solve all of the
red stuff and see if it works aer. (P-T; Q-M)

G... Gilligan — Handling Complexity: Gilligan helps developers manage the complex details
that arise during pragmatic reuse tasks.

 participants made  comments about Gilligan’s ability to help them deal with the complexity of
their reuse task. Surprisingly, the participants noted that they felt that using the tool helped them to
investigate the third reuse task for longer than if they had been attempting it manually because the
tool helped them to manage the complexity of that reuse task. is contradicts the hypothesis that
the participants would give up sooner on a poor reuse task with Gilligan; whether this is a positive
development or not is amatter of perspective, although it is easiest to argue that the potential payoff of
a large reuse task far outweighs theminimal amount of time a reuse plan takes to formulate compared
to writing the soware from scratch.

Gilligan gave me a chance with [the third task] instead of rejecting [the task] right away.
is way I know for sure that the task is bad instead of going by a gut feeling. (P)

For the [the third task] I might have given up sooner but with Gilligan there is little risk
in trying to reuse the code; it didn’t matter if the task was huge because I could still keep
track of what I was doing. (P)

[Gilligan] delays the sense of hopelessness when you’re elbows-deep in someone else’s
code. (P)

I would be more willing to use the tool the more complex the reuse task; the more code
I needed to reuse the more the tool would help. (P-T; RA-G)

G... Gilligan — Making Decisions: Developers are encouraged and supported in making
explicit, consistent, decisions using Gilligan.

 participants made  comments about how Gilligan encouraged them to explicitly make decisions
about their reuse plan. ese sentiments are related to how Gilligan presents information about



structural dependencies (Section G...) but with the emphasis more on the decision than on the
information delivery mechanism itself. By thinking in terms of decisions, and explicitly making
them, the participants were able to continually encode their decisions about the reuse task within
Gilligan; the resulting reuse plan was one of the main aids to the participants in maintaining and
refreshing their mental model of the task itself.

I could focus on the decisions instead of being distracted by trivial details.

Manually I would just look at the errors; with the tool I would concentrate on the actual
dependencies. (P)

By working in the abstraction, Gilligan takes you away from the immediate compilation
errors so you can focus on the decisions you are making. (P-T; Q-G)

Using Gilligan is easy, I can see each decision clearly instead of being swamped by trivial
details. (P-T; Q-G)

Using Gilligan I could focus on making the decisions, not on the mechanics that would entail.

Gilligan was a force multiplier. Simple decisions with large consequences in the code
were minor tasks due to the automation. (P)

[Gilligan] made it easy to focus on the decisions rather than the mechanical actions it
would require manually. (P)

Using Gilligan I could easily make aggregate decisions.

With Gilligan I have a good representation of the task. I have a holistic view and can see
what’s going on; this means I can make broad, informed decisions. Here I can see right
away how bad a dependency is. (P-T; TD-G)

e tool makes it crazy easy to take care of large chunks of code all at once. (P-T;
Q-G)

Gilligan encouraged me to shi my focus more towards making explicit decisions.

Editing code is what I’m familiar with. Using gilligan I had to shi my thinking towards
making explicit decisions. (P)



G.. Hypothesis Testing

All  participants made  comments that related to hypothesis testing within the context of the
pragmatic reuse task. is interesting concept category revolves around the participant’s desire to
investigate alternative reuse decisions within their reuse plans. As none of the participants were
familiar with any of the source code they were reusing they oen did not make the best possible
decisions on their first attempt; they made up for their unfamiliarity with the source code by trying
out different options in an effort to finding the best possible option within the context of their reuse
task.

One of the largest problems with investigating alternative decisions is that backing out of a de-
cision manually required the developer to perform an overwhelming amount of work; this, coupled
with their feeling that they were abandoning their initial work to get to their current state made
developers feel apprehensive about changing their minds during the tasks. At the same time the
participants performing the Gilligan treatments would usually investigate alternatives for any major
decision; at the very least they would investigate alternative options for any expensive decision.

e participants further felt that Gilligan assisted themwith investigating alternative decisions by
providing the tool support necessary to quickly check different alternative decisions and immediately
get feedback on the results of these decisions. is extra feedback was primarily in the form of the
automated enactment of the reuse plan; the participants could quickly see the number and nature of
the compilation errors that arose from the different decisions they made in their reuse plans. is
extra support helped many of the developers to believe that Gilligan helped them to make the right
decision and relieved them from some of the analysis burden of trying to make this correct decision
the first time, every time. As a result of this, some participants also hadmore confidence in the quality
of their solutions.

G... Reversing decisions: Developers frequently make poor decisions while performing
pragmatic reuse tasks; these are difficult to reverse manually.

 participants made  comments about their desire to change their minds about specific decisions
they hadmade during their reuse tasks. Somedecisions can be sound simple butmechanically require
the developer to make a lot of changes to the code. For example, on several occasions the participant
would say, “I do not care about logging” and would then proceed to remove logging references from
the source code. Manually, this would involve finding every location in the code where the logger
was instantiated as well as every reference to a logging field and call to the logging class; this could
result in hundreds of edits, even within the context of the reuse task. Using Gilligan the participant
could just reject the logger class and all of the calls and references would be automatically removed
instantly for the participant.

One interesting reason participants didn’t want to change their minds manually wasn’t that they
were worried about the work it would entail but instead related to their unwillingness to abandon all



of the investigative work they had undertook up to that point.

With Gilligan it is easy to revert any decision I have made.

Undoing a decision was easy. It was just a couple of mouse clicks instead of commenting
out lots of code or copying new code. (P-T; Q-G)

We have a lot of libraries [in my company]; copying and pasting from them is very error
prone. is can save time and reduce errors. It’s especially faster because it’s easier to
backtrack. (P)

I was more willing to take risks [with Gilligan] knowing it would be easy to roll back.
(P)

Rolling back a decision is a lot of work to do manually.

In the manual tasks if I made a mistake it could have large consequences; with the tool
I could easily change my mind. (P)

If you made a misstep manually you basically have to start from scratch; with Gilligan
it’s easy to step back and reverse a decision. (P-T; RA-G)

You could experiment a lot more [with Gilligan], if you try a class and it doesn’t work
out it’s easier to backtrack. Manually you would have to undo lots or delete the file and
start again: a lot more work! (P)

I don’t want to change my mind; I would lose all of this hard work!

I got off on a tangent [with QIFImport] that cost me a lot of time. Once I was down that
path I didn’t want to throw all of that work away to roll back. (P-T; Q-M)

e level of commitment required to look at alternatives is causing to limit my exploration options.

Manually I could not undo my decisions easily; I oen wanted to investigate a different
option but it was too much work. (P)

In the manual case there is a lot of hesitation to trying new things due to the level of
commitment it would require. (P)



Just commenting everything out is messy.

[Manually] I would delete stuff I wasn’t supposed to. In the end I switched to comment-
ing things out, but that made a mess of the code. (P-T; RA-M)

G... Gilligan — Decision prototyping: Gilligan encourages and assists developers in
investigating alternative reuse strategies.

 participants made  comments relating to how Gilligan helped them to prototype their decisions
and encouraged them to explore alternative solutions. By prototyping their decisions the participants
could try several alternative reuse plans; this made it much more likely that they would make suc-
cessful decisions compared to relying on their first instinct each time. In the manual treatments the
participants were oen unwilling to investigate alternative decisions because of the time and effort
costs associated with such an investigation (Section G...).

While prototyping decisions the participants would investigate both large-scale alternatives, such
as accepting and rejecting whole classes, as well as small-scale alternatives such as accepting, reject-
ing, and remapping specific methods and fields. Early in the reuse task the participants would be
more willing to investigate large-scale alternatives and would slowly migrate to smaller-scale exper-
imentation as they progressed through the task.

Gilligan made it easy to prototype my decisions.

[Using Gilligan] I can quickly see the results [of my decisions]; this is useful because it
doesn’t take  minutes to implement a single decision [as it might manually]. (P-T;
RA-G)

I needed to figure out how the code worked to see what I had to reuse. With the tool I
could just quickly prototype my decisions and see if they worked. (P)

I’ll just try this and see what happens. (P-T; RA-G)

With Gilligan I was able to make the right decision.

e toolmakes investigating alternatives faster than having to understand the code thor-
oughly enough to make the right decision the first time. It sounds bad but it’s true. (P-
T; Q-G)

[Gilligan] breaks things down a lot more; what possibilities are there? I don’t just have
to copy and paste. (P-T; RA-G)

Because I tried different plan alternatives [with Gilligan] I think my overall quality is
better. (P)



G... Gilligan — Stepwise refinement: By helping developers progress through a pragmatic
reuse task one decision at a time, Gilligan enables them to better track their successes and
failures.

 participants made  comments about how they iterated on their reuse tasks with Gilligan. e
primary reason for iteration was to immediately see the effects of any decision they made; in general,
the participants were trying to confirm they were heading in the right decision or to catch a bad
decision while it would still be easy to recover from. Iteration was also used to make the reuse task
feel more manageable as the participants just dealt with one small piece of the task at a time.

Am I going the right way in this task?

[Using Gilligan] it’s easier to see the consequences of a decision. (P)

e compilation tab refreshed right away and toldme if I was going in the right direction
or not. (P-T; Q-G)

I iterated on my reuse plan to see if I needed to back out of a bad decision.

I repeatedly iterated to see the effects of my decisions. (P-T; RA-G)

I iterated on almost every decision I made. It gives you a decision point so you can step
back and easily get out of a bad decision. (P-T; RA-G)

It’s hard to know if your decisions are bad; using Gilligan without iteration would be like
working with one hand tied behind your back. (P-T; RA-G)

I iterated because...

e task seemed more manageable this way. (P-T; RA-G)

[Iterating] is much better than trying to figure it all out and having to do [the task] all at
once. (P-T; RA-G)

G... Gilligan — Confidence in Solution: Developers using Gilligan are more confident in the
quality of their solutions.

 participantsmade  comments reflecting their feeling that they had greater confidence in their reuse
task outcome using Gilligan than if they had been performing the task manually. is confidence
was both applied to correctly giving up an inappropriate task as well as their solution to a successful
reuse task. is confidence resulted from the participants being able to maintain an effective mental
model by having a global overview of their task (Section G...) while exploringmultiple alternative
solutions (Section G...) to their reuse task.



I felt more confident about the scope of the task [using Gilligan]; I would be more con-
fident in predicting the eventual success or failure of a task. (P)

I explored the task for a shorter duration [using Gilligan] but was more confident in my
decision to surrender. Manually would have taken longer but I would be less confident
in my decision to give up. (P-T; TD-G)

G.. Performing Pragmatic Reuse Tasks

All  participants made  comments that related to actually performing the pragmatic reuse plan.
is concept category is somewhat less interesting than those presented in the previous four sections
as it is not surprising that many of the participants comments about the experiment would center
on how they actually performed the pragmatic reuse tasks. While many issues related to performing
these tasks have been incorporated into the previous concept categories, four remaining themes are
more specific to performing these tasks. is concept category separated into four main themes:
e large amount of time still required to perform even conceptually easy pragmatic reuse tasks; the
desire of participants to copy over full packages in the manual treatments; the ability of Gilligan to
save participants time and effort on their pragmatic reuse tasks; and finally, on the importance of
being able to easily reject source code elements not relevant to a reuse task.

e time-consuming nature of performing pragmatic reuse tasks manually is strongly linked to
issues of structural dependency identification (Section G...) and being able to quickly iterate on
pragmatic reuse plans and investigate alternative reuse scenarios (Section G...).

Participant’s willingness to try to reuse whole packages at a time arose out of despair over the
number of errors they were facing. is resulted from not being able to keep track of all of the details
of their reuse task (Section G...).

e time and effort savings enabled by Gilligan happened for reasons mentioned in each of the
previous concept categories including giving participants access to the information they needed (Sec-
tion G...), giving them an overview of their reuse task (Section G...), and allowing them to
quickly prototype reuse plan alternatives (Section G...).

Being able to easily remove irrelevant structural elements from the source code was very im-
portant for enabling the participants to focus on reusing source code relevant to their task rather
than being overwhelmed by errors originating in code that was not relevant to their reuse task (Sec-
tion G...).

G... Making Work: Most of the manual work required during a pragmatic reuse task is
conceptually simple but labour intensive.

 participants made  comments about how the manual treatments were straight-forward but
seemed to take much more time than they should. While the participants mentioned that both copy-
ing and pasting and locating dependencies were more time consuming than they should be, it was



observed that the participants also spent much of their time making simple low-level source code
modifications.

Copying and pasting should be easy but it takes a surprising amount of time.

Moving the types from the source to target project was more work than it should have
been. (P-T; Q-M)

[e task] was tedious due to the robotic interactions; it was very repetitive. (P-T;
Q-M)

Just locating the code to copy is time consuming.

Just finding the right code to copy and paste [made the task difficult]. (P-T; TD-M)

[Manually] it was much harder to find and copy all of the parts of the code I wanted.
(P)

G... Gilligan — Saving time and effort: Reuse tasks require less time, effort, and frustration
when they are performed with Gilligan.

 participants made  comments about how Gilligan was able to save them time and effort as they
completed their pragmatic reuse tasks. Several participants mentioned that automating the enact-
ment of their reuse plan saved them a lot of the frustrating work that they encountered doing the
tasks manually. Oen, participants would compare the actions they were currently performing to
how they would have performed the same tasks manually. ese comments mainly concentrated on
the ability of Gilligan to translate their understanding of the reuse task into the source code of the
system. Gilligan was generally perceived as being both easier and quicker to use while investigating
and performing pragmatic reuse tasks.

Automating the enactment saved me a lot of frustration.

[Using Gilligan was] easier. I was much less frustrated. (P)

[Gilligan] saved me lots of manual work. It would have been extremely frustrating man-
ually. (P-T; TD-G)

Manually this would have been a lot of work!

Gilligan didn’t force me to do anything I didn’t want to do. Manually it was just more
work,  orders of magnitude more. (P-T; Q-M)



[Gilligan] mostly automated the process of the reuse task. (P)

A lot of errors that would have been a problem manually are resolved with only a click
or two; this saves a lot of time and keeps things clean for you. (P-T; RA-G)

Gilligan helped me by significantly speeding up my reuse task.

Aer using the tool I wouldn’t want to perform any of these tasks manually. (P)

Without the tool I would have to prepare for this kind of task: ‘Itś too late to start this
today, Iĺl have to get back to it tomorrow’. is is the type of task I would normally
schedule a day for for one of my developers [instead of just a quick hour]. (P-T;
TD-G)

[e task] was a good first stab; as a prototype it’s a great way to go. As a first cut it would
be much more effective than doing it from scratch. It’s all about the classic trinity: )
working; ) better; ) faster. is gets it working quickly for you and you can just go
from there. (P-T; RA-G)

A  minute investment isn’t that bad for a full feature! (P-T; Q-G)

Using Gilligan is just easier.

It was more fun to use Gilligan. (P)

Performing the tasks were easier with Gilligan, even though I used it for a harder task.
(P)

e manual approach may be easier when going through your own code but with rd
party code it is multiple orders of magnitude easier. (P)

G... Large Copies: Developers are likely to copy entire packages while manually performing a
reuse task, even though they know it is likely to backfire on them.

 participants made  comments about their temptations to copy large batches of source code while
performing their reuse tasks manually. is need generally arose from the huge number of errors the
participants were facing; they hypothesized that by copying large amounts of code they could resolve
many problems in one quick operation. While most participants also vocalized that it was a bad idea
due to the amount of extraneous code they would be reusing, many participants still followed this
course of action to try to resolve their problems.



I’m just going to copy this whole package.

I should just be copying full packages at this point. (P-T; RA-M)

e dependencies are spread out throughout half of the source project. Aer a while you
get deep into the engine and engine.util [packages]; you think you should take the
whole package to save time but you can’t tell if all of the classes are necessary. (P-T;
Q-M)

I’m really tempted to just copy it all.

I should have gone the other way: copied everything over and just started deleting like
mad! (P-T; RA-M)

I just can’t find stuff. I’m tempted to copy everything but that probably won’t help and
I’d probably get a lot of extraneous stuff. (P-T; RA-M)

G... Gilligan — Rejecting Elements: Being able to easily remove elements that are not related
to the reuse task is essential to reusing only relevant source code.

 participantsmade  comments about removing unrelated source code elements during reuse tasks.
ese elements frequently occur in pragmatic reuse tasks as the code that is being reused is oen
not modularized in a way that only provides the functionality the developer wants to reuse. In the
Related Artist task in particular, the participants had to remove many methods and fields ( of 
from AudioScrobblerService) that were not relevant to the functionality they were tasked with
reusing.

Many of the manual participants struggled with balancing the work of removing irrelevant ele-
ments against the effort of resolving the compilation errors for the same elements; the participants
using Gilligan always just removed those elements they did not need as this was a straight-forward
operation using the tool. Only one participant felt that Gilligan should have more fine-grained sup-
port for rejecting elements; in this case the participant wanted to reject a dependency from one class
but not another (as decisions in Gilligan are consistent across the system, this request is not possible).

I’m able to get rid of code using Gilligan that I would keep around manually because it would be too
much effort to get rid of it.

Instead of doing a lot of onerous manual deletion of this functionality I don’t want, I’ll
just copy the class to make the errors go away. (P-T; TD-M)

Using Gilligan was like the difference between using a scalpel and an axe [to get rid of
unwanted code]. (P)



Oen the code is interspersed with lots of extraneous stuff you don’t want; removing this
cru could take all day so you just keep it. (P)

If you’re not paying attention, the manual approach can be a lot more dangerous than
with the tool. With the tool I can more easily trim things down. (P)

It’s really easy to get rid of structural elements I don’t need.

e ability to reject elements at a fine-grain level was more effective than doing it man-
ually. (P)

With Gilligan it’s easy to get rid of extraneous stuff. (P-T; RA-G)

More fine-grained accept / reject support is required.

More fine-grained approach is required for this task. (P-T; RA-G)

G. Prompted Concept Categories
e three prompted concept categories are comprised of  themes and  sub-themes. e first two
originated in questions that were asked of the participants, one before the study and one aer. Before
the participants started they were asked some background questions about pragmatic reuse tasks.
Aer they had finished they were asked how they thought Gilligan could be further improved in the
future. Finally, a large number of task-specific observations were made as the participants worked
through the experimental treatments.

e results for these three categories are reported more quantitatively than in the last section; the
participants’ answers were grouped and enumerated and are reported in more succinct form than for
the organic concept categories.

G.. Pragmatic Reuse: Rationale, Impediments, and Frequency

During the initial introduction to the experiment the concept of the pragmatic reuse task was de-
scribed to each participant. is description was given to ensure that each participant was familiar
with the terminology that was used for the rest of the experiment. Participants were then asked three
main questions: “Do you perform pragmatic reuse tasks? If so, how oen?”, “Why do you perform
pragmatic reuse tasks?”, and “What impediments are there to performing pragmatic reuse tasks?”.
e participants were free to answer these questions in any way they chose. ese three questions
provide some general background about the participant’s thoughts about pragmatic reuse before the
experiment began.



G... “Do you perform pragmatic reuse tasks? If so, how oen?”

Each participant provided one answer for this question. e answers they were able to give was
not bounded, these three categories were distilled from their responses (summarized in Table G.).
e categories are vague as the participants found it difficult to estimate how oen they performed
pragmatic reuse tasks in practice. While some of the participants recalled specific pragmatic reuse
tasks, none of them could give a meaningful quantitative estimate as to how oen they performed
these tasks.

Pragmatic Reuse Frequency  of Participants

Frequently 
Sometimes 

Rarely 

Table G.: Frequency that participants perform pragmatic reuse tasks.

G... “Why do you perform pragmatic reuse tasks?”

Participants were able to give as many answers as they wanted for this question; their answers were
not given with a specific rank or order. is was an open ended question; the resulting  categories
were delineated during the card sort. If a participant gave multiple answers that fell into a single
category, they were only counted once. eir reasons are summarized in Table G..

Most of these reasons are self-explanatory, but I will expand upon two of them.

One frequently occurring reason for performing pragmatic reuse tasks involved reusing code as
an exemplar for their current task. e participants used these exemplars for various reasons. One
reason was that they would be working from example code that wasn’t fully functional but demon-
strated how to use interesting APIs. Another reason for reusing code in this manner was to simply
use the code as a learning resource rather than something theywould end up executing. e final rea-
son involved situations where they had code that provided functionality similar to what they needed,
but wasn’t exactly right. In these cases they would reuse the code as an exemplar and change it to
meet their needs.

Another reason for performing pragmatic reuse tasks cited by the participants involved preserv-
ing existing encapsulation within their system. In these cases the participants would reuse source
code from within their own system to either preserve the existing encapsulation mechanisms within
their system or to enable them to make minor modifications to the code without worrying about
breaking the parts of the system that relied on the initial code.



Pragmatic Reuse Rationale  of Participants

e code I need already exists. 
It is faster than writing the code from scratch. 

To use the existing code as an exemplar. 
It is easier than writing the code from scratch. 

To preserve existing encapsulation of the existing code. 

Table G.: Participant’s rationale for performing pragmatic reuse tasks.

G... “What impediments are there to performing pragmatic reuse tasks?”

Participants were able to give as many answers as they wanted for this question; their answers were
not given with a specific rank or order. is was an open ended question; the resulting  categories
were delineated during the card sort. If a participant gave multiple answers that fell into a single
category, they were only counted once. eir reasons are summarized in Table G..

e main impediment to pragmatic reuse tasks perceived by the participants regarded whether
or not the amount of work required to perform the task would outweigh the expected benefits of the
reuse task. is danger originated from the fact that without actually performing the task the partic-
ipants did not know of any other way to estimate the difficulty of a reuse task. While propagating the
changes was also a concern, some participants expressed that they would not actually want changes
propagated to them as their usage of the code might invalidate the need for any future changes to the
originating source code.

Pragmatic Reuse Impediments  of Participants

Uncertainty: Will it take a lot of work to reuse the code? 
Propagating future changes can be difficult. 

Keeping variable names consistent between systems. 
Risk reusing badly-written code. 

Might reuse source code you don’t understand. 

Table G.: Impediments to pragmatic reuse tasks identified by participants.

G.. Gilligan: Suggestions for Improvement

e participants were also queried about, “How could Gilligan be improved in the future?” and
“What UI problems did you have while using Gilligan?”. e feedback from these questions gave
interesting insight thatwill be used to further improve the tool in the future.  participants suggested
ways to improve Gilligan and UI issues that interfered with their usage of the tool. Two other themes



also emerged here: First, some participants found that they had to be careful not to be lured into an
“autopilot” mode using the tool; while this could help them get the code compiling they still needed
to have an understanding of the task in order to successfully complete the reuse task. Secondly, the
participants made several comments about Gilligan’s learning curve. e participants all felt that it
wasn’t overwhelming and by the end of the experiment they were mainly comfortable and effective
at using the tool.

G... Gilligan: Requests for Enhancement

At the conclusion of the experiment the participants made several suggestions as to how Gilligan
could be improved. ese have been distilled into  individual suggestions (these are summarized
in Table G.).

For of these suggestions would be straightforward to implement and would improve Gilligan’s
ability to help developers perform pragmatic reuse tasks. On larger tasks, specifically the rd task in
the experiment, the performance of the structural views was “sluggish”. is could easily be improved
with better caching and lightweight prediction of the dependency counts and the transitive closures
in the system. Several participants wished there was an explicit way for them to track their progress
in the reuse task; these participants wanted Gilligan to record the size of the validation view and
the number of compilation errors aer each run of the extractor. Optimally these numbers could be
graphed so the participants could visually see their progress over time and easily revisit decisions that
had a significant impact on their progress. Some participants also wanted validation and checkout
to be combined into a single action; this would be trivial to implement and from the observations
during the experiment would be a good idea. Some participants wanted the editor to be better linked
with the structural views; they wanted the structural view contents to update automatically based on
the code they selected in the editor. is is a good idea and should be added to the system.

e request for a dependency recommender was a good suggestion but would be difficult to
implement; this is a suggestion that will be examined in future iterations of the tool.

Two participants requested incremental build support be added to Gilligan. is means they
would like the ability to modify the reuse code without having to worry about their changes being
overwritten the next time the reuse plan was enacted. is would be a difficult change to implement
and I do not believe it is a good idea. e current version of the tool forces the developers to encode all
of their decisions within the reuse plan; Gilligan further ensures that these decisions are consistently
applied across the system. By enabling the developer to work with the code directly the reuse plan
can bemore easily bypassed, making the reuse plan harder to understand and enabling the developer
to begin to make inconsistent decisions within their reuse task.



Suggested Gilligan Improvement  of Participants

Increase navigation performance. 
Provide an explicit indication of progress. 

Link validation and enactment. 
Link the editor with the structural views. 

Support incremental building. 
Add a dependency cost recommender. 

Table G.: Suggested improvements for Gilligan.

G... Gilligan: UI Issues

Aer the experiment the participants made several comments about specific user interface choices
that they did not like while performing their pragmatic reuse tasks (these are summarized in Ta-
ble G.). With the exception of “the views can be confusing”, each of these issues can be easily
improved in the system. While the participants sometimes found the views confusing, they were
generally effective at using them at the conclusion of one or two reuse tasks.

e validation viewwas designed in “backwards” fashion to enable developers to see information
about how a dependency is used (the structural views only show what a dependency uses, not how it
is used). e participants found this behaviour inconsistent with the structural views and can easily
be changed for future versions of the tool.

e text of labels that the developer has not yet investigated in the structural views were displayed
in a light-grey text to help them determine those dependencies they had investigated compared to
those that still existed for them to investigate; however, this meant that “interesting” dependencies
that still needed to be viewed were less obvious than those that had already been investigated. A new
way of showing this piece of information should be developed for future versions of the tool.

Gilligan User Interface Shortcomings  of Participants

Validation view is backwards. 
Selection behaviour is awkward. 

Views can be confusing. 
Greyed-out text can hide details. 

Table G.: Gilligan user interface shortcomings.

G... Gilligan — Trust: Trusting the tool can be dangerous.

Two participants made one comment each about how trusting the tool too much can be dangerous:



I had a stronger tendency to go into an autopilot mode when I was using Gilligan. (P)

e dependency counts are discouraging; if you’re looking at a high count you’re more
likely not to import something. is might be good for compilation but not for getting
the reuse code to work. (P-T; RA-G)

Participant  in particular had trouble trusting the tool. is participantmade  comments at various
points during the experiment about their difficulty in “trusting” and “relying” on the Gilligan. While
the participant successfully completed reuse tasks both manually and with the tool, they were clearly
uneasy with the tool support that tried to automate so much of the development process for them.

G... Gilligan — Learning Curve: Over the course of the experiment I was able to get
comfortable using Gilligan for pragmatic reuse tasks.

 participants made  about Gilligan’s learning curve. All  participants remarked that while Gilli-
gan definitely had a learning curve, they felt comfortable using it by the end of the experiment. is
was amatter of concern at the outset of the experiment: wasGilligan easy enough to use that develop-
ers could succeed at their reuse tasks using it? While the participants were given a short training task
at the beginning, they mainly figured out how the tool worked as they worked through their exper-
imental tasks, even with this approach all the participants felt reasonably comfortable with Gilligan
by the conclusion of the experiment.

Once I was used to the tool it was fine; getting used to it wasn’t unreasonable at all. (P)

I’m used to Eclipse and [Gilligan] didn’t seem that much different. (P-T; Q-G)

e task only took  minutes, even with still learning the tool. (P)

G.. Observations

During the card sort,  themes and  sub-themes were identified. is section reports only the 
most interesting themes and one catchall for general observations under which the remaining themes
were amalgamated. e remaining themes focus on several interesting observations that were made
during the experiment.

e first examines the disparity between the frustrations experienced between the participants
undertaking the two ‘good’ reuse tasks using either Gilligan or doing them manually. e second
theme examines how the different participants felt about the suitability of each task theywere asked to
perform. e third theme discusses the role of the scale of the dependencies in a system to influence
a reuse task. One interesting theme was that participants performing the Torrent Downloader task
using Gilligan oen had premonitions that the task was poor early in their investigation, although
they chose to pursue it long aer they had made these observations. e final theme examines the
role the test harness had on the participants while they were performing their tasks.



G... Manual Problems With Good Tasks

e QIF Parser task and the Related Artists task were both examples of good reuse tasks.  partic-
ipants expressed frustration with the Related Artists task while performing the manual treatment.
In general, their complaints stemmed from the fact that there was so much code that needed to be
removed from the system that was unrelated to the functionality they were trying to reuse. ese
comments are significant as they represent tasks where the participant wanted to give up during the
manual treatment, even though they were working on what was ultimately a good reuse task; this
situation did not arise for any participant performing a task using Gilligan.

ere are lots of errors and I don’t know where they’re all coming from. is task was
tedious and frustrating for me. (P-T; RA-M)

One participant also had significant difficulties with the QIF Parser task; this task was well modular-
ized and was generally a good task, but the participant ended up down a bad path that was difficult
to get out of.

[I have] endless cycles of dependencies and errors. When there’s this many I can’t really
focus on identifying the main problem with the code I have reused. (P-T; Q-M)

G... Task Evaluations

Aer completing each task the participantswere asked, “Was this a good reuse task?”. For clarification
they were provided with, “If you needed to provide the same functionality yourself, would you reuse
that code?”. Table G. enumerates the answers to this question. Both the QIF Parser task and the
Related Artists task were included in the study as ‘good’ reuse tasks. e majority of participants,
 and  respectively, agreed with this assessment. e Torrent Downloader task was included as a
‘bad’ task;  of the participants concurred with this assessment.

Between the two ‘good’ reuse tasks,  of  participants performing those tasks () believed
the tasks to be poor candidates for reuse.  of the  participants made this decision while performing
a manual treatment.

Participants who failed at a reuse task were likely to report that the reuse task was a poor choice;
for the two ‘good’ reuse tasks,  of the  participants who concluded the reuse task was a bade idea
also failed to complete the task.

Participant  reported that theRelatedArtists taskwas a poor choice aer successfully completing
the task with Gilligan; their rationale for this decision was that, ‘You could just examine the code and
write it yourself ’. Participant , while performing the task manually, reported that the QIF Parser
was a poor task because, ‘e dependencies are spread out throughout half of the source project’. e
participant believed the code to be poorly structured because they followed an erroneous path for



much of the task and ended up reusing much more code ( LOC compared to an average of )
LOC for this task) than the other participants needed to reuse for the same functionality.

All  participants commented on how difficult the Torrent Downloader task was, and on how
poor the code seemed; however, three participants still reported that they thought it was a good reuse
task. Even though they failed to get the task towork, all three thought that trying to reuse theAzureus
code would still be faster than writing a compatible BitTorrent engine from scratch.

Good Task Bad Task
QIF Parser
Manual  
Gilligan  
Total  

Related Artists
Manual  
Gilligan  
Total  

Torrent Downloader
Manual  
Gilligan  
Total  

Table G.:  of participants who felt the task was good or bad.

G... Scale of Dependencies

Table G. lists the number of participants who commented that the scale of the structural dependen-
cies was problematic for them as they pursued their reuse task. e maximum number for any cell
in the Table is . None of the participants using Gilligan for the first two tasks felt overwhelmed by
the number of dependencies they needed to consider during their reuse task. For the third task 
participants performing the Gilligan treatment identified the scale of the dependencies as the main
reason for their failure; the manual participants were more likely to blame other reasons including
the extreme number of editors and compilation errors they were forced to consider.



 of Participants
QIF Parser
Manual 
Gilligan 
Total 

Related Artists
Manual 
Gilligan 
Total 

Torrent Downloader
Manual 
Gilligan 
Total 

Table G.:  of participants who felt the scale of dependencies was problematic.

G... Torrent Downloader (Task ): Early Signs of Failure

e Torrent Downloader task was a “poison pill”. It was inserted as a bad task to see if Gilligan could
help a participant infer that a task was destined to be a failure. While participants using Gilligan
did not give up statistically significant less amount of time,  of the  participants using Gilligan for
this task made comments early in the reuse task where they predicted the task would ultimately be a
failure.

Aer  minutes: e tool is probably give me clues I shouldn’t be doing this task, but I
can see where I’m going. I don’t think this is a good reuse task. (P-T; TD-G)

Aer  minutes: I expect this is setting me up to include the entire system. (P-T;
TD-G)

Aer  minutes: ere are too many dependencies; this results in an explosion of the
transitive closure. It’s like running up scree. (P-T; TD-G)

 participants ( using Gilligan and one performing the task manually) made comments about how
the tool helped them to decide to give up on the third reuse task.

I suspect I would have more success with Gilligan; It would have given me the informa-
tion I needed faster. (P-T; TD-M)



[Automating the enactment] didn’t give me the warm fuzzy ‘youŕe doing better’ feeling
I got during the earlier tasks; it just wasn’t getting any better aer – iterations. But
maybe that was telling me something too. (P-T; TD-G)

G... Test Harness Influence

Providing participants with the test harness potentially interfered with their perception of the reuse
tasks.  participants made comments about how they used the test harness to guide their investiga-
tive efforts manually while one participant did the same using Gilligan. e ability to access the test
harness was given to participants for both treatments to try to neutralize any benefits this may have
provided. While the participants were asked not to rely on the test harness at the outset of the exper-
iment, they were not restricted from doing so during their tasks. e manual participants were more
generally used the test harness as a way to ground themselves whenever they needed to step back to
try to get an overview of their reuse task; as Gilligan provided this automatically (see Section G...)
the tool-supported participants did not need to use the test harness this way.

e test harness gave me a good starting point. (P-T; RA-M)

I was implicitly guided by the functional test harness; in themanual case this really drove
me and influenced how I did the task. (P-T; Q-M)

G... General Observations

In addition to the observations mentioned above an additional  observational notes were made
about all  participants as they proceeded through their tasks. ese observations could be bro-
ken down into four themes (and further into  sub-themes): Gilligan-specific observations (),
manual-specific observations (), task-specific observations (), and general observations ().
While there is a wealth of data in these notes, trying to tease anything useful from them proved to
be a fruitless exercise. As such, none of the data is reported here although it is used throughout the
evaluation as necessary to make specific points.



Appendix H

Calgary Research Ethics Board Approval

CREB : Pragmatic soware reuse (p. ).
CREB : Pragmatic soware reuse (p. ).







	Abstract
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Pragmatic reuse
	1.2 Why pragmatic reuse is difficult
	1.2.1 How pragmatic reuse difficulties relate to task categories

	1.3 Enabling pragmatic reuse
	1.4 Thesis statement and contributions
	1.5 Organization

	2 Motivation
	2.1 Alternative to pragmatic reuse
	2.2 Summary

	3 Related Work
	3.1 Software reuse
	3.1.1 Black-box reuse
	3.1.2 White-box reuse
	3.1.3 Code clones

	3.2 Program understanding
	3.3 Program transformation
	3.4 Software visualization
	3.5 Cognitive aspects of reuse
	3.6 Summary

	4 Industrial Applicability Survey
	4.1 Survey Results
	4.2 Other Findings
	4.2.1 Selected Questionnaire Responses

	4.3 Survey Limitations
	4.4 Summary

	5 Pragmatic reuse model
	5.1 Model requirements
	5.2 Concrete model implementation
	5.2.1 Relationships that exist between structural elements
	5.2.2 Decisions a developer can make about a structural element

	5.3 Pragmatic reuse plans as lightweight specifications
	5.4 Relationship to the concern graph model
	5.5 Structural analysis
	5.6 Summary

	6 Graph-based pragmatic reuse planning
	6.1 Design goals
	6.2 First Gilligan prototype
	6.2.1 Using the graph-based Gilligan prototype
	6.2.2 Evaluating the reuse plan
	6.2.3 Application to motivational scenario

	6.3 Evaluation
	6.3.1 Case study 1
	6.3.2 Case study 2
	6.3.3 Case study 3
	6.3.4 Case study 4

	6.4 Discussion
	6.4.1 Limitations

	6.5 Summary

	7 Tree-based pragmatic reuse planning
	7.1 Design goals
	7.2 Second Gilligan prototype
	7.2.1 Application to the motivational scenario

	7.3 Evaluation
	7.3.1 Experimental tasks
	7.3.2 Results
	7.3.3 Observations

	7.4 Discussion
	7.4.1 Limitations

	7.5 Summary

	8 Pragmatic reuse plan enactment
	8.1 Design goals
	8.2 Third Gilligan prototype
	8.2.1 Extraction
	8.2.2 Integration
	8.2.3 Supporting iterative planning and enactment

	8.3 Evaluation
	8.3.1 Task descriptions
	8.3.2 Analysis of minimum required effort
	8.3.3 Task effectiveness experiment

	8.4 Discussion
	8.4.1 Limitations

	8.5 Summary

	9 Holistic evaluation
	9.1 Hypotheses
	9.2 Participants
	9.3 Tasks
	9.3.1 Phase 1
	9.3.2 Phase 2

	9.4 Experimental procedure
	9.4.1 Performing a trial
	9.4.2 Data collection

	9.5 Experimental design
	9.6 Quantitative results
	9.6.1 h-1 analysis
	9.6.2 h-2 analysis
	9.6.3 h-3 analysis
	9.6.4 Other quantitative analyses

	9.7 Qualitative results
	9.7.1 Organic concept categories
	9.7.2 Interesting themes and quotes
	9.7.3 Prompted concept categories

	9.8 Discussion
	9.8.1 Characterization of good tasks as bad ones
	9.8.2 Giving up on bad tasks
	9.8.3 Gilligan improvements
	9.8.4 Limitations

	9.9 Summary

	10 Discussion
	10.1 Alternative reuse strategies
	10.2 Limitations of approach
	10.3 Evaluation
	10.4 Future work

	11 Conclusion
	11.1 Contributions

	Bibliography
	A Industrial Pragmatic Reuse Survey
	A.1 Industrial Pragmatic Reuse Questionnaire
	A.2 Industrial Pragmatic Reuse Case Study Questionnaire

	B Sample Graph Layout Algorithms
	C Planning evaluation
	C.1 Planning Case Study Instructions

	D Visualization evaluation
	E Enactment evaluation
	E.1 Effort
	E.1.1 Extracting the Metrics Lines-of-Code Calculator
	E.1.2 Extracting the Azureus Network Throughput View

	E.2 Enactment Experiment Instructions

	F Full evaluation
	F.1 QIF test file
	F.2 Entrance questionnaire
	F.3 Mid task questionnaire
	F.4 Post task questionnaire
	F.5 Exit questionnaire

	G Final Experiment: Card Sort Data
	G.1 Organic Concept Categories
	G.1.1 Dependency Identification
	G.1.2 Understanding
	G.1.3 Mental Models
	G.1.4 Hypothesis Testing
	G.1.5 Performing Pragmatic Reuse Tasks

	G.2 Prompted Concept Categories
	G.2.1 Pragmatic Reuse: Rationale, Impediments, and Frequency
	G.2.2 Gilligan: Suggestions for Improvement
	G.2.3 Observations

	H Calgary Research Ethics Board Approval
	H.1 Ethics Approval 5005
	H.2 Ethics Approval 5605

