
Do developers search for source code examples using multiple facts?

Reid Holmes
Department of Computer Science & Engineering

University of Washington
Seattle, WA, USA

rtholmes@cs.washington.edu

Abstract

In this paper we examine the search behaviours of devel-
opers using the Strathcona source code example recommen-
dation system over the period of three years. In particular,
we investigate the number of query facts software engineers
included in their queries as they searched for source code
examples. We found that in practice developers predom-
inantly searched with multiple search facts and tended to
constrain their queries by iteratively adding more facts as
needed. Our experience with this data suggest that exam-
ple search tools should both support searching with multi-
ple facts as well and facilitate the construction of multi-fact
queries.

1. Introduction

Several research tools have been created to help devel-
opers locate relevant source code examples [7, 4, 1, 3, 6, 5].
One dimension in which these systems vary (see Sec-
tion 2 for additional detail) is whether they allow a sin-
gle search fact (such as getStatusLine()) or multi-
ple search facts. Although the precision of searches can be
improved by providing multiple search facts, the question
of whether developers know enough information to create
multiple search facts, and whether they are willing to enter
them, remains open. By analyzing log files from hundreds
of query sessions by nearly one hundred users of Strath-
cona, a system that allows developers to query for source
code examples using multiple search facts, we present pre-
liminary evidence that developers have the knowledge to
formulate queries with several search facts in their search
for source code examples and do so in practice.

Strathcona is a client–server example recommendation
system that enables developers to quickly select a block of
code from which a query is automatically generated. The
server then returns source code examples that best match
the code the developer has selected [1, 2]. We are able to
analyze Strathcona usage patterns as the server component

saves to disk every query made by developers as well as
their corresponding responses.

The primary contribution of this paper is evidence that
developers searching for source code examples usually pro-
vide multiple search facts in practice. We have observed
that 92% of queries contain two or more facts while 36% of
queries contain five or more facts. Investigating individual
query sessions we found that developers queried on aver-
age 2.5 times per query session and often augmented their
previous queries with new facts learned from prior results.

Background details on related search approaches is given
in Section 2. Section 3 provides a brief overview of the
Strathcona tool. The data we analyzed and some quantita-
tive results are presented in Section 4. The paper ends with
some suggestions for future code search tools (Section 5)
and conclusion (Section 6).

2. Related Work

Several research tools have been developed that can help
developers locate relevant source code examples. Code-
Broker is an adaptive system that automatically queries an
example repository using the comment and method signa-
ture of the method the developer’s cursor is currently in [7].
Prospector locates examples given a start and end types;
the tool then computes possible paths that would enable
a developer to get a reference to the end type given their
starting type by statically mining example source code [3];
PARSEWeb [5] uses the same input and locates exam-
ples using existing code search engines. CodeWeb [4] and
MAPO [6] take a simple input and locate examples using
generalized association rules.

Each of these systems constrains the number of facts that
can be queried on by the developer; typically at most two
query facts can be specified although often one of these is
reserved. CodeBroker uses one fact for the method signa-
ture and the other for the method comment; these cannot
be changed by the developer except by moving the cursor
to another method. Prospector and PARSEWeb specify that
one fact is related to the origin of the query and the other as



the destination. Both CodeWeb and MAPO generate rele-
vant examples from a single query fact.

In contrast to these approaches, Strathcona allows the
developer to select any contiguous block of code; all of
the statically derivable facts that can be extracted from this
block are automatically collected sent to the server in the
query. The developer can adapt the query by modifying
their selection, but cannot modify the the query otherwise.

3. Strathcona

The Strathcona example recommendation system is an
Eclipse plug-in that helps developers search for source code
examples. Strathcona is unique in its mechanism for auto-
matically constructing queries for the developer based on
their development context. The extracted facts are sent to a
remote server that contains a repository of source code; us-
ing a series of heuristics [2] the server identifies examples
that best match the developer’s query.

Strathcona returns at most 10 matches, regardless of the
number of examples that are located. The developer can
view an abstract representation of each example using a
UML-like view, requesting to see the source code only if
the example seems relevant to their task. As Strathcona
queries are constructed automatically, we envisioned that
developers using the tool would query on many structural
facts. While we have shown that the heuristics used by the
server to match the examples are most effective when two
or more facts are included in the query [2], due to limited in-
formation at the time we were unable to confirm that this is
how developers would use the tool; this paper demonstrates
that our assumption of large queries was valid.

4. Quantitative findings

By analyzing all of the saved interactions between the
client and the Strathcona server, we were able to gain insight
into how the developer used Strathcona during their query
session. We analyzed three main types of data recorded by
the Strathcona server.

Context queries. Context queries documents were sent
from the client to the server whenever a developer selected
some fragment of code and queried Strathcona. These doc-
uments contain a list of all of the structural facts comprising
the query. These facts identify statically derivable method
calls, field references, inheritance relationships, and type
usages within the block of code the developer has selected.

Returned examples. Strathcona answers each context
query with a set of structurally-relevant examples. Each
example includes the same structural facts present in the
context query so the Strathcona client can build a rationale

explaining why the example is relevant for the developer’s
query and to build the UML representation of the example.

Source requests. If the developer deems an example in-
teresting, they can request its source code; this document
simply provides an identifier for the example the developer
wishes to see the source code for.

The server records a timestamp for each of these docu-
ments, as well as a unique identifier for each host making
the query. Unfortunately, we cannot tell from the server logs
if the developer found an example useful or not; the only in-
dicators we can use are whether the developer asked for the
source code for an example. In this case, we infer that the
developer felt the example could be relevant given its UML
representation and assume the example was helpful in some
way. We facted sessions as successful if they ended with a
developer making a query and looking at the source code
of at least one example (in contrast to ending with a query
itself).

4.1. Session overview

Over the thirty-five month period of our Strathcona logs,
239 search sessions were initiated by 94 software develop-
ers (from at least 5 countries) encompassing 783 queries.1

Figure 1 provides an overview of the number of context
query and source requests made in each session. Devel-
opers averaged 2.4 context queries per session, although the
median was only 1. They also requested 4.3 source exam-
ples on average, with a median of 2. 49% of sessions in-
volved more than one context query, while 54% of sessions
involved multiple source code requests. Figure 2 provides a
breakdown of the 3652 query facts provided by developers.

Context
Queries

Source
Requests

0
5

10
15

0
5

10
15

Figure 1. Number of context queries and
source requests per Strathcona session.

1Before analyzing any of the data, we removed all of the sessions asso-
ciated with our own usage of the Strathcona tool.



0

200

400

600

800

0 1 2 3 4 5

Calls

0

200

400

600

800

0 1 2 3 4 5

References

0

200

400

600

800

0 1 2 3 4 5

Uses

0

200

400

600

800

0 1 2 3 4 5

Inherits

0

40

80

120

160

200

0 1 2 3 4 5 6 7 8 9 10 11 12

8

2223
29

37
32

48

60

120
130

176

51

0

All Queries

0

40

80

120

160

200

0 1 2 3 4 5 6 7 8 9 10 11 12

35

31

16

424548
57

68

182

194

61

0

All Queries (without duplication) 

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12

35

31
16

424548
57

68

182
194

61

0 8
2223293732

48
60

120
130

176

51

0

All Context Queries

All Context Queries (without duplication)

(a) Number of facts provided considering all Strathcona queries.

0

50

100

150

200

0 1 2 3 4 5

Calls

0

50

100

150

200

0 1 2 3 4 5

References

0

50

100

150

200

0 1 2 3 4 5

Uses

0

50

100

150

200

0 1 2 3 4 5

Inherits

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12

4
6

444

7
9

13

22
24

19

15

0

Final Queries

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12

1
3

77

4
6

1112

15

34

22

15

0

Final Queries (without duplication)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

1
3

77
4

6

1112
15

34

22

15

0

4
6

444
7

9

13

22
24

19

15

0

Final Context Queries

Final Context Queries (without duplication)

(b) Number of facts provided considering only the final query in a successful Strathcona session.

Figure 3. Each graph depicts number of structural facts included in a query (x axis) by the frequency
queries of each size occurred (y axis). The top set of graphs consider all queries while the bottom
pair consider only the final query of each session.

Type Parent Type Method Field

Count 1166 537 1512 437 3652

32% 15% 41% 12%

0

1000

2000

3000

4000

Total number of query facts

437

1512

537

1166

Type
Parent Type
Method
Field

0%

25%

50%

75%

100%
12%

41%

15%

32%

Type (32%)
Parent Type (15%)
Method (41%)
Field (12%)

Figure 2. Proportion of query facts.

4.2. Queried facts

For this analysis, we combined all of the different kinds
of search facts and treated them equivalently. Figure 3 pro-
vides a graphical representation of the queries; the x-axis
represents the number of search facts while the y-axis rep-
resents the number of queries for each quantity of facts.

Strathcona considers a query fact representing a refer-
ence to Status.OK as two facts, the reference to the
Status.OK field and a use of the Status class. To ac-
count for this, we provide both the total count of the facts as
Strathcona interprets them as well as a version that does not

duplicate any counts; we include both as different search
approaches can chose to use one representation or the other.
Figure 3(a) shows the number of facts for all of the con-
text queries while Figure 3(b) shows the number of facts for
only the final query of successful sessions.

In Figure 3(a) we can see that that while the median num-
ber of facts was two, developers provided three or more
structural facts for 67% of their queries. For their final
query (Figure 3(b)) the median number of facts has in-
creased to three, with developers providing three or more
structural facts for 74% of their queries. This clearly
demonstrates that developers using Strathcona are formu-
lating queries with multiple search facts and that they are
adding facts to these queries as they progress through their
search session.

While examining several sessions qualitatively, we
found that while iterating on their query sessions developers
were adding new facts to subsequent queries based on infor-
mation present in example source code they viewed that was
returned during prior queries.

5. Discussion

The internal validity of this study is hampered by the fact
that Strathcona makes including additional search facts in a
query trivial. While this is true, the interesting finding in



this paper is that the developers knew the facts to include
in the first place. The external validity of our findings is
limited from our lack of knowledge about the 94 develop-
ers who used Strathcona, if they were actually successful in
finding the information they were looking for, and the ob-
vious limitation of only having 239 search sessions to draw
data from.

A key assumption of the Strathcona system was that
developers would search for source code examples using
multiple search facts; the more facts included in a query,
the more effective Strathcona’s heuristics tended to be [2].
This paper demonstrates that the assumption upon which
Strathcona was created was valid and suggests that evalua-
tions comparing Strathcona to other example recommenda-
tion systems should conduct their comparisons using sev-
eral search facts in order to achieve a fair comparison of
relative effectiveness.

Our analysis of the Strathcona usage data have given us
several insights into how developers search for source code
examples; these observations should be considered by re-
searchers and practitioners creating source code search tools
and services.

Developers search with multiple facts. Developers are
able to elucidate multiple search facts when searching
for context-relevant source code examples. This suggests
that code search approaches should support and encourage
searching using multiple terms; this can both help the de-
veloper to fully express their current knowledge and to con-
strain the result space to identify the most relevant examples
possible.

Query sessions are iterative. Developers modify their
queries over the course of a query session to specialize them
as they identify new facts they deem relevant to their investi-
gation; search tools should encourage iterative query refine-
ment by including facilities that encourage developers to
modify their queries and view their results in a lightweight
manner. Tool designs that minimize the effort required to
reformulate and specialize queries and reduce the effort re-
quired for the developer to glean useful facts from returned
examples can help support iterative investigation.

Queries are composed of heterogeneous facts. While
method calls were the most common kind of query facts,
other types of facts were often included in queries. Facts
relating to specific types made up 47% of queries (15% of
these type facts related to parent classes and interfaces).
Code search systems should enable developers to supply
any kind of fact they are able to discern rather than forc-
ing developers to only supply a single constrained kind of
fact.

6. Conclusion

By analyzing 35 months worth queries sent to the Strath-
cona example recommendation system, we have found that
developers predominantly queried Strathcona for source
code examples using three or more search facts. We also
found that as developers iterate on their searches, they tend
to constrain their queries by adding more facts, as op-
posed to widening them by removing facts. These findings
demonstrate that developers query for source code exam-
ples using multiple search facts in practice; this suggests
that example recommendation tools should both allow de-
velopers to include multiple facts and make it easy for them
to do so, enabling them to fully express the knowledge they
have about the examples they are looking for.

Acknowledgements

I would like to thank David Notkin and Rylan Cottrell
for their insight and assistance with this paper as well as re-
viewers for their comments and suggestions. This work has
been funded in part through a NSERC Postdoctoral Fellow-
ship.

References

[1] R. Holmes and G. C. Murphy. Using structural context to rec-
ommend source code examples. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages
117–125, 2005.

[2] R. Holmes, R. J. Walker, and G. C. Murphy. Approximate
structural context matching: An approach to recommend rel-
evant examples. IEEE Transactions on Software Engineering,
32(12):952–970, 2006.

[3] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. In Proceedings of
the Conference on Programming Language Design and Im-
plementation (PLDI), pages 48–61, 2005.

[4] A. Michail. Data mining library reuse patterns using gener-
alized association rules. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 167–176,
2000.

[5] S. Thummalapenta and T. Xie. PARSEWeb: A programmer
assistant for reusing open source code on the web. In Proceed-
ings of the International Conference on Automated Software
Engineering (ASE), pages 204–213, 2007.

[6] T. Xie and J. Pei. MAPO: Mining API usages from open
source repositories. In Proceedings of the International Work-
shop on Mining Software Repositories (MSR), pages 54–57,
2006.

[7] Y. Ye, G. Fischer, and B. Reeves. Integrating active informa-
tion delivery and reuse repository systems. SIGSOFT Soft-
ware Engineering Notes, 25(6):60–68, 2000.


