An Exploration of How Generative Al Affects
Workflow and Collaboration in a Software
Engineering Course

Marie Salomon
University of British Columbia
Vancouver, Canada
mariesal@cs.ubc.ca

Thomas Fritz
University of Zurich
Zurich, Switzerland

fritz@ifi.uzh.ch

Abstract

How does Generative Al (GenAl) impact how students work
and collaborate in a software engineering course? To explore
this question, we conducted an exploratory study in a project-
based course where students developed three versions of a
system across agile sprints, with unrestricted access to GenAl
tools. From survey responses of 349 students, we found that
the technology was used extensively with 84% of students
reporting use and 90% of them finding the technology useful.
Through semi-structured interviews with 24 of the students,
we delved deeper, learning that students used GenAl perva-
sively, not only to generate code but also to validate work
retrospectively, such as checking alignment with require-
ments and design after implementation had begun. Students
often turned to GenAl as their first point of contact, even
before consulting teammates, which reduced direct interper-
sonal collaboration. These results suggest the need for new
pedagogical strategies that address not just individual tool
use, but also design reasoning and collaborative practices in
GenAl-augmented teams.

CCS Concepts: « Software and its engineering — Col-
laboration in software development.

Keywords: empirical study, computer science education,
teamwork, survey, interviews

ACM Reference Format:

Marie Salomon, Kyle D. Chin, Reid Holmes, Thomas Fritz, and Gail
C. Murphy. 2025. An Exploration of How Generative Al Affects
Workflow and Collaboration in a Software Engineering Course. In
Proceedings of the 2025 ACM SIGPLAN International Symposium on

ooee

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.
SPLASH-E °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2142-7/25/10
https://doi.org/10.1145/3758317.3759680

Kyle D. Chin
University of British Columbia
Vancouver, Canada
kdchin@cs.ubc.ca

Reid Holmes
University of British Columbia
Vancouver, Canada
rtholmes@cs.ubc.ca

Gail C. Murphy
University of British Columbia
Vancouver, Canada
murphy@cs.ubc.ca

SPLASH-E (SPLASH-E °25), October 12-18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3758317.
3759680

1 Introduction

Recently, the rise of generative Al (GenAl) has fueled specula-
tion and interest in how the technology will change software
engineering and the education of software engineers. For in-
stance, the popular press has speculated that human software
engineers might be replaced by GenAl agents (e.g., [16, 22]),
and educators have raised questions about how students
will learn, e.g., different aspects of software engineering [1,
12, 14]. Professional developers reject the hypothesis that
they will be replaced, instead suggesting how GenAlI can
make them more efficient during their workday (e.g., [13, 20-
22, 35]). Educators, similarly, have shifted from questioning
whether to engage with GenAl to considering how best to
guide students in using it productively and responsibly [12,
15]. As such, education must now absorb this shift and better
understand how students are encountering and incorporat-
ing these tools into their learning experiences. Interestingly,
the perspectives of both professional developers and edu-
cators are similar, focusing on how GenAlI can help each
individual improve the activities they perform rather than
on how it might support multiple people collaborating to
perform the multiple activities required to develop multiple
versions of a system.

A software system is engineered when its development
process involves multiple people developing multiple ver-
sions of the system [31]. While simple, this description by
Randell captures much of what is challenging when engi-
neering software. For example, the multiple people involved
must communicate, coordinate, and integrate independent
decisions into a consistent whole, which then constantly
evolves. Educators have long sought how best to simulate
industrial environments in the educational environment to

https://orcid.org/0009-0002-8797-9567
https://orcid.org/0009-0001-0863-1101
https://orcid.org/0000-0003-4213-494X
https://orcid.org/0000-0002-1834-6240
https://orcid.org/0000-0001-6768-2649
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3758317.3759680
https://doi.org/10.1145/3758317.3759680
https://doi.org/10.1145/3758317.3759680

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

enable students to experience and learn these software engi-
neering concepts and skills (e.g., [10, 29, 36]).

To date, studies about how GenAl impacts software en-
gineering and software engineering education largely align
with the views that GenAlI can assist individual developers
(e.g., [3, 4, 24, 26, 40]). Although a few studies have consid-
ered how GenAl can be used in team, largely within educa-
tional environments (e.g., [39, 41]), the focus has still been on
individual aspects of development, such as the use of GenAl
for architectural decisions.

As a first step towards filling the gap of how GenAl im-
pacts software engineers building multiple versions of a
software system collaboratively, we set out to explore how
GenAl was affecting our own students. Specifically, we exam-
ined its role in a project-based software engineering course,
where students work collaboratively to iteratively design,
build, and evolve software.

We focus on two research questions:

RQ1: How does GenAl impact the workflows of students
engineering software? We use the term workflow to
refer to the order and flow of phases in which software
developers engage.

RQ2: How does GenAl impact how students collaborate to
engineer a system?

To explore these research questions, we conducted an
exploratory study targeting third-year computer science stu-
dents who, as part of a course, were working in pairs to
develop a software project over three iterations. Each of
these iterations corresponds to a different version of the sys-
tem, as requirements evolved as the software development
proceeded. The students were permitted unrestricted use of
GenAl tools as they developed the versions, allowing them
the freedom to experiment and explore the full potential of
GenAl tools across different aspects of software development.
From a survey we distributed, which received 349 responses
(a 96% response rate), we found that the students used GenAl
pervasively with 84% reporting the use of the technology.

Seventy-five (21%) students indicated, through the survey,
a willingness to participate in an interview about their ex-
periences with GenAl. We randomly selected 25 of them for
semi-structured interviews, each lasting 25-35 minutes. We
analyzed the interview transcripts using thematic analysis,
identifying five themes related to the research questions.
Three themes were developed related to RQ1. GenAl mean-
ingfully altered the order in which students performed devel-
opment phases: students often jumped more quickly into im-
plementation, leveraging GenAl to generate starting points
or templates, which reduced the time spent on requirements
analysis and design. They also used GenAl to retrospectively
validate work—checking alignment with requirements and
design after implementation had begun. Finally, students de-
scribed relying on GenAl for instant code review, receiving

Marie Salomon, Kyle D. Chin, Reid Holmes, Thomas Fritz, and Gail C. Murphy

feedback on correctness, style, and adherence to specifica-
tions without needing input from teammates.

Two themes developed related to RQ2. GenAl fundamen-
tally changed how teammates collaborated with each other
and with their tools: students often turned to GenAl as their
first point of contact, even before consulting their team-
mates, which reduced direct interpersonal collaboration.
While GenAlI sometimes facilitated team discussions by pro-
viding suggestions or solutions that were further deliberated
upon, it also created a reliance on technology as a standalone
resource. Finally, students were divided on whether GenAI
should be treated as another "teammate"—akin to a junior
developer—or simply as a sophisticated tool. These results re-
fine our understanding of how students interact with GenAl
in educational settings, particularly within a project-based,
upper-division software engineering course that emphasizes
real-world development practices.

This paper makes the following key contributions:

e Empirical Insights: This work presents themes about
how GenAlI impacts workflows and collaboration in
teams of software engineering students, highlighting
shifts in the order and flow of development activities
and the evolving role of GenAl as a teammate or tool.

e Educational Implications: This study provides peda-
gogical guidance for integrating GenAl into software
engineering courses. It identifies how GenAl shifts
student engagement away from traditional planning
phases and reduces peer collaboration, prompting the
need for revised instructional strategies.

e Open Dataset: It provides a dataset of survey results,
interview transcripts, and thematic analysis results
to support replication and further analysis by other
researchers.

We begin with a description of related studies (Section 2).
We then describe the target students and the context in which
they were working, as well as methods used for data collec-
tion and analysis (Section 3). A pre-condition to explore our
two research questions is that students are using GenAl in
their workflow with others. To satisfy this pre-condition, we
administered a survey to all students in the course. We report
on the results of GenAl use in the course in (Section 4). We
then present the results of our study (Section 5) and discuss
pedagogical implications for educators (Section 6). We con-
clude the paper by presenting threats to the validity of the
results (Section 6.2) and a summary of findings (Section 7).

2 Related Work

The promise and rising popularity of GenAlI has led to studies
of the impact of the technology on various activities, both for
individuals working on an activity alone, where the bulk of

This paper has supplementary material available on Zenodo (https://doi.
org/10.5281/zenodo.16782575).

https://doi.org/10.5281/zenodo.16782575
https://doi.org/10.5281/zenodo.16782575

An Exploration of How Generative Al Affects Workflow and Collaboration...

studies have been conducted, and, less commonly, for teams
working collaboratively.

2.1 Use by Individuals

A number of studies have considered how GenAl impacts
particular activities or tasks undertaken by individuals in
software development.

Programming. Many of the studies have considered the use
of GenAI when programming. For example, Amoozadeh et
al. showed that GenAl supports learning new concepts in a
study conducted with students through a survey [3]. Liang et
al. and Nam et al. both demonstrated that GenAlI enables
faster completion and understanding of programming tasks [24,
26]. Vaithilingam et al. report on how GenAl reduces the time
spent searching for code online [40] and Barke et al. found
that generated results provide a good starting point [4]. Our
findings reinforce these results, as we also observe that stu-
dents use GenAl to quickly explore possible code implemen-
tations and accelerate task completion.

Not every report about the use of the technology for
programming has been positive. Choudhuri et al. found in-
creased frustration levels among participants [8]. With re-
spect to using GenAl to generate code, Denny et al. report
that developers have difficulties in understanding generated
code [11] and Liang et al. report that participants do not
use solutions from GenAlI when certain functional or non-
functional requirements are not met [24]. Nguyen et al. con-
ducted a large-scale lab study with beginning programmers,
showing that even in well-scaffolded tasks, students strug-
gled to prompt and interpret LLM outputs [27]. In contrast,
our study examines more advanced students in an upper-
division, project-based software engineering course, where
tasks are open-ended and collaborative. While Nguyen et
al. emphasize prompt literacy for novices, we highlight how
GenAl shifts attention away from design reasoning and team-
work, raising a different set of pedagogical implications in
more complex, real-world learning environments.

Other Software Development Activities. Other studies
have considered the use of GenAl for other software devel-
opment activities. Khojah et al. analyzed the interactions of
24 professional software developers using ChatGPT? over
one week and conducted exit surveys [21]. They found that
developers often use ChatGPT for guidance and learning
about tasks in abstract terms, rather than for generating
ready-to-use software artifacts. Rajbhoj et al. explored how
a systematic prompting approach might help various activi-
ties, such as generating requirements, designs, source code,
and tests [32]. While potential was found, the authors also
reported on manual review and edits that were necessary
for completeness and accuracy. Champa et al. performed a
quantitative analysis of 12 activities in which software devel-
opers use ChatGPT, showing for which tasks ChatGPT was

Zhttps://chat.openai.com/

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

most and least suited to assist [7]. Compared to these earlier
studies, the study we report on goes beyond the individual
and beyond particular activities, seeking to understand how
GenAl impacts multiple students working together and its
impact on the overall workflow.

2.2 Use by a Team

There are fewer studies about how GenAl impacts teams
engineering software collaboratively.

Similar to our study, others have considered the impact of
GenAl in course projects. Tanay et al. conducted a semester-
long study of student teams building a software engineering
project, focusing on how the students integrated GenAl into
their coursework and on how the students’ perceptions of
learning were influenced [39]. Waseem et al. conducted an
exploratory study to investigate the usage and effectiveness
of GenAl in supporting seven 1st and 2nd-year undergrad
students in different phases of software development work-
flow while developing a three-month project [41]. The au-
thors report that GenAl enhanced the clarity and efficiency
of requirements gathering, improved architectural decisions,
and streamlined coding processes. These studies largely em-
phasized individual use patterns and learning gains, and
in comparison to the study reported in this paper, did not
closely examine how GenAlI reshapes team workflows or
collaborative practices.

Rasnayaka et al. comes closer to our context by studying
upper-division students working in teams to build a compiler-
like system with a custom language [33]. The study analyzed
Al-generated code annotations, prompts, and survey-based
perceptions. They found that LLMs were particularly useful
in the early phases of the project for generating basic code
structures, improving code quality, and debugging through
prompt usage. In contrast, our study focuses on how GenAl
reshapes collaborative workflows, including how students
communicate within the context of a more realistic, end-
to-end software engineering project. Our work uniquely
investigates how students resequence core phases, such as
requirements gathering, design, and implementation, when
using GenAl, and how team interactions are altered as GenAl
increasingly becomes the first point of contact, often before
teammates, thereby changing how and when collaboration
occurs.

3 Methods

We used a semi-structured interview method to explore our
research questions. Interviewed students were randomly se-
lected from those willing to participate based on a survey
available to all students in the course. The study was ap-
proved by the ethics board of our institution, and informed
consent was obtained from all students. We describe the
course project, the survey, the interviews, and our analysis
approach.

https://chat.openai.com/

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

3.1 The Course Project

We conducted the study with third-year undergraduate stu-
dents who were enrolled in a project-based software engi-
neering course. The project consisted of building a TypeScript-
based backend implementation of a data store and a custom
domain-specific language for querying university courses
and teaching spaces. The project was divided into three
phases. In the first phase, students implemented basic data
processing and a domain-specific language for basic queries.
In the next phase, they built on this functionality to support
complex data processing and queries. This phase typically
requires students to practice design patterns and refactoring
to adapt their first phase functionality to the new require-
ments. In the final phase, students build a frontend interface
and backend server that uses the functionality they built in
the prior two phases. Students had access to an automated
grader that gave high-level feedback on their solution. Be-
cause this feedback is high-level, students typically write
many tests which is consistent with an industrial software
engineering context. Students worked on the project in teams
of two students over 12 weeks to complete these three phases.
Each team met with a teaching assistant once per week to
check progress in a 15-minute, scrum-like meeting, but were
not otherwise given explicit, low-level advice on how to
approach the project or collaboration. Students also had ac-
ceess to office hours and an online forum to ask questions
and receive help. Most project implementations consisted
of over 1,600 lines of source and test code. A total of 364
students participated in the course during the study term
and approximately 30% of them were female-identifying stu-
dents.

Figure 1a provides an overview of the typical process used
by a pair of students to work on a sprint. In the Requirements
phase, students are provided with a description of stake-
holder expectations from which they derive the requirements
for the system. The students must then generate and consider
multiple Design choices. As the amount of Implementation
required is substantial, teammates generally divide the work
to build the software. Teams are able to receive feedback on
their solution by running their code against a regression test
server to ensure basic functionality. As Figure 1b depicts,
teammates typically interact with each other extensively
through the sprints and consult outside documentation and
websites as needed.

The course permitted unrestricted use of GenAlI tools, al-
lowing students to utilize these resources freely in terms
of both functionality and input content, contrasting with
the more regulated environments seen in many organiza-
tions. Students were required to annotate any Al-generated
or influenced code to maintain transparency and academic
integrity.

Marie Salomon, Kyle D. Chin, Reid Holmes, Thomas Fritz, and Gail C. Murphy

3.2 Survey

To explore our research questions, we needed to identify stu-
dents in the course who were using GenAl in their workflow.
We administered a survey, which was open to all students
of the course, to identify potential students. As this survey
included questions about how GenAIl was being used, we
were able to gain data about the use of GenAl beyond the
students in the interview study.

In addition to demographic questions, the survey asked
about students’ use of code completion tools (e.g., GitHub
Copilot®) and chatbots (e.g., ChatGPT?). Students who did
not use GenAl were asked to share their reasons and con-
cerns. The survey was piloted with four people and was
updated prior to sending it out to the students to ensure
clarity and consistency. The survey and results are included
in the dataset for this paper.

The survey was advertised widely through the course
discussion board and during lecture time, allowing students
to complete it anytime before the end of the course. Students
were incentivized with a 1% addition to their final grade
simply for opening the survey; they were not required to
complete it, nor were they obligated to use any GenAlI tools
to receive this incentive. As part of the survey, students were
asked if they could be contacted later to participate in an
interview.

We recorded 349 completed responses to the survey, re-
sulting in a response rate of 95.8%, from which we removed
2.3% of the responses due to a duplicate response and seven
responses that were falsely included due to an initial bug in
the survey workflow that was resolved after detection. We
present the data about the use of GenAl from 341 responses
(93.6%) in Section 4 to provide context for the responses from
the interviews.

3.3 Interview

We explored our research questions using 19 main questions
in semi-structured interviews. The interview included two
scenarios presented to the students; however, the resulting
data was inconclusive and is therefore not included in this
paper. The dataset for this paper can be consulted for more
detail about the full interview questions.

Only students who indicated usage of GenAlI and a will-
ingness to be interviewed in the survey were eligible for the
interviews. From a pool of 79 willing students, we randomly
sampled a subset of 25 to reduce bias and increase the repre-
sentativeness of the sample, and contacted each of them via
email to book an interview timeslot. We scheduled the inter-
views between the end of the project and the exam period
for ethical and validity reasons. One scheduled interview
student dropped out, leaving 24 students who completed

3https://github.com/features/copilot
4https://chat.openai.com/

https://github.com/features/copilot
https://chat.openai.com/

An Exploration of How Generative Al Affects Workflow and Collaboration...

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

Qe \@/

(b) Collaboration Pattern without GenAlL

Re > De > Im >
Regression Test Results
(a) Workflow without GenAL
Al
‘‘‘‘‘‘‘ Check Alignment
Re > De > Im >

\ Check Alignment

Regression Test Results

: N/

(c) Workflow with GenAl.

(d) Collaboration Pattern with GenAlL

Figure 1. Impact of GenAl on Workflows and Collaboration Patterns
(Re: Requirements, De: Design, Im: Implementation, Te: Testing).

interviews. Of the 24 students, 16 (64%) reported having pro-
fessional, paid programming experience. All students stated
that they have worked in a team to engineer software before.
The reported team sizes in which students have previously
worked varied from two to twenty people.

Each interview was designed to be around 25 minutes,
and each student received a $25 gift card as compensation.
The interviews were almost equally divided among two re-
searchers, who are both authors of this paper. All interviews
were performed through a video-conferencing application,
audio-recorded, and transcribed automatically to ensure ac-
curate capture of student responses. The automated tran-
scriptions were reviewed by the authors of the paper to
ensure accuracy.

3.4 Analysis of Qualitative Data

We conducted a thematic analysis with an emphasis on cod-
ing reliability on the qualitative interview data, an approach
within the broader thematic analysis family as outlined by
Braun & Clarke [6, 17, 28]. To guide the quality and trans-
parency of our process, we drew on Braun & Clark’s 15-point
checklist for good thematic analysis [5]. Data analysis was
performed using QSR International’s NVivo 14 software’

Shttps://lumivero.com/products/nvivo/

through an inductive approach, focusing on open coding
without pre-existing theories influencing the analysis.

Coding was a collaborative effort between two coders
(both authors of this paper), supported by a critical friend
(also an author) who reviewed all coding to challenge as-
sumptions and ensure depth in data interpretation [37]. The
critical friend is an individual who provides an opportunity
for a reflexive dialogue between researchers for critical reflec-
tion on coding practices, assumptions, and interpretations,
ensuring consistency across the analysis process [9, 37, 38].
This coding strategy follows guidance for subjective ap-
proaches [5]. The coders independently conducted semantic
coding on the interview data, focusing on the explicit content
of participants’ responses and surface-level meanings.

To build consistency in coding, a joint coding session was
held early in the process and at the end, when the coders
reviewed the mapping of each code to every statement in
the interviews, underscoring the importance of thorough
and iterative coding to ensure rigor in the research process.
This collaborative approach was instrumental in refining the
coding schema, enabling reliability of coding, and ensuring
consistency across the dataset. If a new code emerged from
an interview that was relevant to the research questions,
previously coded interviews were revisited to check for the
presence of this new code, ensuring comprehensive coverage.

https://lumivero.com/products/nvivo/

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

This iterative coding process was critical in developing a
robust thematic structure.

Themes were subsequently developed and named, with
the process of writing and refining these themes being iter-
ative and integrated throughout to ensure a thorough and
comprehensive analysis. The final themes were developed
collaboratively through multiple rounds of discussion and re-
flection on the coded data. The results reported in this paper
are not comprehensive of all the themes identified bottom-up
from the data. The decision to exclude sub-codes on certain
topics, such as Usage of Al Tool Improvements, Trust, and
Concerns, was made after comparing the preliminary results
with existing literature and engaging in a critical discussion
following the analysis of the first ten interviews. The coders
found that no new codes were developed after 15 interviews
were coded, suggesting saturation. To ensure saturation was
indeed reached, we continued until we had interviewed and
coded the transcripts of 24 students. We considered this num-
ber to represent a sufficiently broad subset of the student
pool. This methodology facilitated a thorough exploration
of student perspectives, enhancing our understanding of the
topics studied. Feedback from the critical friend was instru-
mental in maintaining analytical rigor, providing an external
perspective to challenge and validate our findings.

3.5 The Study Population

The students who participated in the survey and interviews
share backgrounds consistent with those of early-career
professionals, with 64% of the interviewed students report-
ing professional programming experience on teams ranging
from two to twenty members. Given that GenAl is a rel-
atively new field, even experienced professional software
developers have had limited exposure to these tools and are
gradually adopting GenAlI technologies while facing chal-
lenges themselves, for instance the lack of formal GenAl
training [23, 30, 34]. In this respect, our students exhibit
similarities to novice developers, who are also navigating a
learning curve of integrating these emerging tools into their
workflows.

The students in our study faced no restrictions regard-
ing their use of GenAl, allowing them to freely explore and
experiment with various tools. This stands in contrast to
professional software developers, who are often constrained
by organizational policies dictating tool selection, permissi-
ble inputs, and specific usage protocols for security, privacy,
or intellectual property reasons [2, 19, 42]. The ability to
apply these emerging technologies without these restric-
tions granted our students unique freedom, enabling them to
experiment with GenAl across different aspects of program-
ming, problem-solving, and collaboration, thereby fostering
a deeper understanding of the tools’ strengths and weak-
nesses and how they could integrate them into their work.

Marie Salomon, Kyle D. Chin, Reid Holmes, Thomas Fritz, and Gail C. Murphy

4 Use of Generative Al Tools in the Project

To explore how GenAlI impacts students’ workflows and
collaborations in a software engineering course project, it
is essential that students choose to use GenAl tools. Our
survey results provide insights into the use of GenAlI tools
by students, helping determine whether the pre-condition
of use of these tools was met.

From the survey, we learned that students did use GenAl
tools extensively: 84% of the students reported using GenAl
for some part of the development of the project. The students
described using nine different GenAl tools, with the two most
commonly cited being ChatGPT and GitHub Copilot. The
primary reasons for using GenAlI included troubleshooting
code (81% of the 84%), asking how to use a library (65%),
writing new code (64%), and optimizing existing code (57%).
Students also described using GenAlI for determining which
library to use (40%) and creating data models (23%). Among
the 16% of students who did not use GenAl, 35 (66% of the
16%) expressed concern that a wrong solution provided by
the tool could negatively influence their project. Additionally,
32 students (60% of the 16%) were worried about becoming
too reliant on the tools.

As part of the survey, we asked how students interacted
with the GenAl tools to delve lightly into how the students
collaborate with the tools. Only a small number of students
(4%) found satisfactory answers immediately from GenAl
without needing to refine their questions. More commonly,
some collaboration was reported with the GenAl tools: 20%
of students mentioned that they usually refine once before
receiving a satisfying answer, and 70% said they typically
needed to refine their questions multiple times to get a sat-
isfying answer. Only 1% of the students chose not to refine
their questions and ended up without a satisfactory answer,
and 5% reported that even after multiple refinements, they
still did not receive a satisfactory answer. Overall, 90% of
the students indicated that they received a satisfactory an-
swer with at least one round of question refinement. In other
words, students were willing to engage and collaborate with
the GenAl tools.

The survey results highlight that GenAl is perceived as
valuable by the majority of the students in the course, with
94% who use GenAl finding them at least moderately useful.
Despite facing difficulties with suggested solutions, most stu-
dents are likely to continue using the technology. This indi-
cates a strong overall acceptance and willingness to integrate
GenAl into their workflows, underscoring the importance of
investigating their impact on workflow and collaboration.

5 Results

We draw on our thematic analysis of interview data to ex-
plore the two research questions. Table 1 summarizes the
themes that we developed that provide insight into each

An Exploration of How Generative Al Affects Workflow and Collaboration...

research question. The table includes the number of partici-
pants from whom quotes support each theme. Representation
of each theme ranged from 18 (75%) to 24 (100%) of the 24
participants, demonstrating that each theme was reflected
across a substantial portion of the dataset. We discuss the
themes supporting each research question.

5.1 RQ1: Software Engineering Workflows

We developed three themes related to how the students car-
ried out their project tasks (RQ1).

Theme 1: Activity Changes. GenAl influenced what activ-
ities students performed in each phase of the development
process by shifting or augmenting the kinds of work tradi-
tionally expected. For example, during the REQUIREMENTS
phase, students described using GenAlI to parse and summa-
rize long and confusing specifications, helping them distill
the most relevant information and streamline their under-
standing. Rather than deeply engaging with the specification
documents themselves, students offloaded some of the com-
prehension work to GenAl, which allowed them to generate
working summaries or jumpstart plans more quickly. These
behaviors suggest a shift in how students engage with com-
plex planning tasks, favoring speed and accessibility over
deep understanding,.

We identified a novel use of GenAl in this context. During
the IMPLEMENTATION, students described using GenAl
for “instant code review”, changing how students debugged
and improved their code. Instead of discussing their code
with peers or waiting for TA feedback, students pasted code
snippets into GenAlI to get rapid feedback on structure, style,
and correctness.

@ That one is more like to me it’s like an instant code
review. [...] I just give it the code. It gives me feedback and
[1] go along with my day. (P3)

Table 1. Themes and Support per Research Question.

of
RQ Themes ©
Participants

1. Activity 18

RQ1 (Workflow) Changes
2. Workflow 18

Changes
3. Flow Improve- 19

ments

4. Collaboration 18

RQ2 (Team) Changes
5. GenAIs Role in 24

Collaboration

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

Theme 2: Workflow Changes. GenAl altered how much
work students did within each phase and how they tran-
sitioned between the phases. Figure 1c depicts the overall
changes in the students’ workflow with GenAL

In contrast to earlier offerings of the course (Figure 1a),
students launched more directly into IMPLEMENTATION
and spent less time in REQUIREMENTS and DESIGN. This
change in approach was possible because GenAl gave stu-
dents “a good starting point” (P9), allowing them to dive into
IMPLEMENTATION more quickly. The diving in faster to IM-
PLEMENTATION is depicted in the shorter duration boxes
for REQUIREMENTS and DESIGN in Figure 1c. Students
even asked GenAl for “a blueprint” (P17) to get a starting
point and jump-start the implementation.

® IfI have like ChatGPT as a tool, I can kind of skip the
planning phase a bit more and just kind of go into doing
stuff, cause I can kind of ask it. [...] How should I try and do
this like, in what order should I do this? And then you can
kind of just start go executing stuff rather than thinking,
okay, I have to do. [...] (P24)

A result of jumping in faster into IMPLEMENTATION is
more effort spent by the students in activities related to
IMPLEMENTATION, depicted by the longer box in Figure 1c.
While this shift was not measured quantitatively through
commit logs, students consistently described this transition
in interviews and reflections.

Students also described changes in how they moved be-
tween phases, in particular, returning to REQUIREMENTS
from the IMPLEMENTATION and TESTING phases. These
‘returns’, indicated by the additional arcs in Figure 1c, were
due to asking GenAl to check alignment with specifications.
For example, student P6 stated that when they are confused
about what to implement, they refer back to the REQUIRE-
MENTS with the help of GenAl, asking “how the logic of
the function could go” according to the specs. As another
example, student P17 referred back to the REQUIREMENTS
when unsure how to implement or connect different parts
of the code. These ‘returns’ to check alignment are faster
for developers than fully understanding the requirements
and design all up front. These findings suggest that students
increasingly rely on GenAl as an intermediary to validate
alignment between their code and the requirements, some-
thing they might otherwise seek from a teaching assistant
or a more senior team member.

® One thing I can do is like [... | put my test file on Chat-
GPT, and put like the main functions it is testing [...] and
asking it like, Hey, is there any edge case that I'm missing?
And a lot of times it might tell me that, hey? Either your
test suite is pretty solid like, it’s pretty proficient already,
or it might just give you like, hey, this could be a potential
thing that you haven’t tested, and then I would go back
and create a test for that. (P21)

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

Marie Salomon, Kyle D. Chin, Reid Holmes, Thomas Fritz, and Gail C. Murphy

Table 2. Impacts of GenAl on Activities within the Development Cycle based on the Themes Activity Changes and Workflow

Changes.

Phase

Impact and Evidence

Requirements

Design

Implementation

Testing

Students consulted GenAl for logic suggestions to clarify specifications, for advice on how to turn
requirements into design, and for advice on how to start the project. Some students mentioned using
GenAl to parse and summarize long and confusing specifications, providing a brief and generalized idea
of the content, which streamlined their understanding and made the initial phase of their work more
efficient.

Students asked GenAl for high-level architectural suggestions, design advice for endpoints and the
database, and how to approach the project. Instead of going to Google, watching tutorials, or reading
documentation, they relied on GenAlI to provide them with the necessary information.

In addition to generating and refactoring code with GenAlI, students described using GenAl as an instant
code review step, providing them with feedback before committing the code and moving on to TESTING.
Students asked GenAl how to implement a certain function or use a library instead of looking up the
documentation themselves. They also requested GenAl to write documentation for their code and sought
advice on how to integrate their code into the current codebase. Other impacted activities included
debugging, finding errors in the codebase, and having error messages explained. Students consulted
GenAl for these purposes. Additionally, students asked GenAl to explain code to them when they were
unfamiliar or uncertain about its functionality.

Students described using GenAl to write, check, and identify missing cases to test software of interest.

They also consulted GenAl to narrow down problems and find errors.

Theme 3: Flow Improvements. GenAl also helped students
perform work more efficiently. Our students described three
major ways in which the flow of work was improved.

First, GenAlI helped students accelerate their work by pro-
viding a starting point. Students commonly used it to gener-
ate templates or initial code snippets they could then adapt
to their needs.

® [would say at the beginning of software development,

when you kind of don’t really have an idea of what you’re

doing, it’s helpful to get started so you can ask it for like a

beginning point, or something like that. (P24)

Second, students described how GenAlI reduced the effort
needed to both locate and produce documentation. Rather
than searching external sites like Stack Overflow, they turned
to GenAl to explain or teach them how to use specific tools
or libraries.

® Well, most times I feel like, I don’t even search up the

documentation anymore. I just ask it to tell me like how

to use it or like oh, like, teach me how to use this, or like

something like that. (P18)

Third, GenAI helped positively impact a student’s flow by
reducing mental load and helping to unblock the student.

@ Yeah, definitely does, because the like generating with

Al is much faster and there’s less mental load. (P14)

These patterns reinforce prior findings in the literature.
Liang et al. [25] similarly observed the use of GenAl tools for
bootstrapping code, while Vaithilingam et al. [40] reported

reductions in documentation search and writing effort. Our
results build on these insights by situating them in the con-
text of collaborative, multi-phase student projects. We dis-
cuss the impact of these flow improvements in Section 6.

5.2 RQ2: Team Interaction

Our second research question explores the impact of GenAl
on how developers collaborate. From our qualitative analysis
of the interview data, we developed two themes related to
collaboration. For clarity of all themes identified, we con-
tinue the numbering of themes related to the first research
question.

Theme 4: Collaboration changes. The use of GenAl al-
tered how students communicated with each other. Figure 1d
depicts the change from most interactions being between
the human teammates to more communication happening
between an individual team member and the GenAl tool. In
addition, instead of directly interacting with outside docu-
ments, the human developers interacted with the informa-
tion from documents through GenAl. We describe each of
these two impacts in turn.

First, one significant shift was that GenAl often became
the first point of contact, even before a teammate, particularly
when teammates were unavailable. This use of GenAI did not
just reduced the direct communication between teammates,
hence the arrow is lighter between teammates in Figure 1d
compared to Figure 1b, it also reduced students’ time spent
blocked, waiting on a partner for feedback, explanation, or

An Exploration of How Generative Al Affects Workflow and Collaboration...

help. With GenAlI, students could keep working indepen-
dently and asynchronously, maintaining momentum even
without synchronous team interaction.
® Because I can ask copilot before I go to ask other devel-
opers in the team or something like that. (P9)

Second, students used GenAl to help foster and seed dis-
cussions with their teammates, altering communication be-
tween teammates. Some students asked their teammate for
help how to solve a certain problem and they referred them
to GenAl to help them out ‘T asked ChatGPT to do it” (P18)
and others informed their teammate that GenAl gave them
a potential solution to an issue they have discussed before
and they discussed that “You know that problem we had with
this I asked ChatGPT for like a potential solution, it gave me
this back.” (P24)

® [...] it’s like them coming [...] to me with a with a

bug, and then I try to search and try ChatGPT and then I

kind of like talk to ChatGPT about it. And then we discuss.

Well, usually it’s just me saying like this is what ChatGPT

said and then they’re like discuss on whether or not that’s

usable for our code and stuff. (P19)

While these results are consistent with findings from
Haque et al,, our work extends their study by uncovering
specific communication patterns that arise in collaborative,
multi-phase project settings involving GenAl [18].

Theme 5: GenAI’s Role in Collaboration. In addition to
shaping communication, GenAlI also influenced how teams
divided their work and responsibilities based on the different
views the students had about how GenAl fit in their teams,
ranging from GenAlI being just a tool to GenAlI being a full
team member. To the best of our knowledge, this is one of the
first studies that considers how GenATI’s role is perceived by
students in a software engineering project and how students
compare its qualities to human team members.

More than half of the students considered GenAlI as a
team member, likening GenAl to a junior developer, useful
for providing general tips, helping when stuck, and learning
new topics.

@ [think I like the analogy where you kind of treat Chat-

GPT or your Al tool as like a junior dev that you have on

your own team. Even though it might not be the best at

coding, you could still ask it as if it were if it like researched
in a topic before, and just ask for maybe some general tips
on what they found, and apply it to my own use case. (P1)

Others, who viewed GenAl towards the teammate part of
the spectrum, considered GenAlI as an assistant useful for
specific tasks, but who lacked the project-specific knowledge
of a human team member.
® It’s definitely like an assistant. No, it can’t be a team-
mate, because it doesn’t have the knowledge that my team-
mate has about the project in terms of assistance it I think
of it as someone that I can hand over a certain part of my

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

code to, and it can evaluate that code and give me back

suggestions to make the code more readable or to make it

more precise and accurate. So it’s something that I delegate
what to, but not someone that I can work with. (P5)

The other half of students considered GenAlI as a tool,
emphasizing its convenience, but cautioning against over-
reliance. Some likened it to advanced code completion or a
faster Google search, useful for providing information and
instant code reviews without taking on the responsibilities
of a human team member.

® 1t’s more like a little Google search engine like someone
who goes to search Google for you. So instead of you know,
you looking through all the results, they look through all
the results and summarize it for you. It’s kind of like a sped
up Google, I guess. (P7)

Many students did note that GenAl was fundamentally
different than a human team member because the technology
does not engage in a two-way dialog and lacks the collabo-
rative and intentional aspects of human teamwork.

@ [don’t think it offers the full capacity of a teammate
because like, if it’s a teammate, then you make decisions
together in terms of like, not just the code and making
things run, but also like the intentions of the features that
you’re developing, for example and like you know owning
our code base. (P2)

6 Discussion
6.1 Pedagogical Implications

Each of the five themes identified in Section 5 have implica-
tions for how we train software engineers in an environment
where Al-based tools play an increasingly integrated role.
These implications are structured in terms of the traditional
software engineering project phases depicted in Figure 1 and
Table 2 and in terms of their impact on teamwork in the
course project.

Requirements. Students frequently engaged with GenAl
to synthesize complex documents into smaller pieces of work
they could more directly work on (Theme 1). They would
then use these smaller requirements to drive their imple-
mentation efforts. When authoring problem specifications,
instructors should therefore be mindful that students may
not be directly reading them, and prompt students to derive
a deep understanding of requirements regardless. This places
a greater importance on teaching testing as an integral part
of the development workflow (e.g., via Test Driven Devel-
opment (TDD)). Encouraging students to write tests that
match the specification may induce them to engage directly
with the specification and build better alignment with stake-
holder intent. Future research could specifically investigate
how students are using GenAl as part of TDD workflows
and how effective GenAl is in this role.

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

Design. Since GenAl tools can generate source code di-
rectly from a given textual requirement, students altered
their workflow in a way that largely bypassed the design
process (Theme 2) (i.e., by asking GenAlI to write the code for
them). However, the role of design is more important than
ever to ensure that any generated source code integrates well
with the current project, and to ensure it fulfills the quality
attributes (e.g., evolvability, testability) that are important to
the long-term success of a project. In other words, generat-
ing code is different than generating software. Therefore it
is ever-important to craft assignments where students must
integrate code into existing software and are forced to evolve
their own software. This would encourage students to better
understand the trade-offs of their high-level design, whether
it was initially generated by GenAlI or themselves.

Implementation. Unsurprisingly, implementation acti-
ivites were heavily impacted by GenAl. By allowing in-
stant code review (Theme 1), supporting quicker prototyping
(Theme 2), and allowing a direct feedback loop betweeen
requirements and implementation (Theme 3), students spent
a higher proportion of their time directly working with code.
Since GenAl tools can generate code so quickly, students
need to become more adept at understanding and judging the
quality of code they did not write themselves. Pedagogically,
a key concern is that students may over-rely on GenAI dur-
ing implementation and, as a result, may under-engage with
other critical aspects of the software development practices,
such as requirements analysis, high-level design, or system
architecture that are known to be important for long-term
system success. This is problematic because it could encour-
age solutions that work well now but might not be amenable
to future change which is important for all long-lived sys-
tems. As part of future work, we plan to analyse students’
code repositories to explore patterns of implementation, code
quality, and progress toward features. This will allow for a
more quantitative investigation of how GenAl impacted the
final solution and students’ work patterns during the project,
including potential comparisons with previous years.

Testing. Students understood the increased importance of
testing when using GenAl and demonstrated this by both in-
terrogating their test cases in terms of the requirements and
generating test cases directly from requirements (Theme 2).
For education, this suggests that testing activities should be
more actively framed as a way both to validate the currently
generated code, but also to ensure that newly-generated
code does not cause unexpected regressions. While testing
is good at checking alignment between requirements and
source code, it is not able to validate alignment with an in-
tended design; covering aspects of validation that are not
entirely based on unit testing (e.g., code review or design
walkthroughs) can help clarify this shortcoming.

Marie Salomon, Kyle D. Chin, Reid Holmes, Thomas Fritz, and Gail C. Murphy

Teamwork. Interestingly, GenAl seems to have improved
how students collaborate with their teammates. Specifically,
they spent less time blocked waiting for their partners (Theme
4), and were able to seed their discussions with GenAl pro-
vided suggestions instead of a blank sheet (Theme 5). In
our project, integrating GenAl as part of the development
team was a net positive that improved how the team worked.
While GenAl did reduce communication between teammates,
it also helped focus their teammate interactions on more im-
portant questions they actually felt they most needed help
with. Furthermore, GenAl served as a useful (albeit incom-
plete) replacement for students’ information needs—needs
like checking requirements and performing code review that
they would typically receive from a teaching assistant (or
senior developer in industry). This suggests that it would be
valuable to further investigate the quality of help that GenAl
provides in this vein and how the role of course staff should
evolve in response. The reduced peer interaction also raises
questions about how students develop essential workplace
soft skills such as negotiating ideas, giving feedback, resolv-
ing disagreements, and willingness to seek help—areas that
future work may need to examine more closely.

6.2 Threats to Validity

We explored our research questions through an interview
study and considered threats to the qualitative data and our
interpretation of it.

Transferability of Results. We interviewed 24 students
in a software engineering course. By selecting interview
students randomly from a large set (79 potential students)
that agreed to be interviewed, we reduced the bias of selec-
tion, increasing the likelihood of a representative sample
of students in the class. All students in this study worked
in pairs throughout the course, consistently collaborating
with the same teammate on a shared software project. While
this setting allowed us to closely examine GenAI’s impact
on small-team collaboration, the limited team size poses a
threat to the transferability of our findings. In particular,
the dynamics observed in two-person teams may not fully
represent those in larger, more hierarchical teams typical
of industry settings. Similarly, it remains unclear how well
these findings generalize to learners with very different lev-
els of experience, e.g., complete novice students or seasoned
professionals might engage with GenAl in ways not cap-
tured in our study. We view our results as primarily pro-
viding hypotheses to explore in future studies, particularly
with GenAl’s role in larger team environments or industrial
settings. Students were given unrestricted access to GenAl
tools, meaning there were no constraints on which tools they
could use, how frequently, or for what tasks. While this of-
fered students considerable freedom, it introduces variability
in tool use that may affect the transferability of our findings.

An Exploration of How Generative Al Affects Workflow and Collaboration...

Differences in access to paid tools may have shaped how stu-
dents engaged with GenAl While this was not the focus of
this study, future work should look into the potential impact
of these differences.

Credibility. A potential threat to our study is the consis-
tency of the interview process given two interviewers (both
authors of this paper). To mitigate this risk, the two inter-
viewers conducted joint sessions where they reviewed and
discussed all the interview questions together to ensure a
shared understanding of each question’s intent and appropri-
ate follow-up prompts. Additionally, a standardized checklist,
which included key points and guidelines was developed that
both interviewers used during the interviews. The reported
results could also be impacted by the coding process. We
used two methods to reduce this risk. First, we undertook
an iterative process in which two researchers (both authors
of this paper) independently coded the data, followed by
comprehensive joint reviews. This approach allowed us to
cross-check and validate our individual interpretations, re-
ducing potential bias and enhancing the reliability of our
findings. Despite these measures, the subjective nature of
qualitative data interpretation remains a consideration. To
further mitigate this risk, we incorporated the feedback of a
critical friend (author of this paper), whose role was to rigor-
ously challenge the assumptions and interpretations made,
thereby providing an external perspective that enriched the
depth and accuracy of our analysis.

7 Summary

GenAl is changing how students collaborate and build soft-
ware together in an educational setting. Through an ex-
ploratory study involving 24 students enrolled in a project-
based software engineering course, we examined how GenAlI
in a team-based setting influenced the development of three
software versions across multiple sprints. While prior work
has largely focused on individual use of GenAlI for tasks
like code generation or architectural guidance (e.g., [32, 40]),
our findings show that GenAlI also alters workflow struc-
ture and team interaction patterns. For example, students
often moved into implementation earlier, using GenAlI to
bootstrap their work and retrospectively validate alignment
with requirements and design. These findings extend those
of prior literature (e.g., [32, 33, 39, 41]) by revealing how
these workflow shifts create new feedback loops, such as
retrospective requirement checks and "instant code reviews",
both of which substitute for traditional human feedback
mechanisms. With respect to team interactions, we found
that students held differing views on whether GenAl func-
tioned more as a tool or as a teammate. These perceptions
influenced collaboration dynamics, with GenAl sometimes
becoming the first point of contact over human teammates.
These findings demonstrate how GenAl reshapes traditional

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

workflows, creates new feedback loops, and alters team in-
teractions in collaborative software development. This work
offers pedagogical implications for educators designing and
teaching project-based courses in an era of pervasive GenAl
use. It highlights the need to support student development
not just in technical skills, but also in prompt literacy, design
reasoning, and collaborative awareness in GenAl-augmented
teams.

Acknowledgments

We thank the individuals who participated in this research,
those who provided us with insightful comments, and the
reviewers for their constructive feedback. This work was
funded, in part, by the Natural Science and Engineering
Research Council of Canada (NSERC) [RGPIN-2022-03139].

References

[1] Duha Ali, Yasin Fatemi, Elahe Boskabadi, Mohsen Nikfar, Jude Ug-

wuoke, and Haneen Ali. 2024. ChatGPT in Teaching and Learn-

ing: A Systematic Review. Education Sciences (2024). https://api.
semanticscholar.org/CorpuslD:270536748

Amazon Web Services. 2023. AWS Responsible Al Policy. https:

//aws.amazon.com/ai/responsible-ai/policy/ Last updated: September

28, 2023.

Matin Amoozadeh, David Daniels, Daye Nam, Aayush Kumar, Stella

Chen, Michael Hilton, Sruti Srinivasa Ragavan, and Mohammad Amin

Alipour. 2024. Trust in Generative Al among Students: An exploratory

study. In Proceedings of the Technical Symposium on Computer Science

Education (SIGCSE). 67-73. https://doi.org/10.1145/3626252.3630842

Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023.

Grounded Copilot: How Programmers Interact with Code-Generating

Models. Proc. ACM Program. Lang. 7, OOPSLA1, Article 78 (apr 2023),

27 pages. https://doi.org/10.1145/3586030

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in

psychology. Qualitative Research in Psychology 3 (01 2006), 77-101.

https://doi.org/10.1191/1478088706qp0630a

Virginia Braun and Victoria Clarke. 2023. Toward good practice

in thematic analysis: Avoiding common problems and be(com)ing

a knowing researcher. International Journal of Transgender Health

24, 1 (2023), 1-6. https://doi.org/10.1080/26895269.2022.2129597

arXiv:https://doi.org/10.1080/26895269.2022.2129597

Arifa I. Champa, Md Fazle Rabbi, Costain Nachuma, and Minhaz F.

Zibran. 2024. ChatGPT in Action: Analyzing Its Use in Software

Development. In Proceedings of the International Conference on Mining

Software Repositories (MSR). 182-186.

Rudrajit Choudhuri, Dylan Liu, Igor Steinmacher, Marco Gerosa, and

Anita Sarma. 2023. How Far Are We? The Triumphs and Trials of Gen-

erative Al in Learning Software Engineering. arXiv:2312.11719 [cs.SE]

https://arxiv.org/abs/2312.11719
[9] Arthur Costa and Bena Kallick. 1993. Through the Lens of a Critical
Friend. Educational Leadership 51 (01 1993).

[10] Marian Daun, Andrea Salmon, Thorsten Weyer, Klaus Pohl, and Bas-
tian Tenbergen. 2016. Project-Based Learning with Examples from
Industry in University Courses: An Experience Report from an Under-
graduate Requirements Engineering Course. In 2016 IEEE 29th Inter-
national Conference on Software Engineering Education and Training
(CSEET). 184-193. https://doi.org/10.1109/CSEET.2016.15

[11] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly,
Thezyrie Amarouche, Brett A. Becker, and Brent N. Reeves. 2023.
Promptly: Using Prompt Problems to Teach Learners How to Ef-
fectively Utilize Al Code Generators. arXiv:2307.16364 [cs.HC]

[2

—

E

—

[4

flaav)

5

—

G

—

[7

—

[8

[}

https://api.semanticscholar.org/CorpusID:270536748
https://api.semanticscholar.org/CorpusID:270536748
https://aws.amazon.com/ai/responsible-ai/policy/
https://aws.amazon.com/ai/responsible-ai/policy/
https://doi.org/10.1145/3626252.3630842
https://doi.org/10.1145/3586030
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1080/26895269.2022.2129597
https://arxiv.org/abs/https://doi.org/10.1080/26895269.2022.2129597
https://arxiv.org/abs/2312.11719
https://arxiv.org/abs/2312.11719
https://doi.org/10.1109/CSEET.2016.15
https://arxiv.org/abs/2307.16364

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

[12]

(13

—

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

https://arxiv.org/abs/2307.16364

Umama Dewan, Ashish Hingle, Nora McDonald, and Aditya Johri. 2025.
Engineering Educators’ Perspectives on the Impact of Generative Al
in Higher Education. arXiv:2502.00569 [cs.CY] https://arxiv.org/abs/
2502.00569

Christof Ebert and Panos Louridas. 2023. Generative Al for Software
Practitioners. IEEE Software 40, 4 (2023), 30-38. https://doi.org/10.
1109/MS.2023.3265877

Mohammadreza Farrokhnia, Seyyed Kazem Banihashem, Omid
Noroozi, and Arjen Evert Jan Wals. 2023. A SWOT analysis of Chat-
GPT: Implications for educational practice and research. Innova-
tions in Education and Teaching International 61 (2023), 460 — 474.
https://api.semanticscholar.org/Corpus|D:257832542

Vahid Garousi, Zafar Jafarov, Aytan Movsumova, Atif Namazov, and
Huseyn Mirzayev. 2025. Encouraging Students’ Responsible Use of
GenAl in Software Engineering Education: A Causal Model and Two
Institutional Applications. arXiv:2506.00682 [cs.SE] https://arxiv.org/
abs/2506.00682

Marco Gerosa, Bianca Trinkenreich, Igor Steinmacher, and Anita
Sarma. 2024. Can Al serve as a substitute for human subjects in
software engineering research? Automated Software Engineering 31, 1
(Jan 2024), 12 pages. https://doi.org/10.1007/s10515-023-00409-6
Greg Guest, Kathleen M. MacQueen, and Emily E. Namey. 2012. Applied
Thematic Analysis. SAGE Publications, Inc. https://doi.org/10.4135/
9781483384436

Ebtesam Haque, Chris Brown, Thomas LaToza, and Brittany Johnson.
2024. Information Seeking Using Al Assistants. https://doi.org/10.
48550/arXiv.2408.04032

Steffen Herbold, Brian Valerius, Anamaria Mojica-Hanke, Isabella
Lex, and Joel Mittel. 5555. Legal Aspects for Software Developers
Interested in Generative Al Applications . IEEE Software 01 (Oct. 5555),
1-7. https://doi.org/10.1109/MS.2024.3476677

Saki Imai. 2022. Is GitHub Copilot a substitute for human pair-
programming? An empirical study. In Proceedings of the International
Conference on Software Engineering: Companion Proceedings. 319-321.
https://doi.org/10.1145/3510454.3522684

Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes
de Oliveira Neto. 2024. Beyond Code Generation: An Observational
Study of ChatGPT Usage in Software Engineering Practice. Proc. ACM
Softw. Eng. 1, FSE, Article 81 (Jul 2024), 22 pages. https://doi.org/10.
1145/3660788

Mohammad Amin Kuhail, Sujith Mathew, Ashraf Khalil, Jose
Berengueres, and Syed Jawad Shah. 2024. “Will I be replaced?” As-
sessing ChatGPT’s effect on software development and programmer
perceptions of Al tools. Science of Computer Programming 235 (05
2024). https://doi.org/10.1016/j.scic0.2024.103111

Ze Shi Li, Nowshin Nawar Arony, Ahmed Musa Awon, Daniela
Damian, and Bowen Xu. 2024. Al Tool Use and Adoption in Software
Development by Individuals and Organizations: A Grounded Theory
Study. arXiv:2406.17325 [cs.SE] https://arxiv.org/abs/2406.17325

[24] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2024. A Large-

Scale Survey on the Usability of Al Programming Assistants: Successes
and Challenges. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (Lisbon, Portugal) (ICSE °24). As-
sociation for Computing Machinery, New York, NY, USA, Article 52,
13 pages. https://doi.org/10.1145/3597503.3608128

[25] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2024. A Large-

[26]

Scale Survey on the Usability of AI Programming Assistants: Suc-
cesses and Challenges. In Proceedings of the International Confer-
ence on Software Engineering (ICSE). Article 52, 13 pages. https:
//doi.org/10.1145/3597503.3608128

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu,
and Brad Myers. 2024. Using an LLM to Help With Code Under-
standing. In Proceedings of the IEEE/ACM 46th International Conference

Marie Salomon, Kyle D. Chin, Reid Holmes, Thomas Fritz, and Gail C. Murphy

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

on Software Engineering (Lisbon, Portugal) (ICSE °24). Association
for Computing Machinery, New York, NY, USA, Article 97, 13 pages.
https://doi.org/10.1145/3597503.3639187

Sydney Nguyen, Hannah McLean Babe, Yangtian Zi, Arjun Guha,
Carolyn Jane Anderson, and Molly Q Feldman. 2024. How Beginning
Programmers and Code LLMs (Mis)read Each Other. In Proceedings
of the 2024 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI °24). Association for Computing Machinery,
New York, NY, USA, Article 651, 26 pages. https://doi.org/10.1145/
3613904.3642706

Lorelli S. Nowell, Jill M. Norris, Deborah E. White, and Nancy]J.
Moules. 2017. Thematic Analysis: Striving to Meet the Trustwor-
thiness Criteria. International Journal of Qualitative Methods 16, 1
(2017), 1609406917733847. https://doi.org/10.1177/1609406917733847
arXiv:https://doi.org/10.1177/1609406917733847

E. Oh and A. van der Hoek. 2002. Towards game-based simulation as
a method of teaching software engineering. In 32nd Annual Frontiers
in Education, Vol. 3. S2G~-. https://doi.org/10.1109/FIE.2002.1158674
Ruchika Pandey, Prabhat Singh, Raymond Wei, and Shaila Shankar.
2024. Transforming Software Development: Evaluating the Effi-
ciency and Challenges of GitHub Copilot in Real-World Projects.
arXiv:2406.17910 [cs.SE] https://arxiv.org/abs/2406.17910

David Lorge Parnas. 2011. Software engineering: Multi-person develop-
ment of multi-version programs. Springer Berlin Heidelberg, 413-427.
https://doi.org/10.1007/978-3-642-24541-1_31

Asha Rajbhoj, Akanksha Somase, Piyush Kulkarni, and Vinay Kulka-
rni. 2024. Accelerating Software Development Using Generative
AI: ChatGPT Case Study. In Proceedings of the Innovations in Soft-
ware Engineering Conference (ISEC). Article 5, 11 pages. https:
//doi.org/10.1145/3641399.3641403

Sanka Rasnayaka, Guanlin Wang, Ridwan Shariffdeen, and
Ganesh Neelakanta Iyer. 2024. An Empirical Study on Usage and Per-
ceptions of LLMs in a Software Engineering Project. In Proceedings of
the 1st International Workshop on Large Language Models for Code (Lis-
bon, Portugal) (LLM4Code "24). Association for Computing Machinery,
New York, NY, USA, 111-118. https://doi.org/10.1145/3643795.3648379
Daniel Russo. 2024. Navigating the Complexity of Generative Al
Adoption in Software Engineering. ACM Trans. Softw. Eng. Methodol.
33, 5, Article 135 (June 2024), 50 pages. https://doi.org/10.1145/3652154
Jaakko Sauvola, Sasu Tarkoma, Mika Klemettinen, Jukka Riekki, and
David Doermann. 2024. Future of software development with gen-
erative Al. Automated Software Engineering 31, 1 (2024), 26. https:
//doi.org/10.1007/510515-024-00426-z

David C. Shepherd, Felipe Fronchetti, Yu Liu, Daqing Hou, Jan DeWa-
ters, and Mary Margaret Small. 2022. Project-Sized Scaffolding for
Software Engineering Courses. In 2022 IEEE/ACM First International
Workshop on Designing and Running Project-Based Courses in Software
Engineering Education (DREE). 27-31. https://doi.org/10.1145/3524487.
3527362

Brett Smith and Kerry McGannon. 2017. Developing Rigor in Qualita-
tive Research: Problems and Opportunities within Sport and Exercise
Psychology. International Review of Sport and Exercise Psychology 11
(05 2017). https://doi.org/10.1080/1750984X.2017.1317357

Andrew C. Sparkes and Brett Smith. 2013. Qualitative Research Methods
in Sport, Exercise and Health: From Process to Product (1st ed.). Routledge.
https://doi.org/10.4324/9780203852187

Ben Arie Tanay, Lexy Arinze, Siddhant S. Joshi, Kirsten A. Davis,
and James C. Davis. 2024. An Exploratory Study on Upper-Level
Computing Students’ Use of Large Language Models as Tools in a
Semester-Long Project. arXiv:2403.18679 [cs.SE] https://arxiv.org/abs/
2403.18679 Accepted to the 2024 General Conference of the American
Society for Engineering Education (ASEE).

https://arxiv.org/abs/2307.16364
https://arxiv.org/abs/2502.00569
https://arxiv.org/abs/2502.00569
https://arxiv.org/abs/2502.00569
https://doi.org/10.1109/MS.2023.3265877
https://doi.org/10.1109/MS.2023.3265877
https://api.semanticscholar.org/CorpusID:257832542
https://arxiv.org/abs/2506.00682
https://arxiv.org/abs/2506.00682
https://arxiv.org/abs/2506.00682
https://doi.org/10.1007/s10515-023-00409-6
https://doi.org/10.4135/9781483384436
https://doi.org/10.4135/9781483384436
https://doi.org/10.48550/arXiv.2408.04032
https://doi.org/10.48550/arXiv.2408.04032
https://doi.org/10.1109/MS.2024.3476677
https://doi.org/10.1145/3510454.3522684
https://doi.org/10.1145/3660788
https://doi.org/10.1145/3660788
https://doi.org/10.1016/j.scico.2024.103111
https://arxiv.org/abs/2406.17325
https://arxiv.org/abs/2406.17325
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1177/1609406917733847
https://arxiv.org/abs/https://doi.org/10.1177/1609406917733847
https://doi.org/10.1109/FIE.2002.1158674
https://arxiv.org/abs/2406.17910
https://arxiv.org/abs/2406.17910
https://doi.org/10.1007/978-3-642-24541-1_31
https://doi.org/10.1145/3641399.3641403
https://doi.org/10.1145/3641399.3641403
https://doi.org/10.1145/3643795.3648379
https://doi.org/10.1145/3652154
https://doi.org/10.1007/s10515-024-00426-z
https://doi.org/10.1007/s10515-024-00426-z
https://doi.org/10.1145/3524487.3527362
https://doi.org/10.1145/3524487.3527362
https://doi.org/10.1080/1750984X.2017.1317357
https://doi.org/10.4324/9780203852187
https://arxiv.org/abs/2403.18679
https://arxiv.org/abs/2403.18679
https://arxiv.org/abs/2403.18679

An Exploration of How Generative Al Affects Workflow and Collaboration...

(40]

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Ex-
pectation vs. Experience: Evaluating the Usability of Code Gener-
ation Tools Powered by Large Language Models. In Extended Ab-
stracts of the 2022 CHI Conference on Human Factors in Comput-
ing Systems (New Orleans, LA, USA) (CHI EA °22). Association for
Computing Machinery, New York, NY, USA, Article 332, 7 pages.
https://doi.org/10.1145/3491101.3519665

Muhammad Waseem, Teerath Das, Aakash Ahmad, Peng Liang, Mahdi
Fahmideh, and Tommi Mikkonen. 2024. ChatGPT as a Software Devel-
opment Bot: A Project-Based Study. In Proceedings of the International

SPLASH-E °25, October 12-18, 2025, Singapore, Singapore

Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE), Hermann Kaindl, Mike Mannion, and Leszek A. Maciaszek
(Eds.). 406-413. https://doi.org/10.5220/0012631600003687

[42] Yi Zeng, Kevin Klyman, Andy Zhou, Yu Yang, Minzhou Pan, Ruoxi
Jia, Dawn Song, Percy Liang, and Bo Li. 2024. AI Risk Categoriza-
tion Decoded (AIR 2024): From Government Regulations to Corporate
Policies. https://doi.org/10.48550/arXiv.2406.17864

Received 2025-06-30; accepted 2025-08-01

https://doi.org/10.1145/3491101.3519665
https://doi.org/10.5220/0012631600003687
https://doi.org/10.48550/arXiv.2406.17864

	Abstract
	1 Introduction
	2 Related Work
	2.1 Use by Individuals
	2.2 Use by a Team

	3 Methods
	3.1 The Course Project
	3.2 Survey
	3.3 Interview
	3.4 Analysis of Qualitative Data
	3.5 The Study Population

	4 Use of Generative AI Tools in the Project
	5 Results
	5.1 RQ1: Software Engineering Workflows
	5.2 RQ2: Team Interaction

	6 Discussion
	6.1 Pedagogical Implications
	6.2 Threats to Validity

	7 Summary
	Acknowledgments
	References

