Nudging Student Learning Strategies Using Formative
Feedback in Automatically Graded Assessments

Lucas Zamprogno
lucasaz@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, Canada

Abstract

Automated assessment tools are widely used as a means for
providing formative feedback to undergraduate students in
computer science courses while helping those courses simul-
taneously scale to meet student demand. While formative
feedback is a laudable goal, we have observed many students
trying to debug their solutions into existence using only the
feedback given, while losing context of the learning goals
intended by the course staff. In this paper, we detail two case
studies from second and third-year undergraduate software
engineering courses indicating that using only nudges about
where students should focus their efforts can improve how
they act on generated feedback. By carefully reasoning about
errors uncovered by our automated assessment approaches,
we have been able to create feedback for students that helps
them to revisit the learning outcomes for the assignment
or course. This approach has been applied to both multiple-
choice quizzes and automated programming assessment. We
have found that student performance has not suffered and
that students reflect positively about how they investigate
automated assessment failures.

CCS Concepts: » Social and professional topics — Com-
puting education; Computer science education.

Keywords: assessment, software engineering, autograder

ACM Reference Format:

Lucas Zamprogno, Reid Holmes, and Elisa Baniassad. 2020. Nudging
Student Learning Strategies Using Formative Feedback in Automati-
cally Graded Assessments. In Proceedings of the 2020 ACM SIGPLAN
SPLASH-E Symposium (SPLASH-E "20), November 20, 2020, Virtual,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3426431.3428654

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SPLASH-E 20, November 20, 2020, Virtual, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8180-2/20/11...$15.00
https://doi.org/10.1145/3426431.3428654

Reid Holmes
rtholmes@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, Canada

Elisa Baniassad
ebani@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, Canada

1 Introduction

Automated assessment techniques have been widely used in
computing education [1, 9, 15]. These assessments are often
used to help enable classes scale to larger sizes [2, 14, 24].
One downside of automated assessment strategies is that
they must be carefully designed to avoid students trying to
randomly permute their answers to satisfy the automated
system in a way that would not be possible with human
assessment.
From the student’s perspective, one benefit of automated
assessments are that they shift grading from a means for
assigning a grade to a mechanism for providing useful feed-
back so that they can assess their learning and determine
how to improve their understanding [13]. Providing mean-
ingful formative feedback in an automated setting requires
careful balancing between giving complete low-level feed-
back for incorrect answers (which may encourage random
permutation) with intentionally vague feedback (which may
not provide enough direction to encourage learning).
This paper investigates two specific research questions:
RQ1 Can providing students with higher-level formative
feedback nudge students towards revisiting learning
outcomes?

RQ2 Can higher-level formative feedback enable better reuse
of instructional materials?

To investigate these questions, we describe two case stud-
ies where we have applied our nudge-based feedback ap-
proach for automated assessment systems. The goal of these
approaches is to guide student learning strategies for inter-
nalizing automated feedback towards course learning ob-
jectives. We use the term nudge because the feedback our
graders produce does not tell the student specifically what
they did wrong in the assessment. Instead, it provides hints
about areas upon which to focus further study.

The first case is a second-year required software con-
struction course (SC) that is taken each year by over 900
students. This course uses mastery learning based micro-
assessments [25] to help students evaluate their learning.
The assessments are provided through a series of multiple
choice 5-minute quizzes that can be retaken until successful.
Instead of returning fully-marked quizzes, we returned only
hints to give the student a starting point for preparing for
their re-take assessment.

https://doi.org/10.1145/3426431.3428654
https://doi.org/10.1145/3426431.3428654
https://doi.org/10.1145/3426431.3428654

SPLASH-E ’20, November 20, 2020, Virtual, USA

The second case is a third-year required software engineer-
ing course (SE) that is taken each year by over 600 students.
This course uses a large-scale development project that is
assessed using an automatic marking environment (called
AutoTest) that the students can invoke during development
to gauge the correctness of their solution. Instead of return-
ing all test failures, we returned high-level feature-based
feedback to nudge students towards examining the project
specification and their own test suites, rather than trying to
debug their solution into existence by making many rapid
changes in hopes of causing a test to pass.

While these case studies were from different assessment
domains, applying these approaches forces course staff to
think concretely about what is being taught to the student
so feedback can emphasize what knowledge or content they
should revisit. Staff must also develop a mapping from fail-
ures to learning objectives the students should be nudged
towards.

This paper contributes a discussion of mechanisms for
nudging student response to feedback delivered by automatic
grading systems, an approach and evaluation of outcome-
oriented feedback for multiple choice software engineering
exams, and an approach and evaluation of outcome-oriented
feedback for programming assignments.

2 Case Study 1: Hint-Based Quiz Feedback

We applied our approach to provide formative, hint-style
feedback from multiple choice micro-assessments to a sec-
ond year required software construction (SC) course. Our
initial goal in applying the approach was to nudge students
into revisiting the course learning objectives and materials
when they got questions wrong, rather than quickly guessing
alternative answers to superficially pass the quiz.

2.1 Quiz Feedback Background

Multiple Choice Quizzes lend themselves to automatic grad-
ing. Typically frameworks that deploy multiple choice quizzes
online, or automatically, return the correct and incorrect an-
notations for each question, along with explanations for why
each question was right or wrong. EdX, for instance, has a
facility to provide individual feedback messages for a cor-
rect or incorrect answer, but always within the context of
annotating the original quiz. !

Other mechanisms for personalised feedback are also be-
ing explored. OnTask, for instance, allows individualised
messaging to students [19]. MessageStudentsWho, a Canvas
based tool, also allows individualised messaging [12]. These
facilities are all at quiz-level granularity, meaning that the
messages can comment on whole assessments, but will not,
without the context of the original quiz, return individually
corrected answers to the students. Messages will look more
like “You obtained 9/10 on your last quiz. You have another

Thttps://edx.org

Lucas Zamprogno, Reid Holmes, and Elisa Baniassad

quiz next week! Remember to do practice modules A, B, and D,
which you have not yet completed!.”

Clariana, Ross, and Morrison investigated the effectiveness
of different feedback strategies for multiple-choice questions
[7]. Students were given a multiple choice test followed by a
feedback condition, then later retested on the same material.
There were five feedback conditions. Two involved no feed-
back, one being not getting the question set at all prior to the
retest. The three feedback conditions were knowledge of cor-
rect response (KCR) in which you are told the correct answer,
delayed KCR, and answer until correct (AUC) where students
can repeat the question until they get the right answer. All
forms of feedback showed benefits over no feedback, with
AUC showing more benefit as the retest questions became
more different from the initial test.

Later work by Clariana and Koul produced a meta-analysis
of multiple-try feedback (MTF), where students are able to
make multiple attempts to answer incorrect questions, com-
pared to other forms of feedback [6]. They found that MTF
was less effective when test questions were verbatim and
pulled directly from the instructional material. However MTF
was more effective when the test questions required a higher-
order level of reasoning about the material. They suggest
that this means that MTF functions differently than other
feedback, and promotes increased semantic learning at the
cost of directly recalling content.

Butler and Roediger studied the ability of feedback to in-
crease the positive learning effects of testing [5]. Participants
took a multiple choice exam, followed by either no feedback,
feedback immediately after each question, or feedback at the
end of the test. Participants were then retested after a one
week delay. They found that both forms of feedback reduced
the likelihood that previously presented options were erro-
neously remembered as the correct response. Both forms of
feedback also increased the proportion of correct responses
on the retest, with the delayed feedback condition having a
stronger effect in this area.

In the realm of hint generation, Price et. al. [20] looked at
hint use and abuse, and found that the quality of generated
hints led to more use of hints, but if the hint quality was
very high, an overreliance on hints was identified. In this
case a high-quality hint might be one that is overly specific,
leading to students overfitting to learning the test instead of
the concepts. Marwan et. al. [18] found that hints improved
performance in highly related tasks, and that forcing students
to explain the hint in their own words was more facilitative
of learning than hints alone.

For all styles of feedback studied above, there is evidence
that they enhance student learning, but all of these modes of
feedback are linked specifically to a problem set rather than
dislocated from it. This means that in each case, students
might be tempted to focus on the specifics of what they did
wrong (or right), without necessarily re-contextualising their
learning more broadly.

https://edx.org

Nudging Student Learning Strategies Using Formative Feedback in Automatically Graded Assessments

public class A {
private int a;
public A(){
a=0;
}
public void setA(int a) {
this.a = a;
}
public int getA() {
return a;
}
}

public class Main {
public static void main(String[] args) {
A al = new A();
A a2 = al;
a2.setA(2);
al.setA(1);
System.out.println(a2.getA()); // POINT
System.out.println(al.getA()); // POINT

<
(
(

Objects:
How many objects are active at PO
1. none

active (aka in scope) at POINT B
5. none
6. one

7. two

8. three

About the clas:
How many fields does the
9. none
10. one
11. two
12. three

Whajlould be printed: .
it is printed at POINT A?
17.1

hat is printed at POINT B?
20.1
21.2
22. null

k'.:u have shown understanding of how many objects are active
ou have shown understanding of how many fields does a class have
You still need to work on whether the original object reference shows changes if a duplicate reference alters an object

You have shown understanding of how many methods does a class have

SPLASH-E ’20, November 20, 2020, Virtual, USA

low many meth
Constructors) does the cl
13. none
14.0ne
15. two

16. three
oy

NaYou have shown understanding of how many variables are in scope

Figure 1. Mapping from Quiz Questions to Feedback Messages shown to a student. Students never see their quiz again, unless
they book an appointment with an instructor to go over it. They are not allowed to take photos or notes of their original quiz,

and must leave it behind at the end of the meeting.

2.2 Relating Failures to Learning Objectives

We introduced a hints-only approach for providing feed-
back to students on their mastery quizzes in a second year
software construction course. Our approach was to provide
feedback messages to students, rather than returning back
to them the quiz they took. If they wanted to visit the quiz
again, they could come to instructor office hours and go over
it, but they were not allowed to take photos of it or write any
notes about the specific questions. This was done to promote
quiz reuse, as they are time consuming to create, and we
were hoping to reuse them across semesters.

The technical approach for accomplishing the quiz feed-
back was described in a prior paper [3]. Each selection in
the students’ multiple choice quizzes was associated with a
course learning outcome or skill using a mapping file.

2.3 Representing Formative Feedback

Students would receive their quiz grades back on a dashboard
that would show either a red “you need more work on...<the
skill>” message when the student had answered that question
any of the related questions incorrectly, or a green “you have
shown mastery of ...<the skill>” message if the student had
answered all of the questions related to that skill correctly.
A depiction of this is shown in Figure 1.

Because we were deploying these quizzes in a mastery
learning model, the students were able to retake quizzes until
they passed. Some quizzes were required quizzes, forcing
students to retake them to pass the course.

2.4 Study Design

After one full semester of deploying this technique (in which
we gave roughly 10K quizzes), we noticed anecdotally that

students were asking far more general questions on the on-
line class forum? after failing quizzes. This suggested that
students were unable to focus solely on the specific details of
what they did wrong, and instead were being forced to revisit
the higher level concepts (at the skill level) to study for their
retake quiz. Also, even though they had the option available,
only a handful (around 5) came to visit their quizzes in the
cohort of over 600.

We decided to perform a survey asking students about
their study strategies for the retake, specifically about what
preparation steps they took. We wanted to know whether
the feedback messages helped guide their study, and/or to
what extent they revisited the concepts of the topic. We also
wanted to know whether students felt hopeless because the
quizzes were not returned.

We asked students:
“If you have to retake a quiz, what is your pro-

cess for preparing for the retake? What do you
check/read/try/ask/etc?”

2.5 Analysis and Results

258 students who had previously had to retake quizzes re-
sponded to our question. We read all the responses, identify-
ing key terms or phrases. We then coded students’ responses
by automatically looking for keywords in the text of their
responses. We then manually removed false positives where
students were not using the terms to convey a process. For
instance, students typically used the word “understand” in
the context of a statement such as “I would then try to under-
stand the concepts.” If a student said “I just don’t understand
why we can’t see our original quiz” then this would not be
considered a true match for the term “understand”. We also

Zhttps://piazza.com

https://piazza.com

SPLASH-E ’20, November 20, 2020, Virtual, USA

looked for false negatives. For instance a comment such as
“check the red highlighted sentences” would not have been
automatically coded as being associated with the feedback
dashboard, but there is no other interpretation for that com-
ment, so it would be counted as an instance of a student
explicitly identifying the feedback messages as part of their
process. In cases where the associations were ambiguous,
we did not add them. We refer to the resulting categories
from this analysis as “strategy elements”.

Watch Videos (150/258 students). A large number of
students mentioned re-watching the videos associated with
each topic. Because our course is underpinned by one or
more videos per topic, students are able to select videos or
parts of videos to watch, based on the concepts they want to
revisit. To identify if students chose that strategy, we looked
for students who mentioned the terms “watch” or “video” in
their response.

Students said things such as:

— “I rewatch the relevant videos, and try to re-
view what concepts I struggled with the first
time”

— “Go through the videos and take some notes
to understand the concepts. Try extra practice
problems”

Do Practice (121/258 students). A large number of stu-
dents explicitly mentioned words related to re-doing practice
assignments. Practice assignments in the course consisted of
the pre-class work, the practice questions that accompanied
the videos, and the in-class activities.

Study More (96/258 students). A moderate to large num-
ber of students mentioned words related to revisiting the
topic for the sake of conceptual understanding. We looked
through the statements for the words “concept” and “un-
derstand”, and looked for active studying words, such as
“review” and “read”.

Check Feedback Messages (53/258 students). A moder-
ate number of students explicitly mentioning checking for
the topics they got wrong in the quiz dashboard as part of
their process. To assess this we initially looked for the terms
“check”, “handback” (which is the name of the underlying
system we use), and “dashboard” (the name of the tool). Ver-
batim examples stated by students included:

— “seeing what I did incorrectly in handback,
and reviewing the material”

— “check the grades handback for feedback”

— “check the concepts that are marked red in the
score dashboard”

— “i would check what i messed up, watch the
videos on the concept”

Get Help (25/258 students). A moderate number of stu-
dents mentioned getting help in response to failing a quiz.

Lucas Zamprogno, Reid Holmes, and Elisa Baniassad

The kinds of help mentioned were instructor office hours,
and three students mentioned asking a friend for help.

No Plan (10/258 students). A small number of students
had no clear plan for studying for their retake quiz.
They supplied feedback such as:

— “I failed one quiz due to being pressured by
the time. I just told myself to calm for the retake
and I got 100”

— “Sadly I don’t have the time usually to prepare
for a retake, I have a very busy workload so I do
not prioritize it”

Negative Comments (4/258 students). Several students
did report having study strategies, but also indicated they
were not happy about having to have them. They made
comments such as:

— “TAs don’t help with anything”

— “Well we can’t really check much. The system
of telling us that we need to retake it without
showing us our errors is rather ridiculous and
flawed. I've retaken 1 quiz maybe 4 times be-
cause I don’t know what I'm doing wrong de-
spite reading the ‘hints’ on the grade page”

Even though these comments are infrequent, it does give
us, as educators, pause to revisit the quiz hints to ensure they
are giving students enough information to succeed. Typically
in cases where students have failed a quiz multiple times, we
reach out to the student to go over the material with them,
and get them further support.

Visiting Their Quiz (0/258 students). It was interesting
to us that no students mentioned asking to see their quiz
again, though students were informed that this was an option.
Only a few students in the class asked to see their quiz. It is
possible none of them were in the response group, or they
had not considered it a strategy.

Overlapping Strategies (162/258). The results tell us that
almost all students had at least one strategy, though many in-
cluded statements that were aligned with multiple strategies.
Most students had one or two strategies with some having
three strategies and a few with four. A small number had no
strategies. 90 students indicated one strategy, 101 indicated
two strategies, 49 students indicated three strategies, and 12
students indicated four strategies.

Strategy Combinations. We also looked at what the com-
binations of strategies were. There were 26 strategy combi-
nations. We gave each strategy a keyword, and tagged each
student with the strategies they mentioned. We then counted
the frequency of the combinations.

The two most popular strategies by far were practicing us-
ing the course resources combined with watching the videos,
and just watching videos.

Nudging Student Learning Strategies Using Formative Feedback in Automatically Graded Assessments

Anecdotal Experience in Office Hours. We have noticed
that questions posed by students about their failed quizzes
are different in nature than when they are returned their
original quizzes. Students will ask questions like “what’s the
difference between a checked and unchecked exception?” as
opposed to saying “why did I get this question wrong?”.

Interestingly, we still give back midterm exams using the
traditional approach, and the same students who had broad
and contextualised strategies for their quizzes still arrive
in our offices with detailed questions about their individ-
ual midterm questions, and individual grading elements for
specific questions.

2.6 Implications of the Findings

Only 65 of the 258 respondents said explicitly that they would
check their feedback hints as a starting point for revision.
This may be because the feedback appears at the bottom
of the results page, and they have to scroll to find it. The
thing they initially see is just a red or green circle indicating
success or failure for their quiz. It’s possible that the students
who did not explicitly mention the hint messages were only
looking at whether they’d failed the quiz, and then reviewing
the entire topic from there. At the very least, the feedback
messages were not dominant in the minds of most of the
students.

The dramatic difference in the tonal presentation of stu-
dents asking for help with passing their next quiz, versus
students fighting for individual marks on their midterm (even
though the material will certainly be revisited on the final,
in a different form), is highly encouraging, and suggests that
providing feedback messages has had a profound impact. It
bears noting that students did not carry over their concep-
tual revision approach to their midterm reflection. It would
have been quite impressive if students had changed their
way of reflecting on assessments generally when looking at
how they did on an exam, but in this case we only see the
study strategy effect when the more tempting target of focus,
the individual question grade, is not available.

Ultimately, it is interesting and encouraging that almost
all students did have a coherent study strategy for revision,
with many just being happy to re-watch all the videos and
re-formulate conceptual understanding.

3 Case Study 2: Hint-Based
Programming Feedback

The second case study took place in a required third year
software engineering course. It includes a large TypeScript-
based project split into multiple checkpoints that each take
three weeks to complete. As the student teams work, they
can submit their in-progress solutions to AutoTest which
runs a test suite against their code and returns formative
feedback. In this section we describe how we applied our

SPLASH-E ’20, November 20, 2020, Virtual, USA

approach to try and nudge students to a more self-reflective
approach to developing their solution.

3.1 Programming Feedback Background

Programming tasks are well suited to formative feedback,
as software is usually developed iteratively. Students will
devise an approach to the problem at hand and then attempt
an initial implementation of their idea, which will frequently
be flawed in some way. Perhaps there was a side case that
was not considered, but their idea is fundamentally correct,
or maybe some mechanism was misunderstood and the ap-
proach as a whole is flawed. In both cases, the solution needs
to be refined. Receiving quick, formative feedback helps
tighten this development loop and encourage students to
make ongoing improvements.

Automatic Grading. Automatic graders have long been
used for programming assignments [14]. Several factors ac-
count for automatic grading being chosen over traditional
manual-assessment approaches. Automatic assessment re-
duces time burdens for course staff and decreases assess-
ment latency for students. This quick turnaround opens up
a system for students to iterate with multiple submissions.
If grading is handled by a computer, then there is no human
time cost to allowing students to receive repeated feedback
over the course of an assignment [11]. This also frees instruc-
tors and teaching assistants to spend their time providing
more hands-on and personal assistance for their students
and decreases some barriers associated with large-course
management. Automatic assessment is one key approach
being used to handle the increased demand for computer
science courses [2].

Thantola et. al. performed a literature review of recent auto-
matic assessment systems [15]. Their review focused on the
different features frequently found across assessment tools
including target language, testing framework, re-submission
policy, facilitating manual assessment, and specialisation.

Mumuki is an online open-source coding tool supporting
17 languages [4]. This tool supports two assessment cate-
gories: functional correctness via unit tests, and expectations
which are constraints on implementation details. Introduc-
ing Mumuki into CS1 and CS2 courses yielded a statistically
significant reduction in dropout rates.

Web-CAT is an automated grading tool that is designed to
be a flexible and language agnostic system [10]. It can mark
submissions on test validity, completeness (coverage), and
code correctness, where each of these steps is customizable
by course staff. Feedback is given to students in the form of
color coded bars for test pass rate and code coverage, with
detailed numerical information presented below.

Tailored Automatic Grader Feedback. Some prior work
has examined tailoring automatic grader feedback to more
effectively facilitate course learning goals.

SPLASH-E ’20, November 20, 2020, Virtual, USA

Your program failed the tests:

e Alibi: performQuery should reject with InsightError

® Camelot: Should be able to find course average for a course

e Elixir: Should be able to find sections with an or query on different keys
e Jade: Complex query covering many operators

e Kryptonite: Invalid EQ should reject with InsightError

® Mango: Contradictory query should be valid

® Starwars: Should be able to find all sections for a dept 2

e Uddevalla: Invalid query should reject with InsightError

Figure 2. Original test-based automated feedback. In this
mode, students get feedback on all of their failing tests.

Kandru created a plug-in for Web-CAT to provide more
intelligent and goal oriented feedback for students [17]. The
system categorizes errors as coding errors, behaviour prob-
lems, testing issues, and style problems. Each category has its
own subcategories containing specific feedback. This high-
level approach provides clear areas of focus for improvement
and is similar to our approach. However we elect to not re-
turn details of the underlying failures with the intention of
guiding students to reflect on the weak areas of their sub-
mission and avoid them trying to spot-fix their problems
without having to step back and reflect on the issue.

Haldeman et. al. use a system where assignments, tests,

and feedback are designed around a course knowledge map [13].

Once an assignment has collected a number of student sub-
missions, submissions are batched by what tests were failed
into ‘buckets’. These buckets are then refined and subse-
quently matched with the concept from the knowledge map,
where many buckets may correspond to the same concept.
From this point on each concept is assigned a hint which can
be returned to students who have failing tests. Our approach
differs in two main ways: First, our clusters (analogous to
buckets) can be created before deploying to students by iden-
tifying functional components of the project. Second, we
return the status for all clusters on every test run, but do not
provide direct hints, requiring students to re-evaluate the
specification or write more tests.

Singh, Gulwani, and Solar-Lezama present a tool for pro-
viding low-level program corrections for MIT’s Introduction
to Programming course [21]. This system can identify errors
in student submissions and automatically provide a set of
steps the student should follow to fix their program. It does
so using a reference implementation and searching a space of
millions of corrections to find the fix with a minimal amount
of changes. Similarly, TraceDiff uses program synthesis to
try to debug student submissions and provide personalized
feedback [22]. These approaches differ from ours in that
they focus on code fix suggestions so students can repair
their code, where our approach focuses on higher-level prob-
lems to encourage students to step back and re-evaluate the
problem specification and develop their solution.

Lucas Zamprogno, Reid Holmes, and Elisa Baniassad

Cluster Result
addDataset 7/7
removeDataset 3/3
listDataset 2/2
GT 3/5
3/4
EQ 2/4
1s a/9

Wildcards 3/s

E == = N NN

3 A 0/5
A R 2/4
V NOT 2/2
A invalidQueries 10/13
A validEdgeCases 1/3
A\ sorting 7/11

Figure 3. Formative feedback given to students for their
submission. Four clusters have all associated tests passing,
one has all associated tests failing, and the other clusters are
partially complete.

3.2 Encouraging Introspection With Failures

We have applied our nudge-based approach to a third-year
required undergraduate class in which students complete a
moderate-sized programming project (approximately 2,500
lines of code) over the course of the term. The project is split
into three checkpoints and is completed in teams of two.

Each checkpoint is graded using two sets of automated
tests: the first is a public test suite from which students can
receive limited formative feedback while the checkpoint is
in progress; the second is a private test suite the results of
which are withheld until after the checkpoint is due. Stu-
dents commit code at will and are able to invoke AutoTest
once every 12 hours. In this way our test suites act as if the
students are following test-driven development (TDD) [23]
as the tests exist prior to their implementation.

Prior to this work, AutoTest feedback flowed naturally
from how unit testing works in practice: a list of all test case
failures was given to the students. This output is shown in
Figure 2. The test names had descriptions ranging from fairly
descriptive (e.g., “Should be able to find sections with an or
query on different keys”) to non-descriptive (e.g., “Invalid
query should reject with InsightError”). Descriptive feed-
back sometimes led to adverse reactions or interpretations
that would inhibit students from making progress. Specif-
ically, when presented with a list of failures, students had
trouble determining what features were common between
the failures, or prioritized low-importance edge cases over
more important parts of the checkpoint. A secondary down-
side was that students would often debate the meaning of

Nudging Student Learning Strategies Using Formative Feedback in Automatically Graded Assessments

the feedback on the class forum?®, instead of inspecting the
checkpoint specification.

As a part of this case study, we modified AutoTest feedback
to cluster any test case failures with the functional require-
ments of the checkpoint. In this way, the approach simplifies
the output by only telling the students how they are doing
on each of the major features of the checkpoint as shown
in Figure 3. This format is more outcome-oriented by mir-
roring components of the specification that students must
implement. Rather than positioning the automated test suite
as TDD, we instead strongly encourage the students to think
of the clusters as user acceptance tests where a customer is
validating the high-level features of the system. We expected
that providing students with this clustered feedback would
encourage them to think about their solution in reference
to the assignment, instead of getting hung up on specific
details of the underlying assessment.

3.3 Relating Failures to Learning Objectives

In this section we discuss our approach for clustering feed-
back based on unit test failures. One important aspect of this
approach is that unit test failures can be associated with mul-
tiple learning outcomes. If a test requires multiple features
implemented to pass, it will appear in each of those features’
clusters. Two steps are required to implement this: the learn-
ing outcome clusters must be identified, and a failure in a
student solution must be mapped into these clusters.

Our approach for reducing feedback is to group failures
into learning outcome clusters. This first requires that we ex-
amine the checkpoint specification and determine what the
clusters should be. For instance, some parts of the specifica-
tion, like individual query operators, are typically developed
discretely from others, whereas other project functional-
ity, like query validation, are more cross-cutting and are
shared between several features. Another consideration is
how many clusters to show the students: while the goal was
to reduce the feedback to students to nudge them to look
at the specification, we had to balance that with not giving
specific enough feedback to guide them. Ultimately we iden-
tified 14 clusters our project, depicted in the left column of
Figure 3.

Next, we had to determine which tests in our test suite cor-
responded to each functional cluster. Rather than manually
assigning tests to clusters (which may be straightforward
with smaller simpler tests but is harder for larger more com-
plex tests), we chose an an approach that was inspired by
mutation testing, which has shown that small changes (mu-
tations) to a program can simulate real faults [16]. To do this,
we manually introduced mutants into our reference solution
for parts of the code we knew implemented each learning
outcome cluster and observed which tests failed for each
learning outcome mutation.

3https://piazza.com

SPLASH-E ’20, November 20, 2020, Virtual, USA

Choosing mutations can take some thought, for instance
to generate a cluster for sorting results we had to change
our sort implementation to sort randomly, because simply
disabling sorting missed some tests due to our default re-
sult order matching the intended sorting rule in some cases.
While it is tempting to use traditional mutation testing to
break the software first and then identify the functionality
of the clusters that appear as a result, this will generate a
large number of highly specific clusters for any project of
reasonable size. For our project, running an automatic muta-
tion test pass on a single file led to 77 distinct clusters, which
did not meaningfully map to the specification features.

After running our test suite for each chosen cluster, we
manually verified that the tests assigned to each cluster
seemed reasonable, for instance by ensuring that edge case
tests were classified correctly. Ensuring each test is present
in a cluster is crucial because otherwise clusters will not
provide a complete picture of a student project’s complete-
ness, and resulting grades. The main risk for tests being left
uncategorized comes with edge cases that do not fit cleanly
into the normal functionality or common error scenarios
for the program. When deciding on what broader clusters
of functionality are displayed to the students, small but im-
portant details may not fit naturally in any category and
mistakenly be left out.

While our edge case tests ended up in at least one other
cluster, we still created an additional cluster for “valid edge
cases™. This required tests to be selected for the cluster
manually, as there is no singular code location to handle
edge cases, nor are they strictly related in functionality or
behaviour. One purpose of this cluster is to provide a nudge
for students to expand their thinking about other features
if they are left with a low number of test failures with no
singular cause. We also wanted to highlight that edge cases
represent a small portion of the overall assessment, and en-
courage students to focus their efforts on core functionality
first.

3.4 Representing Formative Feedback

There were two platforms we had to support for display-
ing cluster results. The student view is provided via GitHub
commit comments, and only displays the clustered form of
the feedback. The interface presented to students was itera-
tively designed through informal consultation with senior
TAs who had recently taken the course. The clusters were
represented with a simple Markdown table layout showing
a pass/total value for each cluster. We also included an
emoji for each cluster representing that all, some, or no tests
passed, so students could understand their results at a glance.
We ordered the clusters manually by the order we thought

“In the context of our project, these could be cases such as a queries that
are well formed according to our grammar, but may be unexpected or
unintuitive.

https://piazza.com

SPLASH-E ’20, November 20, 2020, Virtual, USA

best for addressing them, although this was not explicitly
stated to the students.

Figure 3 shows an example of the clustered test feedback
as seen by students. This is a partially complete solution
where a student’s solution passes all tests involving data sets,
as well as the NOT query operator. No tests which involve
AND pass, and all other clusters have at least some failing
tests. In this case the students should realise that their AND
implementation is broken or missing, and that completing
core functionality of that feature is the next important step.
This case also shows the challenge of providing feedback
for tests that cross-cut many features from the specification.
Noting that the students are at 3/4 for their LT cluster, a
reasonable assumption is that the remaining failure could be
due to an LT filter being inside an AND which is failing, and
not the LT implementation itself. With the prior approach of
a simple list this problem is even less transparent.

There is also an administrative view for course staff pro-
vided by Classy, our course management system® which is
integrated with AutoTest. In this system we allowed TAs
to toggle between the new clustered view and a traditional
view in which individual tests are visible. The clustered view
was useful for gaining a quick overview of a team’s solution,
although the TAs often used the list-of-test failures when
they needed more insight.

3.5 Analysis and Results

We simultaneously applied this approach to two sections
of our course with 384 students in total. All students were
enrolled in the experimental condition which clustered the
results to avoid giving some students unfair advantages over
others; students only had access to clustered results and this
condition was used for the duration of the project. When
compared to the prior term (380 students) students overall
performed similarly. The median score of the students who
had the clustered results increased by one percent with the
average dropping by one percent. There was also a small dip
in perfect scores.

There was a notable difference on the class forum in both
post quantity and quality. Overall there was a drop from 3.0
posts per student to 2.2 posts per student with the introduc-
tion of the clusters. The largest qualitative change, likely
related to the drop in total post count, was the absence of
student posts requesting direct hints for specific tests. Pre-
viously, one common post archetype was the form “I am
failing Test X, any hints?” Once the individual tests were
hidden behind clusters, this type of post no longer works.
A few posts of the form “I am failing one test in cluster X”
appeared, but they were much less frequent compared to the
prior posts.

At the end of each checkpoint, a survey was sent out to
all students including a question regarding their experience

Shttps://github.com/ubccpsc/classy

Lucas Zamprogno, Reid Holmes, and Elisa Baniassad

when receiving feedback from the automatic marking en-
vironment. The main question with regard to the AutoTest
feedback, and the only one we analyzed, asked:

“If you got a negative result back from AutoTest,
what did you do to resolve the issue? For in-
stance — what do you read, try, code, run, ask,
etc. and roughly in what order?”

Of the 331 responses, 237 contained meaningful content.®
To analyze these, one author performed an open card sort [8]
to identify common recurring themes in the feedback from
these 237 students. Five high-level categories emerged from
this analysis:

Examining Personal Tests (146/237 students). Part of
the project is encouraging students to understand the bene-
fits of TDD and create their own comprehensive local test
suite. Historically, students would often rely on the auto-
mated feedback as their primary method of gauging the
correctness of their solution. When the clustered feedback
was given instead, students noted that their own tests gained
importance and referred to them more: “AutoTest was rarely
the thing giving meaningful feedback (our tests were a lot more
descriptive and easier to get feedback on).”

Creating New Personal Tests (87/237 students). Even
with a prior assignment to develop tests for our specification,
often students only spot new edge cases that could arise
after trying to make an implementation and seeing it break.
For example, students would augment their test suite after
learning their tests, which they previously thought were
complete, needed additional work: “We’d ask ourselves what
the thing failing is supposed to do, and what we expect it to
do in every situation we could imagine. Then we’d make tests
based off of those expectations and confirmed if it was doing
what we thought it should.”

Reviewing Own Code (61/237 students). A common re-
sponse for students when given feedback that something
they wrote does not function correctly is to read over the
code responsible, visually tracing program features to try
and spot bugs. This can sometimes be a backup technique
when no local tests fail, which means running their code
will not highlight the issue. One student stated that they
primarily rely on their own tests, however: “When we had a
problem with autobot, we reread the code, had the other part-
ner look at the code, and then asked for help from a TA.” This
indicates a good understanding of what code elements are
likely responsible for the error, but without a hypothesis for
what the underlying assessment might be that is not covered
by their local tests.

Examining the Specification (58/237 students). In the
past, students would often focus their efforts on making the

®Many comments were either too general to understand their context or
were too specific to project-specific implementation challenges.

https://github.com/ubccpsc/classy

Nudging Student Learning Strategies Using Formative Feedback in Automatically Graded Assessments

individual tests mentioned in feedback pass, losing sight
of the original specification which should guide the con-
struction of their system. With the nudge-based feedback
this shifted; for example, one student noted that they would,
“Read the specification again to see if I missed anything. IfI find
something suspicious I'll add a test to see if it passes.” This was
re-enforced by another student who stated that they would
“ask ourselves what the thing failing is supposed to do, and
what we expect it to do in every situation we could imagine.”

Focusing on the Most Failing Cluster (12/237 students).
While this did not emerge as one of the common categories,
we expected focusing on notable weak points before working
on mostly-working features to be one of the most effective
ways to make progress using the feedback. This strategy
was most succinctly captured by a student who reflected
that “I looked at the status of the test clusters, and focused
on the ‘low-level’ clusters (e.g. GT, LT, IS) which were not all
passing, because those could have cascading effects on other
tests clusters.”

Reflecting on these responses, the prevalence of students
who addressed feedback returned by the testing framework
by examining their own unit test suites and strengthening
them was gratifying to see. Simultaneously, we were dis-
appointed with how few students mentioned specifically
looking at their implementation associated with the failure
cluster with the highest proportion of failures (which would
have been our expected optimal strategy for making the
quickest progress). Ultimately, we saw many students engag-
ing (broadly) in fault localization through their references
looking for “that specific area [associated with the feature]”
while examining their own implementation in response to
our failure feedback.

4 Discussion

In this section we examine how the feedback returned to
students could nudge them to reflect on their submissions
thoughtfully. We also examine how thinking about failure
mapping helped us to improve the tests we were using to
evaluate the student submissions. We also discuss threats
to validity. Finally, we end the paper with a discussion of
the impact automatic assessment feedback can have on the
strategies students use for addressing failures.

4.1 Facilitating Assessment Reflection (RQ1)

RQ1: Can higher-level feedback nudge students to-
wards learning outcomes? For both case studies we
found evidence of students more commonly revisiting both
the course learning outcomes and project specifications.
Notably, decreased feedback did not notably decrease stu-
dent understanding or performance.

SPLASH-E ’20, November 20, 2020, Virtual, USA

In addition to our positive findings in Section 2.5 and Sec-
tion 3.5, connecting learning objectives to assessed elements
also improved the formation of the overall assessments.

In the SE programming project course, we discovered an
imbalance between our use of different operators in our
queries when we mapped the learning objectives to test fail-
ures. For instance, initially our test suite AND operator cluster
had many more tests than our OR operator cluster. These
should be similarly challenging to implement and there is no
reason one should be valued more than the other, so we al-
tered the tests to compensate. We also noticed an imbalance
in tests between the public and private test suites, with our
NOT cluster containing no tests in the private suite. Again we
shuffled tests between suites to remedy the imbalance. The
value of this balancing comes from wanting to making sure
our assessment was aligned with our learning objectives,
and that students receive appropriately granular feedback
across objectives.

Our anecdotal observations of the changes in online class
forum use in SE tells us that students strategies did change
after the introduction of the nudge-style feedback. The way
students respond to their quiz results is starkly different
from the way they respond to their midterm exam result (by
arguing over the grading scheme for individual questions),
suggesting a fundamental change in strategy.

We saw this same pedagogical benefit in the SC course
quiz feedback approach. By assigning feedback hints to spe-
cific quiz questions, we were able to see the conceptual cov-
erage of each quiz. For instance in the "B3 quiz" shown in
Figure 1, we can see that the hints are mostly balanced, but
the multiple-reference hint is associated with more ques-
tions than each of the other feedback messages. We were
also able to better identify what important concepts quizzes
were not testing. In the B3 quiz, for instance, we can tell
without reading the quiz that there were no lists involved in
the assessment, since none of the hints relate to lists storing
objects. These conceptual annotations helped give a level of
oversight of the pedagogical assessment strategy that we had
not predicted would be present when we initially adopted
the nudge-based approach.

4.2 Assessment Artifact Reusability (RQ2)

RQ2: Can higher-level feedback increase material
reuse? Using higher-level formative feedback enabled bet-
ter between-term reuse in the SC course as quiz-based
materials were not clearly available to the students; sim-
ilarly, in the SE course the automated test suites could
more easily be reused as they were also harder to directly
decipher from the limited feedback.

Reusability is an important aspect of automatic assess-
ments due to the overhead required in creating them. In the
the SC course, we have over 20 quizzes with 4 isomorphic
variants for each. For the SE course, we have over 300 unit

SPLASH-E ’20, November 20, 2020, Virtual, USA

tests that have been carefully crafted over a multi-year pe-
riod. In both cases, being able to reuse these artefacts enables
staff to invest a level of time and commitment that would
otherwise be untenable were they only available to be used
once.

Providing more abstract feedback to students increased
the reusability of the assessment artefacts themselves. In
the SC course, not pointing out specific incorrect questions
meant their copied ‘value’ to the students was decreased,
and cheating became much more difficult. Additionally, the
abstract feedback itself could be reused across multiple ques-
tions for which the original question is isomorphic with no
decrease in assessment value.

Not providing specific test feedback in the SE course en-
abled us to reuse the test suites across multiple course offer-
ings as the students do not actually know what the individual
tests were in each cluster.

4.3 Threats to Validity

Both of the case studies described in this paper were per-
formed at the same R1 research university, potentially lim-
iting generalisability. While the course staff for each case
study were independent, they did coordinate on assessment
measure and pedagogical goals. All of the students in the
studies were Computer Science Majors and both courses
were required for the program. While they used different
languages (Java for software construction and TypeScript for
software engineering), we do not believe language selection
has an impact on the feedback design for these courses. As
such, we see these results likely being generalisable at least
within SC/SE, and potentially more broadly.

While we have a series of metrics that enable us to com-
pare both student cohorts (before and after our feedback
intervention), in terms of internal validity we did not ask
students for their problem solving strategies for the original
feedback design; having this information would certainly
improve our ability to determine whether the feedback alone
(which was the only real change between the course in-
stances) was the means for changing their learning strategy.
Another threat to internal validity is the impact of the qual-
ity of feedback messages on their utility to students. We did
not examine feedback messages in isolation, controlling for
degree of specificity. As such, our findings may be impacted
by whether students could understand the messages them-
selves, but because we did not control for this, we are unable
to assess the extent of this effect. It is reasonable to assume
that our messages were adequate, that is they were neither
optimal, nor completely flawed, and so it follows that we
are assessing a somewhat average case of feedback message
creation, and association with assessment elements. Finally,
while grades are not scaled in either course, and we expect
student ability to be relatively constant across these large
courses, we have not controlled for the overall student abili-
ties between offerings of the courses. While the majority of

Lucas Zamprogno, Reid Holmes, and Elisa Baniassad

students provided written feedback for both studies, there
may have been a potential self-selection bias given feedback
was not required.

Both feedback deployments were applied in situations
where students could have multiple tries for success. It is
not clear whether high-level nudges would be appropriate
in situations where no retries are available, and we would
feel hesitant about employing nudges in such a situation.

5 Influence on Student Strategy

In both courses, we saw that a majority of students formed
concrete study strategies to prepare for their subsequent at-
tempts at success. In the SE course, the prevalence of starting
from the failing tests was strong — students predominantly
integrated checking failure messages from the automated
assessment framework as the starting point of their revision.
In the SC course, a smaller percentage of students explicitly
stated that they started by looking at the messages, but no
students stated that they included booking a meeting for the
sake of visiting their quizzes in their strategy. There were
only four negative comments about the nudges, suggest-
ing that, on balance, students believe not getting back their
original quiz was acceptable.

Anecdotally, we are able to see a difference between the
strategies formed when students are provided hints only, and
when they are provided their original tests back with feed-
back embedded into them. In the SE course we administer
multiple choice midterms, and return students their original
tests, with explanations for their individual selection’s cor-
rectness annotating their test. When provided their original
test, students litigate the correctness of individual questions,
instead of revisiting the material as a whole. Students have
similar investment in re-learning the material, because our
final exams are cumulative, and include the concepts that
were present on the midterm. Still, students focus on why
they lost points for specific questions (which certainly will
not appear in the same form on the final exam), rather than
stepping back and trying to identify gaps in their general
understanding.

Conversely, in the SC course, we use the same automatic
grading tool as the SE course, but with specific test failure
messages, as opposed to nudge-based messages. Students in
office hours for the SC course discuss individual tests, and
how to pass them, and, in our recollection, seldom bring up
the specification other than to complain that it is not telling
them how to pass specific tests.

Ultimately, these two case studies seem to indicate that
it is possible for hint-only feedback to not hurt observed
or perceived student performance, and instead has the abil-
ity to nudge students towards positive, more holistic, and
contextual learning strategies.

Nudging Student Learning Strategies Using Formative Feedback in Automatically Graded Assessments

References

(1]

—
w
[

(10]

(11]

(12]

(13]

Kirsti M Ala-Mutka. 2005. A Survey of Automated Assessment
Approaches for Programming Assignments. Computer Science Ed-
ucation (CSE) 15, 2 (Jun 2005), 83-102. https://doi.org/10.1080/
08993400500150747

Sylvia Alexander, Una O’Reilly, Pat Sweeney, and Gerry McAllister.
2002. Utilizing automated assessment for large student cohorts. Engi-
neering Education and Research—2001: A Chronicle of Worldwide Inno-
vations, (2002).

Elisa Baniassad, Alice Campbell, Tiara Allidina, and Asrai Ord. 2019.
Teaching Software Construction at Scale with Mastery Learning: A
Case Study. In Proceedings of the International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET).
182-191. https://doi.org/10.1109/ICSE-SEET.2019.00027

Luciana Benotti, Federico Aloi, Franco Bulgarelli, and Marcos J. Gomez.
2018. The Effect of a Web-based Coding Tool with Automatic Feed-
back on Students’ Performance and Perceptions. In Proceedings of the
Technical Symposium on Computer Science Education (SIGCSE). 2-7.
https://doi.org/10.1145/3159450.3159579

Andrew C. Butler and Henry L. Roediger. 2008. Feedback enhances
the positive effects and reduces the negative effects of multiple-choice
testing. Memory & Cognition 36, 3 (Apr 2008), 604-616. https://doi.
org/10.3758/MC.36.3.604

Roy B. Clariana and Ravinder Koul. 2005. Multiple-Try Feedback and
Higher-Order Learning Outcomes. International Journal of Instruc-
tional Media 32, 3 (2005), 239 — 245.

Roy B. Clariana, Steven M. Ross, and Gary R. Morrison. 1991. The
Effects of Different Feedback Strategies Using Computer-Administered
Multiple-Choice Questions as Instruction. Educational Technology
Research and Development 39, 2 (1991), 5-17.

Juliet M. Corbin and Anselm Strauss. 1990. Grounded theory research:
Procedures, canons, and evaluative criteria. Qualitative Sociology 13, 1
(March 1990), 3-21. https://doi.org/10.1007/BF00988593
Christopher Douce, David Livingstone, and James Orwell. 2005. Au-
tomatic Test-Based Assessment of Programming: A Review. Jour-
nal on Educational Resources in Computing (JERIC) 5, 3 (Sep 2005).
https://doi.org/10.1145/1163405.1163409

Stephen H. Edwards. 2003. Improving Student Performance by
Evaluating How Well Students Test Their Own Programs. Jour-
nal of Educational Resources in Computing (JERIC) 3, 3 (Sep 2003).
https://doi.org/10.1145/1029994.1029995

Xiang Fu, Boris Peltsverger, Kai Qian, Lixin Tao, and Jigang Liu. 2008.
APOGEE: Automated project grading and instant feedback system for
web based computing. In Proceedings of the Technical Symposium on
Computer Science Education (SIGCSE). 77-81. https://doi.org/10.1145/
1352322.1352163

Julie Gregg, Melissa Diers, and Analisa McMillan. 2018. Hidden Trea-
sures: Lesser Known Secrets of Canvas. (2018).

Georgiana Haldeman, Andrew Tjang, Monica Babes-Vroman, Stephen
Bartos, Jay Shah, Danielle Yucht, and Thu D. Nguyen. 2018. Providing
Meaningful Feedback for Autograding of Programming Assignments.
In Proceedings of the Technical Symposium on Computer Science Educa-
tion (SIGCSE). 278-283. https://doi.org/10.1145/3159450.3159502

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

SPLASH-E ’20, November 20, 2020, Virtual, USA

Jack Hollingsworth. 1960. Automatic Graders for Programming
Classes. Communications of the ACM (CACM) 3, 10 (Oct 1960), 528-529.
https://doi.org/10.1145/367415.367422

Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppéla.
2010. Review of Recent Systems for Automatic Assessment of Pro-
gramming Assignments. In Proceedings of the Koli Calling Interna-
tional Conference on Computing Education Research. 86-93. https:
//doi.org/10.1145/1930464.1930480

René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid
Holmes, and Gordon Fraser. 2014. Are mutants a valid substitute for

real faults in software testing?. In Proceedings of the Symposium on the
Foundations of Software Engineering (FSE). 654—-665.

Nischel Kandru. 2018. Intelligent Goal-Oriented Feedback for Java
Programming Assignments. (Jul 2018). http://hdl.handle.net/10919/
83947

Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An
Evaluation of the Impact of Automated Programming Hints on Perfor-
mance and Learning. In Proceedings of the Conference on International
Computing Education Research (ICER). 61-70. https://doi.org/10.1145/
3291279.3339420

Abelardo Pardo, Kathryn Bartimote-Aufflick, Simon Buckingham
Shum, Shane Dawson, Jing Gao, Dragan Gasevic, Steve Leichtweis,
Danny Liu, Roberto Martinez-Maldonado, Negin Mirriahi, et al. 2018.
OnTask: Delivering Data-Informed, Personalized Learning Support
Actions. Journal of Learning Analytics 5, 3 (2018), 235-249. https:
//doi.org/10.18608/jla.2018.53.15

Thomas W. Price, Rui Zhi, and Tiffany Barnes. 2017. Hint Generation
Under Uncertainty: The Effect of Hint Quality on Help-Seeking Behav-
ior. In Artificial Intelligence in Education, Elisabeth André, Ryan Baker,
Xiangen Hu, Ma. Mercedes T. Rodrigo, and Benedict du Boulay (Eds.).
Springer, 311-322. https://doi.org/10.1007/978-3-319-61425-0_26
Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013.
Automated Feedback Generation for Introductory Programming As-
signments. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI). 15-26. https://doi.org/10.1145/
2491956.2462195

Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan Reis,
Melina Mongiovi, Loris D’Antoni, and Bjorn Hartmann. 2017. TraceD-
iff: Debugging unexpected code behavior using trace divergences.
In Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 107-115. https://doi.org/10.1109/VLHCC.2017.8103457
Ayse Tosun, Oscar Dieste, Davide Fucci, Sira Vegas, Burak Turhan,
Hakan Erdogmus, Adrian Santos, Markku Oivo, Kimmo Toro, Janne
Jarvinen, and Natalia Juristo. 2017. An Industry Experiment on the
Effects of Test-Driven Development on External Quality and Productiv-
ity. Empirical Software Engineering (ESE) 22, 6 (Dec. 2017), 2763—-2805.
https://doi.org/10.1007/5s10664-016-9490-0

Chris Wilcox. 2015. The Role of Automation in Undergraduate Com-
puter Science Education. In Proceedings of the Technical Symposium on
Computer Science Education (SIGCSE). 90-95. https://doi.org/10.1145/
2676723.2677226

Tobias Wrigstad and Elias Castegren. 2017. Mastery Learning-Like
Teaching with Achievements. ArXiv abs/1906.03510 (2017).

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1109/ICSE-SEET.2019.00027
https://doi.org/10.1145/3159450.3159579
https://doi.org/10.3758/MC.36.3.604
https://doi.org/10.3758/MC.36.3.604
https://doi.org/10.1007/BF00988593
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.1145/1352322.1352163
https://doi.org/10.1145/1352322.1352163
https://doi.org/10.1145/3159450.3159502
https://doi.org/10.1145/367415.367422
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1930464.1930480
http://hdl.handle.net/10919/83947
http://hdl.handle.net/10919/83947
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.18608/jla.2018.53.15
https://doi.org/10.18608/jla.2018.53.15
https://doi.org/10.1007/978-3-319-61425-0_26
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1109/VLHCC.2017.8103457
https://doi.org/10.1007/s10664-016-9490-0
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2676723.2677226

	Abstract
	1 Introduction
	2 Case Study 1: Hint-Based Quiz Feedback
	2.1 Quiz Feedback Background
	2.2 Relating Failures to Learning Objectives
	2.3 Representing Formative Feedback
	2.4 Study Design
	2.5 Analysis and Results
	2.6 Implications of the Findings

	3 Case Study 2: Hint-Based Programming Feedback
	3.1 Programming Feedback Background
	3.2 Encouraging Introspection With Failures
	3.3 Relating Failures to Learning Objectives
	3.4 Representing Formative Feedback
	3.5 Analysis and Results

	4 Discussion
	4.1 Facilitating Assessment Reflection (RQ1)
	4.2 Assessment Artifact Reusability (RQ2)
	4.3 Threats to Validity

	5 Influence on Student Strategy
	References

