
Received: 21 January 2022 Revised: 4 October 2022 Accepted: 17 October 2022

DOI: 10.1002/spe.3167

R E S E A R C H A R T I C L E

Training industrial end-user programmers with
interactive tutorials

Nico Ritschel1 Anand Ashok Sawant2 David Weintrop3 Reid Holmes1

Alberto Bacchelli4 Ronald Garcia1 Chandrika K R5 Avijit Mandal5

Patrick Francis6 David C. Shepherd7

1Department of Computer Science,
University of British Columbia,
Vancouver, British Columbia, Canada
2Department of Computer Science,
University of California, Davis, Davis,
California, USA
3College of Education, University of
Maryland, College Park, Maryland, USA
4Department of Informatics, University of
Zurich, Zurich, Switzerland
5ABB Corporate Research, Bangalore,
Karnataka, India
6UserVoice Inc., Raleigh, North Carolina,
USA
7Department of Computer Science,
Virginia Commonwealth University,
Richmond, Virginia, USA

Correspondence
Nico Ritschel, Department of Computer
Science, University of British Columbia,
Vancouver, BC V6T1Z4, Canada.
Email: ritschel@cs.ubc.ca

Funding information
ABB Corporate Research; National
Science Foundation, Grant/Award
Number: 2024561; Natural Sciences and
Engineering Research Council of Canada

Abstract
Newly released robot programming tools have made it feasible for end-users
to program industrial robots by combining block-based languages and
lead-through programming. To use these systems effectively, end-users, who
usually have limited or no programming experience, require training. To train
users, tutoring systems are often used for block-based programming—some
even for lead-through programming—but no tutorial system combines these
two types of programming. We present CoBlox Interactive Tutorials (CITs), a
novel tutoring approach that teaches how to use both the hardware and software
components that comprise a typical end-user robot programming environment.
As users switch between the two programming styles, CITs provide them with
extensive scaffolding, give users immediate feedback on missteps, and provide
guidance on next steps. To evaluate CITs, we conducted a study with 79 indus-
trial end-users using a programming environment released by ABB Robotics that
compares our approach to training with training videos, the most commonly
used training in industry. This study, one of the largest to date on training profes-
sional end-users, found that CIT-trained users authored more correct programs
in less time than video-trained users. This shows that a tight integration of hard-
ware and software concepts is crucial to training end-users to program industrial
robots.

K E Y W O R D S

end-user programming, programming support, robotics, tutorials, user study

1 INTRODUCTION

Robotic automation, now more than ever, has the potential to transform not just manufacturing processes, but society as
a whole. Industrial robots have become substantially cheaper and more capable, and this trend is likely to continue. As
smaller organizations can increasingly afford robots, more industries can benefit from enhanced automation1 and robots
are being used for a wider range of tasks than ever before. As this success snowballs, the number of robots deployed in
professional environments is rapidly growing.2

Abbreviations: CITs, CoBlox Interactive Tutorials; ITS, Intelligent Tutoring System; SUS, System Usability Scale.

Nico Ritschel and Anand Ashok Sawant contributed equally to this study.

Softw: Pract Exper. 2022;1–19. wileyonlinelibrary.com/journal/spe © 2022 John Wiley & Sons, Ltd. 1

https://orcid.org/0000-0001-5600-2978
https://orcid.org/0000-0002-5816-8020


2 RITSCHEL et al.

As the demand for robots increases, so does the demand for employees that can program them. However, traditional
industrial robot programming is difficult; it requires developers that are able to translate the robot’s physical properties,
environment, and actions into code. Experts for this kind of task are expensive, and traditional programming education
cannot keep up with the steeply increasing number of industrial robots.3

If more employees could learn how to program robots, deploying new robots and reprogramming existing ones would
become cheaper and easier. However, most employees lack programming experience and formal training and would
struggle to use traditional programming tools designed for experts. Instead, these end-users need easy-to-learn program-
ming environments, with easy-to-understand training that teaches them how to program practical routines quickly and
effectively.

Researchers have employed a wide range of different strategies to make robot programming tools more friendly to
end-users.4,5 Many end-user tools are built around simplified, beginner-friendly programming languages, providing a
software solution.6-8 Other systems focus on the hardware, letting users define programs via lead-through programming,
where the user physically guides the robot through the steps of the task.9-11 Recent research has shown that an environ-
ment that combines both of these approaches can overcome many of their individual limitations.12 The presented system,
called CoBlox, integrates a block-based programming language with lead-through programming, and has been released
by ABB Robotics as Wizard Easy Programming.* An initial evaluation of CoBlox has found it to be substantially easier
to learn and use for end-users than other state-of-the-art robotics tools.12 However, this evaluation was performed on a
simulator only, trivializing the substantial lead-through aspects of the programming tasks. To program a real robot, users
must learn to work with both the software and hardware interfaces of the programming environment, and combine how
both components work in tandem.

Most work on training programmers focuses on school-aged learners (ages 5–22) instead of adult learners, which can
have different needs and motivations. For example, professional learners are more likely to be driven by specific, immedi-
ate work needs than a general interest in acquiring new knowledge and skills.13 Professionals are also more likely to use
trial-and-error approaches to learn new tools and technologies.13 Learner-centric approaches and short, targeted train-
ing sessions with realistic tasks therefore seem most likely to succeed,14,15 but few studies have evaluated such training
methods in industrial settings.

This article introduces a tutorial system for robot programming that provides hands-on training and bridges the
gap between hardware and software programming interfaces. The system, called CoBlox Interactive Tutorials (CITs),
is embedded into CoBlox and assists users with authoring software programs and manipulating the robot’s hardware.
CITs support active learning, which previous research has shown to be effective for training end-users for their daily
tasks.16,17 The system further embeds instructions and feedback directly into the programming environment, similar to
other state-of-the-art training tools.18-21 However, unlike existing tutoring systems that teach either traditional program-
ming or hardware interactions,22,23 CITs target both modalities at once and shows users how they can transition between
them. In the context of robot programming, CITs therefore provide a richer, more integrated learning experience than
existing tutoring systems.

We have investigated whether the integrated approach of CITs can benefit end-users by evaluating them in a
comparative study. This study compared the performance of 79 professional adult end-users on realistic tasks after
they were trained using either CITs or a conventional training video. The study’s results show that most users
can quickly learn how to use the traditional programming aspects of CoBlox, independent of the training method.
However, some of the users trained via video struggled with the physical aspect of robot programming, causing
them to solve tasks slower, or not at all. Participants that used CITs were significantly faster and more success-
ful overall, and all of them made at least some progress on every given task. Our results therefore demonstrate
that CITs are a valuable extension to the CoBlox system and are particularly helpful for users that would strug-
gle otherwise, allowing them to successfully master the hardware and software aspects of robot programming. This
study further reinforces the findings of a previous, smaller study12 that found CoBlox to be easy to learn and
use overall.

This work advances our understanding of how to design instructional support for programming environments with
both hardware and software components. It further demonstrates how tools and training materials can effectively target
adults that have little to no prior programming experience. Finally, it contributes one of the largest studies to date on
training methods for professional end-users.

*https://new.abb.com/products/robotics/application-software/wizard

https://new.abb.com/products/robotics/application-software/wizard


RITSCHEL et al. 3

2 RELATED WORK

This work integrates a novel tutorial system into the CoBlox programming environment, which we present in detail
in Section 3.1. The original CoBlox publication outlined previous research on making robot programming and general
programming more accessible for end-users.12 This work focuses on supporting industrial end-users through automated
and integrated tutoring. In this section, we therefore summarize and categorize this strand of research and outline how
our work contributes to its study.

2.1 Tutoring systems and tutorials: An overview

A large body of human-computer interaction work has explored ways to help people understand and use novel technolo-
gies (e.g., References 24 and 25). The effectiveness of human tutors in education has long been known,26 and substantial
effort has been invested in matching this impact using automated technology.27,28 Intelligent Tutoring Systems (ITSs)
aim to aid or replace human tutoring by automatically generating a level of rich, customized feedback similar to that of a
human tutor.29 While tutoring systems can teach a wide range of tasks across many domains, we focus here on ITSs that
teach programming or programming-related tasks.

Previous work has extracted design guidelines for programming tutoring systems from the large body of both the-
oretical and applied work in this area.30 Based on their observations, the authors generated a list of recommendations
for tutoring systems. One example recommendation is to engage learners in active learning by making them write code
themselves. Another recommendation is to guide them with short, goal-directed tasks.

As the design of tutoring systems has evolved over time, so has their level of integration into the systems they target.
Figure 1 illustrates the three most commonly found levels of ITS integration from left to right: Disconnected tutoring
systems are entirely detached from the system they are training learners to use. Coexisting systems feature some superficial
connection with the target system but are still operating mostly independently. Integrated systems are deeply embedded
into the system they are targeting and can access and modify both its internal state and presentation.

In the following subsections, we illustrate these three levels of integration further. As disconnected and coexisting
tutoring systems are ubiquitous, we focus on a few representative examples. For integrated systems, which are most closely
related to our work, we provide a more exhaustive overview of relevant previous research. Only a small body previous
work has focused on tutoring for physical programming as provided by CITs. However, we conclude by describing these
previous attempts and how they differ from the work we present here.

2.2 Disconnected and coexisting tutoring systems

Disconnected tutoring systems, such as Google’s CSFirst31 curriculum, have the advantage that they can be developed and
maintained independently of the target system. They ask users to watch or read training materials in a separate application
that has no relation to the programming environment. Notably, this form of tutorial can utilize a wide range of media
content, such as videos or screenshots of the programming environment they target. For example, the official tutorial
for LabVIEW32 makes extensive use of such materials to refer to specific interface elements or environment features.

F I G U R E 1 Examples of training, ordered by level of integration into the programming environment: Disconnected training (left)
separates instructions and programming; in coexisting training (middle), the two components are loosely connected; only in an integrated
environment (right), training and programming environment can interact to give feedback and guide users.



4 RITSCHEL et al.

However, due to the separation between the teaching and application environment, this type of system has significant
usability drawbacks.

Disconnected tutoring systems require users to switch between two environments that provide entirely differ-
ent learning contexts. This switch of contexts also affects users on a mental level, and causes strain as it requires
them to actively bridge between the instructions and the actual programming system.21 Furthermore, disconnected
systems cannot provide users with any feedback about their progress since they do not have access to any informa-
tion about the programming environment. Therefore, the task of judging their work and tracking their progress is
also made the responsibility of the learner. Such an expectation can overwhelm users and slow down their learning
progress.33

Popular examples of coexisting tutoring systems are Code.org’s Hour of Code program34 and Scratch Tutorials.35 These
system embeds instructions directly into their respective code editor as pop-ups. However, despite this embedding, sys-
tems in this category do not interact with the programming environment beyond the superficial user interface integration.
In particular, coexisting systems do not react to changes in the programming environment or give feedback on the user’s
programs.

Due to the predetermined nature of coexisting tutoring systems and the inability to react to real parameters of the pro-
gramming environment, tutorial designers have to choose example tasks that can be completed in a highly deterministic
fashion. In the context of robot programming, this means that the robot’s physical set-up needs to be exactly predeter-
mined or instructions need to be written in a way that captures all possible situations. However, even in these cases, if
a user makes a mistake, this can lead to situations where they do not have a clear path to the intended outcome of the
tutorial anymore. Coexisting systems further cannot directly highlight or interact with user interface elements, Instead,
coexisting tutorial systems typically use screenshots or figures as a proxy. This can confuse users if they mistake images
for real user interface elements,33 an effect that is amplified by the visual integration of tutoring system and programming
application.

In summary, while disconnected and coexisting tutoring systems are often more feasible and easier to create, they
come with design limitations that can substantially impact the learning of their users. However, despite these limitations,
non-integrated tutoring can have a place in certain learning settings, as we describe in Section 6.2.

2.3 Integrated tutoring systems

Compared to disconnected and coexisting tutoring systems, integrated systems provide a substantially deeper integra-
tion between tutorial and development environment. To our knowledge, the block-based programming system Alice36

was the first to provide a substantial integration. Alice’s approach, called stencils, dims and deactivates most of the user
interface, only showing the relevant component(s) for the next step in a given tutorial. As users follow each step of the
tutorial, instructions move on automatically and always focus on the next step necessary to complete a task. Alice’s Stencil
approach was highly influential and inspired subsequent work.18,19,37,38

Stencils illustrate the advantages of integrated tutorial systems: they can guard irrelevant components and therefore
prevent users from many missteps that they could make. They can also draw a user’s attention to certain interface ele-
ments, and reduce the perceived amount of visual clutter on the screen. The entirely guided teaching approach comes at
a cost: studies found that users learning via this method were less confident that they could write their own programs
since they had little autonomy over their actions.20 Furthermore, because users make less mistakes they miss the valuable
learning that mistakes and their correction can provide.39

A more modern wave of integrated systems, like RoboBlockly40 or GamiCAD,41 have modified Alice’s stencil
approach to be less invasive. They highlight or point at interface elements, but also allow users to ignore the instruc-
tions or make adjustments. This means that users can make mistakes, which the systems address by providing
immediate feedback and a suggestion on how to fix their program. These design elements aim to give users more
confidence when they work on real tasks after completing the tutorial, but empirical evidence on their benefits is
limited.

This work builds on the most recent techniques for integrated tutorials. For the virtual programming steps, such as
selecting and assembling command blocks, CITs highlight user interface elements, but do not block off the remaining
interface. However, unlike other systems, CITs extend this paradigm further, adding support for the physical programming
aspects of CoBlox. In addition, we have evaluated CITs on a substantially larger number of industrial end-users than
previous work.



RITSCHEL et al. 5

2.4 Tutoring systems for physical programming

While there exist many tutoring systems for traditional on-screen programming, a much smaller body of work targets
physical programming of hardware as it is used in the CoBlox programming environment. These tools typically provide
instructions in the form of photos, videos or animations of the physical actions they expect the user to perform next.
However, they typically lack any integration with the physical hardware they target, and therefore cannot provide any
automated feedback. To our knowledge, all of these tools can therefore be categorized as disconnected or at best coexisting
based on our previously established categorization.

The recent work on the tutoring system CircuitStyle42 is a good example how challenging it can be to give feedback for
tasks executed on hardware. In this system, users have to follow specific style guidelines as they build a circuit, which are
provided by the system and illustrated with pictures. However, the system cannot verify that users have actually followed
the guidelines and relies on self-assessment or feedback from a human instructor instead. We therefore consider this
system as disconnected from the hardware it targets.

Some tutoring systems in the circuit design space, like HeyTeddy22 or ElectroTutor,23 have formalized this indirect
feedback mechanism further. These systems explicitly ask the user to either verify their solution or enter specific physical
parameters, such as voltages, to check that specific tutorial steps have been completed successfully. While relying on the
user to manually collect and transfer information between the systems can enable some form of feedback, this mechanism
introduces a substantial overhead that can make the system tedious to use. Therefore, such systems have to consider the
trade-off between gathering information for accuracy and not interrupting the user’s focus.

Previous tutoring systems for physical programming resemble those that we previously classified as coexisting, both in
terms of the degree of interaction between the tutoring and the hardware system, and considering the resulting distraction
and lack of immediate feedback to users. Nonetheless, previous evaluations have demonstrated them to be effective in
supporting the learning of students. However, this evidence is limited as it is based on small experiments that usually
involved students rather than industrial participants. This work proposes a tutorial system that targets both physical and
virtual programming with an integrated approach, and it also addresses the lack of a realistic evaluation on industrial
end-users.

3 APPROACH

As we discussed in Section 2, many existing tutorial systems are not or only loosely integrated with the programming envi-
ronments they target. For physical programming environments in particular, we did not identify any existing work that
matches our definition of an integrated tutoring system. CoBlox Integrated Tutorials address this shortcoming through
a deep integration with CoBlox, a programming environment that combines traditional block-based programming with
physical lead-through programming. This integration aims to help adult novices learn both aspects of CoBlox more effec-
tively than if they used a traditional, less integrated tutoring system. This Section introduces CoBlox in more detail to
provide background on its existing features, and then explains the novel aspects of CITs and the motivating factors behind
their design.

3.1 A brief tour of CoBlox

The CoBlox environment12 allows end-users to program one-armed industrial robots through a block-based program-
ming environment as well as by manipulating them physically via lead-through programming. CoBlox provides a
domain-specific language with high-level commands such as Move quickly to <location> and Open hand .
It also provides predefined templates for common routines such as pick-and-place. Users can adapt these routines to a
specific task by setting the target location of each move instruction.

Unlike most expert tools, CoBlox never requires users to specify physical locations via code. Instead, users
can capture these locations by manipulating the robot arm in lead-through mode, as illustrated in Figure 2B.
This multi-modal programming approach allows novices to create programs faster than using other end-user pro-
gramming tools. In a study, users gave CoBlox higher scores for usability, learnability, and overall satisfaction
than any other evaluated tool.12 Yet, despite this evidence of CoBlox’ effectiveness, users of the tool still face
challenges:



6 RITSCHEL et al.

F I G U R E 2 Illustration of hardware–software coordination when defining a location. Note that these images and video are from a
productized but nearly identical version of CoBlox, called Wizard Easy Programming. (A) On-screen instructions on how to define locations.
(B) A user defining a location by moving the robot arm

F I G U R E 3 Notable features of the CoBlox Interactive Tutorial system as referenced by our walk-through. A video demonstrating the
entire tutorial is available at https://youtu.be/QrqtT5Jp3ZA. (A) Introduction to the touch screen controls. (B) In-place prompts with
instructions. (C) Animated on-screen illustration. (D) In-hardware demonstration

1. Users must recognize when they have to manipulate the robot hardware and switch to a special lead-through mode
used for defining new positions.

2. While manipulating the robot, users may need to return to the programming environment to refer to previously defined
locations and plan the robot’s movement path.

3. While manipulating the robot, users may need to use the programming environment to open or close the robot’s gripper
hand, which is not possible though physical interaction.

4. Finally, users must finalize their desired location by disabling lead-through mode and saving the target location.

These challenges cannot be directly addressed by simplifying the CoBlox environment. For example, if CoBlox were
to automatically enable or disable lead-through mode, then users might lose track of the current status of the robot.
They might move the robot arm by accident, or damage it if they attempt to move it while lead-through is disabled. CITs
therefore support users by teaching them when and how they can combine physical hardware programming techniques
with traditional software programming.

3.2 A brief tour of CITs

To demonstrate the design of CITs, this subsection presents a walk-through of the first tutorial. This tutorial introduces
users to opening and closing the robot’s hand. Figure 3 illustrates some of the individual tutorial steps.† Some features
and design elements are discussed in more detail in the subsequent subsections.

†A video version of this walk-through is available at https://youtu.be/QrqtT5Jp3ZA

https://youtu.be/QrqtT5Jp3ZA
https://youtu.be/QrqtT5Jp3ZA


RITSCHEL et al. 7

After users have launched the tutorial, the system shows users a brief animation of a person dragging a block using a
touch screen (Figure 3A). This animation is intended to naturally demonstrate to new users how they can interact with
the touch-screen interface.

After users start a tutorial, it presents them with an instruction prompt (Figure 3B). For the first tutorial, this prompt
reads: “Click on the Grip drawer in the block toolbox.” The prompt directly points at the interface element that the user is
intended to click. When the user clicks on the Grip drawer, it opens to reveal the available set of grip-related commands.
As soon as the Grip drawer is open, a new tutorial prompt appears instructing users to drag the Close hand block
onto the canvas.

Once users have dragged the block onto the canvas, the next prompt appears, telling users to attach the new block to
the main block. Upon attaching Close hand to the main block, an animation appears that shows users an animation
that demonstrates this command’s effect on the robot (Figure 3C). After the animation finishes, a new prompt points
users to the Close hand button on the upper right side of the application. Pressing this button allows users to see
the command’s effect on the robot hardware immediately (Figure 3D). It also introduces users to one of several interface
elements that allow them to immediately control the robot.

As the first tutorial continues, users follow prompts to add an Open hand block to the previous one. Finally, the
tutorial shows users how they can run their programs. After saving their progress, users are prompted to open the execu-
tion pane, where they can control how the robot executes of their program. The first tutorial only teaches users how to
run their program regularly, but later ones guide them through debugging features like step-by-step execution.

3.3 Key CIT features

The design of CITs emphasizes virtual and physical integration with the CoBlox programming environment. In the fol-
lowing we discuss how this integration benefits users through embedded instructions and immediate feedback for virtual
and physical programming steps.

3.3.1 Embedded instructions

Building on the innovations of stencils,20 embedded instructions direct users by directly highlighting user interface ele-
ments. For instance, in Figure 3B, the prompt “Click on the Grip drawer in the block toolbox” is attached directly to
the drawer it refers to. This allows CITs to avoid proxies like images or videos that many of the tutoring systems we
discussed in Section 2 use. However, unlike the Stencils approach, CITs allow users to make mistakes, which can pro-
vide valuable learning opportunities. For example, the tutorial does not stop users from accidentally selecting incorrect
blocks.

For physical programming interactions, CITs deliberately switch between proxy animations, videos, and the physical
demonstration of effects. For example, in Figure 3A, the tutorial shows a brief video that demonstrates how to use the
touch screen to drag blocks. In Figure 3D, it asks users to try out a button and see the effect on the robot’s physical
hand. In Figure 3C, on the other hand, the tutorial uses an animation. This proxy was chosen intentionally to avoid the
misinterpretation that every attachment of blocks immediately triggers robot movements.

3.3.2 Immediate feedback

Instructions in CITs are not just inline but also provide immediate feedback. After every step that a user executes correctly,
the next instruction is displayed automatically. For example, after the user clicks on the Grip drawer in Figure 3B, the
tutorial immediately switches to the next instruction. Unlike other tutoring systems, CITs also provide direct, contextual
feedback for mistakes. For example, if a user places an incorrect block, the tutorial instructs them to delete the blocks and
revert the program back to its intended state. This experience of making a mistake and fixing it can increase the ability of
beginners to address a similar situation when they encounter it at a later point in time.43

CITs also provide feedback for physical programming interactions. For example, if a user programs the robot to move
along a path that is obstructed, the arm stops as soon as it hits an obstacle. The tutorial highlights the command that failed
on the screen and presents users with two possible ways to resolve this issue: Either they can redefine the start and end



8 RITSCHEL et al.

points of the movement, or they can retry the movement after removing the obstacle. For the latter option, users learn
that they can gently physically tap the robot to resume an interrupted program.

Many of the previously discussed features of CITs aim to ease the mental burden for users as they coordinate the
virtual and physical components of CoBlox. The most difficult transition for new users occurs, however, when they define
new locations. Due to the unpredictable physical environment of the robot, the feedback that CITs provide cannot be as
immediate as for other programming steps: Without running the program first, there is no way to check if a program
works as intended. Even when an error is found while running the program, it is often difficult to precisely explain what
went wrong. This interaction is likely to confuse or frustrate new users.

CITs support users when defining locations by tightly coordinating the virtual and physical components of CoBlox.
When users click on the New Location button of a movement command, CITs dim the entire CoBlox interface to
focus the user’s attention on the instructions. As Figure 2A shows, this dialog features an animation and instructions that
encourage the user to physically move the robot arm to an indicated position. As the dialog appears, the robot arm further
makes an audible click, signaling to the user that manual movements are now enabled. This click is used throughout the
tutorials and also occurs when users use CoBlox without CITs, giving users a consistent hint when they have to physically
interact with the robot. After users have moved the robot arm as shown in Figure 2B, they can press the ‘Next’ button to
capture the position of the robot arm. After the CoBlox environment asks them to name the new location, the tutorial
continues with on-screen prompts. When locations are initially introduced, the tutorial immediately lets users test the
resulting movement to keep the feedback loop as tight as possible.

4 EXPERIMENTAL EVALUATION

To evaluate CITs, we conducted a comparative user study in which users programmed an industrial robot in the CoBlox
environment after being trained with either CITs or a conventional training video.

4.1 Participants

The target audience of CITs and the underlying CoBlox environment are adults with little or no prior robotics or general
programming experience. To find participants that fit these criteria, we reached out to employees at a large office site of a
multinational engineering conglomerate in Bangalore, India. We recruited participants from a diverse set of office profes-
sions (e.g., engineers, software developers, technical administrators). We intentionally included a range of professional
profiles to understand how CITs support users with varying sets of prior experiences and professional backgrounds.

A total of 90 participants participated in the study, of which 79 completed all aspects of the protocol and are thus
included in the presentation of our results. Of the 11 participants that did not complete the study protocol, 2 decided to
withdraw from the study before the end of their training. Another 9 had to abort the study because they encountered
significant technical difficulties that we were eventually able to trace down to a defective robot hardware component that
had to be replaced. To avoid biasing our results, we have excluded these participants from our evaluation.

The average age of our participants was 30.6 years (SD 6.5 years), and of the 78 participants who indicated their gender,
53 (68%) were male and 22 (28%) were female. Participants came from a range of backgrounds: 35 (45%) were engineers,
15 (19%) researchers, 12 (15%) software developers, and the rest were either administrative staff or worked in product
support. Only 7 (9%) of the participants had any prior experience with programming robots (average 3.7 years, SD 2.6
years).

4.2 Research questions and study protocol

With our study, we set out to answer the following research questions:

RQ1: How long do participants take to complete CITs in comparison to video training that covers the same amount of
content?

RQ2: Do CITs improve the performance of end-users compared to traditional video training as they solve robot
programming tasks in CoBlox?



RITSCHEL et al. 9

RQ3: Which of the different aspects and modalities required to program robots in CoBlox are particularly affected by
training via CITs?

RQ4: Do CITs change the perception that end-users have on training and the overall usability of CoBlox?

To address these questions, we designed a user study that participants could complete in 60–90 min. After giving
consent and spending about 15 min on training, participants had up to 35 min to solve a series of three tasks. These tasks
were primarily designed to gain insights into RQ1 and RQ2. After they completed the tasks, we asked participants to
fill out a brief usability questionnaire, an open-ended feedback form, and a demographic survey, for which we did not
impose a fixed time limit. The usability questionnaire and feedback form aimed to answer RQ3. Throughout the study,
participants worked on a computer next to the physical robot, so that they could interact with it during programming.

4.2.1 Training

At the beginning of our study, we randomly divided participants into two conditions. Half of our participants were trained
interactively using CITs and the other half by watching a training video. We chose to use an introduction video as our
baseline comparison because videos are the most popular training solution for software and hardware systems.44

We asked the participants of the tutorial condition to complete a sequence of four tutorials: (1) using the robot hand,
(2) moving the arm, (3) picking and placing an item, and (4) calling a procedure. The four tutorials were designed to
cover the concepts required to accomplish the tasks put forth in the second half of the experimental procedure. They were
designed to take around 15 min in total to complete, but we did not impose a strict time limit on their completion.

The training video that we showed to participants of the video condition had the same structure and showed the steps
covered by the four CITs in the same order. Instruction or description texts in the CITs were replaced by voice-over expla-
nations in the video. For each programming step, the video showed both the programming environment and all necessary
user interactions, including all the necessary lead-through programming steps. Participants of the video condition were
given access to the programming environment during their training and were allowed to explore the system or familiarize
themselves with it. They were however not given any explicit instructions or asked to replicate the tasks they had seen in
the videos.

The training video was 10 min 51 s long. It is therefore shorter than the expected duration of the four tutorials. Observ-
ing early participants, we noticed that they tend to take longer to perform tutorial steps themselves than when they are
demonstrated in the training video. While we allowed participants to pause or rewind the video, none of the participants
made use of this opportunity. Participants did also not spend a substantial amount of time exploring the programming
environment during or after their training We therefore assume that the pace of our video was appropriate for them to
follow each step and we decided against further measures to equalize training times, such as artificially slowing down
the video.

4.2.2 Tasks

After participants finished their training, we asked them to complete a series of pick-and-place tasks using lego-like
objects. Figure 4 demonstrates the set-up of our experiment. In a pick-and-place task, the robot arm moves an item
between two locations while navigating a potentially constrained physical environment. We chose this type of task since
it is one of the most common use cases for industrial robots. Pick-and-place tasks are also well-suited for a user study
since they are easy to understand conceptually, but nontrivial to execute since users must switch between using the
programming environment and manually positioning the robot.

We asked participants to complete a total of three tasks in a fixed order. Each of the tasks had a time limit, both for
logistical reasons, and to limit the number of possible attempts to a reasonable level. At the end of the time limit for
each task, the participant was allowed one final round of testing to evaluate their final program’s correctness. After each
task, we reset the programming environment so that participants could continue with the next task independent of their
success on the previous one.

Our primary focus was on Task 1, which we refer to as the Create task. This task was designed to test how well partic-
ipants could apply all the information they gained in their respective training. We asked participants to create a program
from scratch that makes the robot pick up an object from the work table and place it into a box. We gave participants 15



10 RITSCHEL et al.

F I G U R E 4 Set-up of the experiment: The robot is set up next to the programming environment in front of our participants. In the task
shown here, users are instructed to pick up the lego-like object and place it into the white box.

min to solve this task. Since participants had to start from a blank canvas, they were not able to rely on any template or
scaffolding besides their training. This allowed us to assume that the quality of training was the determining factor for
participants’ performance.

After participants solved the first task, we asked them to solve two more tasks which we refer to as the Modify and
Reverse tasks. These tasks allowed us to validate our observations for the Create task for different task variations.
Furthermore, since the tasks took place in sequence, we could observe if differences between participant conditions would
diminish over time. For the Modify task, participants were given an existing, correctly-working pick-and-place program,
and asked to change the location where the picked item should be placed. The Reverse task gave participants the same
pick-and-place procedure as the Modify task and asked them to swap the pick and the place location of the task. Both of
these tasks were of similar difficulty, but easier than the Create task. We gave participants 10 min to solve each of these
two tasks.

4.2.3 Usability questionnaire

After participants completed all tasks, we asked them to complete a brief survey. This survey contained both a series
of demographic questions and a standardized System Usability Scale (SUS) questionnaire45 The questionnaire asked
participants to indicate their agreement with ten statements about the evaluated system on a 5-point Likert scale. The
participants’ responses allow the computation of an overall SUS score, ranging from 0 to 100 points, that can be compared
both between our two participant groups and with the scores of other programming systems.46 In addition to the stan-
dardized questionnaire, we also asked participants to provide written feedback about features of CoBlox that they found
particularly easy or difficult to understand, as well as suggestions for improving the training or programming process.

4.2.4 Data analysis

While participants used the CoBlox environment, we collected detailed logs of each user interaction (e.g., adding new
blocks, connecting them to existing blocks, defining robot locations). We further collected the final programs created by
participants for each task along with video recordings of the robot during the final test run of each program. This way we
were able to grade participants’ solutions for each task. It also allowed us to analyze which programming steps participants
struggled the most with.

We considered both functional correctness and conciseness during grading. We evaluated correctness using a 10-point
rubric for each task. Each task was divided into three roughly equally complex sub-tasks (e.g., picking up the item,



RITSCHEL et al. 11

transporting it and placing it). We awarded up to 3 points for solving each of these sub-tasks, with partial points given
for incomplete or incorrect solutions based on a predefined rubric. We further assigned 1 additional point per task for
correctly resetting the robot arm after completing all sub-tasks.

For evaluating conciseness we used a 5-point scale based on the number of used blocks, and penalized programs that
used more blocks than necessary. Each additional block compared to the shortest sample solution resulted in a 1-point
penalty. We further capped the scores for conciseness relative to the correctness score, so that the scores of short but
incorrect solutions would not be inflated.

5 RESULTS

The data we present in this section comes from the 79 participants who completed the full study protocol. Among these
participants, we randomly selected 38 (48%) to be trained using the CITs and 41 (52%) to watch a training video. In this
section, we compare these two groups with respect to their time spent on training and solving each programming task.
We further compare the quality of the programs they wrote as well as their quantitative and qualitative usability feedback.
We structure our presentation based on the research questions presented in Section 4.

5.1 RQ1: Time spent on training

All participants that we assigned to the video training condition watched an identical, noninteractive video with a duration
of 10 min 51 s. Participants that were trained via CITs were allowed to complete CITs at their own pace, ensuring that
they did not have to skip parts of the instructions. All of the participants successfully completed all four of the tutorials,
and they took an average of 17 min 1 s (SD 6 m 11 s) to do so.

The majority (68%) of participants completed the CITs within the intended 15-min time frame. However, 12 (32%)
participants required more than 15 min to solve all tutorials, and 5 (11%) of them required more than 20 min. We
analyzed the 12 participants that took the most time during training more closely. We discovered that almost all of
them had substantial technical issues due to a lack of basic technological experience. For instance, in one of these
cases, the proctor needed to intervene and demonstrate to the participant how to drag and drop blocks on the used
computer.

Overall, the CITs were accessible to end-users, but took longer to complete than watching a training video
that covered the same content.

5.2 RQ2: Performance on programming tasks

In the following, we present our quantitative findings on the three programming tasks we asked participants to solve.
We start with the results for the Create task, which was the first and hardest task, and showed the most substantial
difference between the participant groups. Afterwards, we also present the results for the Modify and Reverse tasks,
which were similar, but less pronounced.

5.2.1 The Create task

Figure 5 summarizes the quantitative results for the Create task. As we described in Section 4, we scored participants’
final programs for each task for correctness and conciseness on a scale from 0 to 15 points. The maximum time they for
this task was 15 min.

Figure 5A shows that participants trained via the CITs consistently achieved higher scores for the task. The mean
score for video subjects is 9.4 (SD 5.7), compared to 12.1 (SD 3.9) for CIT subjects . As Figure 5B shows, participants in
the video training condition also consistently needed more time to complete the task. Participants in the video condition
spent an average of 13 min 38 s (SD 3 m 24 s) completing their programs. This is substantially longer than the average
time of 9 min 59 s (SD 4 m 1 s) that participants trained via the CIT spent on the task.



12 RITSCHEL et al.

F I G U R E 5 Box-plots of the quantitative results for the Create task. (A) Score (out of 15) for the Create task. (B) Time (s) spent on
the Create task. For all box-plots in this article, center lines show the medians, box limits indicate the 25th and 75th percentiles, whiskers
extend to 5th and 95th percentiles, and data points are plotted as open circles.

The time that participants spent on the Create task and their resulting score are strongly negatively correlated
(r = −0.53, p < 0.001). The differences between the groups trained via CITs and videos were statistically significant
(one-way MANOVA finds F(2, 76) = 9.52, p < 0.001). We also analyzed times and scores separately and found a sta-
tistically significant difference for scores and a significant difference for time (independent samples t-tests assuming
equal variances find: t(77) = 4.37, p < 0.001 for time; t(77) = −2.44, p = 0.017 for score). The effect size for the times is
large (d = 0.95) while the effect size for the scores is medium (d = 0.54). Notably, only three participants lost points for
conciseness, meaning that almost all differences in points are related to correctness.

The results show participants trained via the CITs were substantially faster and more successful at solving
the Create task than those trained via a conventional training video.

As mentioned in the experimental setup, we limited the time that participants were allowed to spend on each task. This
reduced the potential variance between groups by imposing a ceiling on the time-on-task. Thus, in addition to studying
the difference between mean times in groups, it is also useful to see how many subjects from each treatment used the
maximum time. For the Create task, 15 (37%) of the video-trained participants and only 2 (5%) of the tutorial-trained
participants required the full 15 min. Furthermore, among those video-trained participants that used all their available
time, 11 (73%) scored 0 points. This indicates that these participants were unable to make any significant progress on the
task. None of the tutorial-trained participants scored fewer than 2 points on the task.

Our analysis suggests that CITs were effective at helping users who needed support the most.

5.2.2 The Modify and Reverse tasks

Figure 6 summarizes the quantitative results for the Modify and Reverse tasks. As for the Create task we scored
participants’ programs on a scale from 0 to 15. The maximum time for these tasks was restricted to 10 min.

For both the Modify and the Reverse task, participants scored higher on average than for the Create task. As
Figure 6A,C shows, participants trained via CITs scored substantially higher than their video-trained peers on both tasks.
For the Modify task, CIT-trained participants scored an average of 13.3 points (SD 3.3), compared to their video-trained
peers that scored 11.0 points (SD 5.5). The Reverse task had similar scores, with participants in the CIT condition having
an average score of 13.9 points (SD 2.6) compared to 12.1 points (SD 4.9) for the video condition.

As Figure 6B,D shows, participants trained via CITs spent less time to solve both the Modify task and the Reverse
task than those trained by video. However, the differences between the two groups were smaller than for the Create task,
both in absolute numbers and relative to the mean times spent on each task. For the Modify task, the mean time was 7
min 20 s (SD 2 m 56 s) for video participants and 6 min 11 s (SD 2 m 48 s) for CIT subjects. For the Reverse task, the
mean time was 6 min 24 s (SD 2 m 50 s) for the video condition and 5 min and 20 s (SD 3 m 1 s) for those trained via CITs.

As for the Create task, participant times and scores were negatively correlated for both the Modify and the Reverse
task (r = −0.56, p < 0.001; r = −0.38, p < 0.001). The difference in times and scores between the participant groups is
not statistically significant for either of the two tasks when considering them simultaneously (one-way MANOVA finds



RITSCHEL et al. 13

F I G U R E 6 Box-plots of the quantitative results for the Modify task and Reverse task. (A) Score (out of 15) for the Modify task. (B)
Time (s) spent on the Modify task. (C) Score (out of 15) for the Reverse task. (D) Time (s) spent on the Reverse task

F(2, 75) = 2.70, p = 0.074 for the Modify task, and F(2, 76) = 2.74, p = 0.071 for the Reverse task). When analyzing
times and scores for both tasks separately, we found a statistically significant difference for the scores (independent sam-
ples t-tests assuming equal variances find: t(76) = −2.29, p = 0.025 for the Modify task, and t(77) = −2.24, p = 0.028 for
the Reverse task). However, we did not find a significant difference for the times (independent samples t-tests assum-
ing equal variances find: t(76) = 1.65, p = 0.104 for the Modify task, and t(77) = 1.47, p = 0.144 for the Reverse task).
The effect sizes for the scores were large for both tasks (d = 0.52 for the Modify task, and d = 0.50 for the Reverse task)
while the effect sizes of the times were medium (d = 0.37 for the Modify task, and d = 0.34 for the Reverse task). Only
one participant overall was penalized for a lack of conciseness, by virtually all score differences are based on correctness
alone.

The data show that while most participants were able to solve both the Modify and the Reverse task
successfully, there was a difference in success between those trained using tutorials and those trained using
a conventional training video.

5.3 RQ3: Programming aspects most affected by CIT-based training

To investigate the effects of CITs in more detail and beyond pure performance metrics, we analyzed why the programs
that participants wrote achieved sub-optimal scores. For the Create task, only 5 (6%) of all programs were penalized for
not being concise, while all other penalties were given for correctness issues. For this task, almost all correctness penalties
among both groups were given for major errors: 13 (34%) of the CIT-trained and 19 (46%) of the video-trained participants
received at least one major penalty for their programs. On closer inspection, most of these major errors were caused by
participants struggling to position the robot arm correctly so that it could pick up and carry the item as intended. This
type of error, which often led to follow-up errors like dropping the item before it reached its destination, made up 62% of
all the major errors in the CIT-trained group and 84% of those in the tutorial-trained group. The programs of 15 (37%) of
the video-trained participants missed at least one entire sub-task, compared to 7 (18%) of those trained via CITs.

The data for the Create task indicate that CIT-trained participants performed substantially better at posi-
tioning the robot arm, which was a programming aspect that was particularly challenging for participants
overall.



14 RITSCHEL et al.

We also analyzed participants’ mistakes for the Modify and Reverse tasks. As for the Create task, only a small
number of programs (3 for the Modify task, 4 for the Reverse task) were penalized for a lack of conciseness. Since
participants performed better on average for these tasks, the number of penalties for missing sub-tasks or major errors
was substantially smaller. For the Modify task, only 3 (8%) participants in the CIT-trained and 10 (24%) participants in
the video-trained group missed an entire sub-task. For the Reverse task, these numbers were even lower, with only 2
(5%) participants trained via CITs and 5 (12%) trained via video missing an entire sub-task. The percentage of solutions
with major errors was also lower for both the Modify task (CITs: 11%, video: 24%) and the Reverse task (CITs: 8%, video:
17%). As for the Create task, most major errors were related to issues placing the robot arm correctly to grip the item.

Few participants had issues positioning the physical robot arm for the Modify and the Reverse task, but
CIT-trained participants consistently performed better than video-trained ones.

5.4 RQ4: Perceived training quality and usability

We used the System Usability Scale (SUS) questionnaire45 to measure the perceived usability of CoBlox on a scale from
0 to 100 points, as described in Section 4. The resulting value can be interpreted as a percentile score, with a score of 68
being considered average.47 We use the adjectives for ranges of scores to ease interpretation, as defined by Bangor et al.48

Participants gave the CoBlox programming environment a mean score of 75.6 (SD 11.9). Participants that were trained
using the CITs gave CoBlox a mean score of 76.7 (SD 12.2), while participants who were trained using video gave a mean
score of 74.5 (SD 11.5). All of these scores fall into the range of “excellent,” based on the aforementioned adjective scale.

We conducted a t-test on participants’ usability ratings. The difference between these ratings is not statically significant
(t(77) = 0.82, p = 0.21). We discuss the implications of this finding further in Section 6.3.

The usability of the CoBlox environment was rated highly, regardless of training technique.

In addition to the SUS questionnaire, we also asked participants for what they viewed as the strengths of the environ-
ment. 58 participants (73%) responded to this question. Of the responses we received, 36 (20 from the CIT and 16 from
the video condition) indicated that the ease of use (or simplicity) of the interface made CoBlox stand out for them. Partic-
ipants commented on the ease and speed of learning for CoBlox, saying “Even common man can work with this language
very quickly” and “Coblox is simple and easy to use. Any layman can use this with a basic guide of 5 min.”

Users trained using CITs often commented on their ease-of-use. Four participants that were trained using CITs men-
tioned that the tutorial system contributed positively to their overall experience. When asked about features that aided
them in programming CoBlox, these users clearly identified CITs, saying: “Easy to use blocks, Tutorial” and “User inter-
face and the demo,” referring to the tutorial as a demo. In contrast, participants trained using the video commented on
known problems with video tutorials,33 saying “… I was not able to found options as first time I was doing,” that we
should “have more examples,” and that we should have “error messages if user is doing something wrong.”

Overall, participants’ positive feedback centered around CoBlox ease-of-use features. Some users also
specifically mentioned CITs as a helpful feature.

6 DISCUSSION

In this section, we interpret the results of our experimental evaluation and discuss the implications of our work.

6.1 Robot programming: Simulation versus practice

Our study found that for either training method, most adult end-users could quickly learn to use CoBlox and solve simple
but realistic robot programming tasks. This finding reinforces the results of a previous, smaller study on CoBlox that used
a robot simulator.12 It also adds to a growing body of evidence that end-users can program professional-grade industrial
robots with access to tools that are designed for their specific needs. However, observing the realistic workflow of CoBlox



RITSCHEL et al. 15

users also revealed challenges that did not appear in this or other studies that used simulators:49 participants often had
trouble positioning the robot arm precisely enough for their programs to work. Participants also tested their programs
much more frequently than in previous studies, since it was harder for them to anticipate the robot’s exact behavior.
The higher number of test-and-reset cycles also slowed participants down significantly, especially when they were still
unfamiliar with the programming environment. These observations highlight the importance of evaluating environments
like CoBlox under realistic conditions that provide access both to the programming environment and the physical robot.
They also demonstrate the need for additional support when learning end-user programming environments.

Our study demonstrates the advantage of CITs over traditional, video-based training when users have to follow a
practical programming workflow. The programming step that users struggled with the most was correctly positioning the
robot arm and capturing its coordinates. This observation confirms the assumption that motivated the design of CITs:
lead-through programming is difficult to learn for new users and deserves particular attention during training.

While many users struggled with lead-through programming during the tasks they were given, all users successfully
completed the physical programming steps that were part of their training via CITs. This indicates that the embedded
instructions and immediate feedback that CITs provide were sufficient to support users in performing these steps. Fur-
thermore, while working on the Create task, CIT-trained users were significantly more successful applying their learned
knowledge in a real task. Not only did they achieve higher scores overall but they also lost fewer points that were specif-
ically related to lead-through programming errors. This indicates that the physical training component of CITs had a
positive effect that lasted beyond the completion of the tutorials.

6.2 A place for videos

Our experiment demonstrated that CITs benefit CoBlox users. However, when CITs are used in industrial settings,
end-users are only one stakeholder that must be considered: For developers of training systems, CITs add development
time and cost compared to recording a training video. This increased investment, if possible at all, must pay off by saving
resources or time on training or consistently improving the training outcome. Thus, deciding when to use CITs and when
to use less expensive alternatives, such as video training, must not be taken lightly. In our opinion, video tutorials may be
best suited for a complementary role to CITs. We see CITs to be particularly helpful in teaching users the basic usage of
the programming environment and modes. These training steps are applicable even for other robot models or different
usage scenarios.

Once users are familiar with the general programming workflow of CoBlox, training videos could be a cost-effective
way to teach a more specialized set of usage scenarios, such as tending specific machines or using model-specific special
instructions. Likewise, videos can be personalized in ways that are different than embedded interactive tutorials, such
as tutorials that prioritize entertainment (or humor) alongside content or tutorials that situate tasks within a larger con-
ceptual landscape to teach big conceptual topics. It is in the best interest of both users and robot manufacturers to have
as many potential resources and avenues of support as possible, be it written manuals, video tutorials, or rich interactive
tutorials embedded directly into the system. We therefore see CITs as a relevant addition particularly for the high end
robotics market, where investments in training quality can pay off quickly due to productivity improvements and a higher
end-user satisfaction.

6.3 Learning versus usability

A surprising result of our study is the lack of correlation between user performance and perceived usability. According
to the SUS scores, there was only a small (and not statistically significant) difference between the CIT condition and the
video-trained condition, even though there was a significant difference in both time-on-task and correctness of program-
ming solution for the Create task. One possible explanation for this could be that we asked users about the perceived
usability of the system only at the end of our study protocol. At this point, almost all users were familiar enough with the
system to solve the last task in our sequence (Reverse) successfully. Their answer therefore might have been biased by
this recent positive experience.

The primary reason for the higher scores that users achieved in the Modify and Reverse tasks was most likely that
they were less challenging. However, the fixed order of the tasks might have been a contributing factor. We suspect that
particularly for those users trained by video, the first task they worked on acted as a self-administered tutorial. This would



16 RITSCHEL et al.

F I G U R E 7 Box-plot of the total time (s) spent by participants on both training and tasks

explain why video-trained users performed worse and took significantly longer for this task, but the difference faded as
the study progressed. It would also demonstrate how a beginner-friendly design can help overcome differences in training
quality, as long as users are resilient enough to teach themselves how to use the system.

6.4 Training and completion times

Our results show that while participants trained using CITs solved tasks significantly faster, they also spent significantly
more time on training. This suggests that the benefits of tutorials decrease when training time is taken to consideration.
As Figure 7 shows, the average sums of training and completion times are similar for each treatment. Nonetheless, these
data deserve a closer look.

As Figure 7 shows, the overall completion times of participants rained by tutorials show a wider spread than those of
the video-trained participants. We attribute the wider range of overall completion times for tutorial-trained participants
to two factors: First, due to business constraints, we had to impose a strict limit on the time spent on each task. This
artificially limited the overall time for participants that used the maximum time allocated for each task. The vast majority
(87%) of these participants were in the video-trained group. Had these participants been given unlimited time to work
on the task, the average time for video-trained users to complete tasks would have likely been higher, and in some cases
much higher; nine video-trained participants scored less than five out of fifteen on the first task, indicating they had made
little progress prior to the time limit.

Second, the wider spread might also indicate that CITs gave participants more freedom to take the time that they
needed for their training instead of having to keep up with the fixed pace of the training video. We allowed participants
to rewind the video and also to freely try out the CoBlox environment before they started working on the given tasks, but
almost none of them made use of this opportunity. We interpret this as evidence that the additional guidance that the
tutorials provided has helped participants to self-pace and not overestimate their understanding of the system. However,
an explicit prompt for participants to familiarize themselves with CoBlox, for example by reproducing what they had seen
in the video, might have led to a more similar distribution of training times between the groups and also removed this as
a source of bias in our study results.

6.5 Threats to validity

External validity. With respect to generalizability, our evaluation of CITs took place at a single industrial engineering firm,
and all participants were employees at that firm. Additionally, the CIT system was tailored for the CoBlox programming
language and one specific model of industrial robot. The tasks we have chosen further only cover the creation and modi-
fication of code, while real tasks that end-users face in practice may be more diverse and cover other software engineering
aspects. For example, we have not investigated whether end-users would be capable of ensuring that code is robust or
maintainable, and it is not clear whether CITs could provide substantial benefits when considering this type of task.

Internal validity. In terms of study design, one major limitation was the artificial time constraints for the programming
tasks. While this was absolutely necessary because the study was conducted as part of a normal industrial workday, it trun-
cated the programming task time for some participants, leading to artificially low task completion times. Had participants
been able to work on tasks as long as needed for completion, we believe the tasks times for video-trained participants
would have been much higher, as many video-trained participants were far from finishing at the end of the allotted time.



RITSCHEL et al. 17

Construct validity. Another limitation is the training method we have chosen to compare CITs against in our study. We
have selected video-based training since this type of training is popular in practice44 and the necessary materials were easy
to create in the context of our study. However, videos alone are not typically considered to be a form of intelligent tutoring
since they are not interactive. Participants had a chance to explore the CoBlox environment by themselves, but were not
explicitly told to do so before starting to work on our experimental tasks. It is therefore unclear how much influence
their familiarity with CoBlox had on our study results. Our study can also not answer whether other types of tutoring
systems, such as a disconnected or coexisting tutorials, would have led to comparable improvements in the participants’
performance.

Due to the fixed task order, participants’ performance on later tasks might have also been affected by them getting
more familiar with the system as they worked on tasks. Video-trained participants in particular might have used more of
their time on the first task to explore the system. This might have lowered their scores for that task, but improved their
scores for later tasks as they gained familiarity with the system.

7 CONCLUSION

Robotics systems will continue to increase in numbers as their costs decrease. Concurrently, the fraction of the costs asso-
ciated with programming these systems will continue to grow. To address this, end-user industrial engineers, who are not
trained software developers, need to learn to effectively program these systems. In this article, we demonstrated that CITs
have the ability to scaffold industrial end-users as they learn to create robotics programs. Through an experiment with
79 industrial end-users at a single industrial corporation, we compared the effectiveness of CITs to video-based training
which has been historically used for learning these systems. This evaluation showed that industrial end-users trained
with CITs were both quicker and more effective than those trained with video-based interventions. While interactive
tutorials may be more expensive than video training, this result demonstrates that these costs could be worth bearing in
cost-sensitive domains.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thorough and insightful feedback. This work has been funded by the National
Science Foundation through grant 2024561, by NSERC through a Collaborative Research and Development Grant, and
via an ABB Research grant.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not
publicly available due to privacy or ethical restrictions.

AUTHOR CONTRIBUTIONS
Nico Ritschel performed the majority of the analysis and interpretation of the experimental results, created the majority
of figures found in the article, and lead the initial writing and later revisions of the article. Anand Ashok Sawant designed
and implemented the CIT system, and contributed to the qualitative evaluation and the experimental design, as well as
the initial writing of the article. David Weintrop supervised and contributed to the design of CITs and contributed to the
discussion of related work. Reid Holmes is a co-supervisor of Nico Ritschel and has provided feedback on the experi-
mental evaluation, its presentation and has contributed to the writing of the article. Alberto Bacchelli is the supervisor
of Anand Ashok Sawant and has provided feedback on the experimental design and the presentation of the qualitative
results. Ronald Garcia is a co-supervisor of Nico Ritschel and has provided feedback on the experimental evaluation, the
statistical analysis and the writing and structure of the article. Chandrika K R and Avijit Mandal have supervised and
proctored the experiments and collected the raw data for the evaluation. Patrick Francis has supported the development
and implementation of CITs and provided feedback and details for the description of their features. David C. Shepherd
has supervised and coordinated the research project, provided feedback on all aspects of the design of CITs and their
evaluation, and has contributed to the writing and revision of the article.

ORCID
Nico Ritschel https://orcid.org/0000-0001-5600-2978
Anand Ashok Sawant https://orcid.org/0000-0002-5816-8020

https://orcid.org/0000-0001-5600-2978
https://orcid.org/0000-0001-5600-2978
https://orcid.org/0000-0002-5816-8020
https://orcid.org/0000-0002-5816-8020


18 RITSCHEL et al.

REFERENCES
1. Kock S, Vittor T, Matthias B, et al. Robot concept for scalable, flexible assembly automation: a technology study on a harmless dual-armed

robot. Proceedings of the International Symposium on Assembly and Manufacturing (ISAM); 2011:1-5.
2. Hagele M. Robots conquer the world [turning point]. IEEE Robot Autom. 2016;23(1):120-118.
3. Pan Z, Polden J, Larkin N, Van Duin S, Norrish J. Recent progress on programming methods for industrial robots. Proceedings of ISR and

ROBOTIK. Springer; 2010:1-8.
4. Biggs G, MacDonald B. A survey of robot programming systems. Proceedings of ARAA. Springer; 2003:1-10.
5. Ajaykumar G, Steele M, Huang CM. A survey on end-user robot programming. arXiv preprint arXiv:210501757; 2021.
6. Bischoff R, Kazi A, Seyfarth M. The MORPHA style guide for icon-based programming. Proceedings of RO-MAN. Springer; 2002:482-487.
7. Lego Systems Inc. Lego mindstorms NXT-G invention system; 2008.
8. Ritschel N, Kovalenko V, Holmes R, Garcia R, Shepherd DC. Comparing block-based programming models for two-armed robots. IEEE

Trans Softw Eng. 2022;48(5):1630-1643.
9. Kushida D, Nakamura M, Goto S, Kyura N. Human direct teaching of industrial articulated robot arms based on force-free control. Artif

Life Robot. 2001;5(1):26-32.
10. Sefidgar YS, Weng T, Harvey H, Elliott S, Cakmak M. RobotIST: interactive situated tangible robot programming. Proceedings of the

Symposium on Spatial User Interaction; 2018:141-149.
11. Cao Y, Wang T, Qian X, et al. GhostAR: a time-space editor for embodied authoring of human-robot collaborative task with augmented

reality. Proceedings of UIST. Springer; 2019:521-534.
12. Weintrop D, Afzal A, Salac J, et al. Evaluating CoBlox: a comparative study of robotics programming environments for adult novices.

Proceedings of SIGCHI. Springer; 2018:366:1-366:12.
13. Dorn B, Guzdial M. Learning on the job: characterizing the programming knowledge and learning strategies of web designers. Proceedings

of SIGCHI. Springer; 2010:703-712.
14. Guo PJ. Older adults learning computer programming: motivations, frustrations, and design opportunities. Proceedings of SIGCHI.

Springer; 2017:7070-7083.
15. Soloway E, Guzdial M, Hay KE. Learner-centered design: the challenge for HCI in the 21st century. Interactions. 1994;1(2):36-48.
16. Cooper L, Orrell J, Bowden M. Work Integrated Learning: A Guide to Effective Practice. Routledge; 2010.
17. Bottani E, Vignali G. Augmented reality technology in the manufacturing industry: a review of the last decade. IISE Trans.

2019;51(3):284-310.
18. Grossman T, Fitzmaurice G. ToolClips: an investigation of contextual video assistance for functionality understanding. Proceedings of

SIGCHI. Springer; 2010:1515-1524.
19. Huang J, Twidale MB. Graphstract: minimal graphical help for computers. Proceedings of UIST. Springer; 2007:203-212.
20. Kelleher C, Pausch R. Stencils-based tutorials: design and evaluation. Proceedings of SIGCHI ACM. Springer; 2005:541-550.
21. Wang CY, Chu WC, Chen HR, Hsu CY, Chen MY. EverTutor: automatically creating interactive guided tutorials on smartphones by user

demonstration. Proceedings of SIGCHI. Springer; 2014:4027-4036.
22. Kim Y, Choi Y, Kang D, Lee M, Nam TJ, Bianchi A. Heyteddy: conversational test-driven development for physical computing. Proc

UBICOMP. 2019;3(4):1-21.
23. Warner J, Lafreniere B, Fitzmaurice G, Grossman T. ElectroTutor: test-driven physical computing tutorials. Proceedings of UIST. Springer;

2018:435-446.
24. Carroll JM, Rosson MB. Paradox of the Active User. MIT Press; 1987.
25. Grossman T, Fitzmaurice G, Attar R. A survey of software learnability: metrics, methodologies and guidelines. Proceedings of SIGCHI.

Springer; 2009:649-658.
26. Bloom BS. The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educ Res. 1984;13(6):4-16.
27. Corbett A. Cognitive computer tutors: solving the two-sigma problem. In: Bauer M, Gmytrasiewicz PJ, Vassileva J, eds. User Modeling.

Springer; 2001.
28. VanLehn K. The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ Psychol.

2011;46(4):197-221.
29. Anderson JR, Boyle CF, Reiser BJ. Intelligent tutoring systems. Science(Washington). 1985;228(4698):456-462.
30. Kim AS, Ko A. A pedagogical analysis of online coding tutorials. Proceedings of SIGCSE. Springer; 2017:321-326.
31. Ashenfelter E. From the classroom: a guide to teaching coding using Google’s CS first. Gift Child Today. 2017;40(4):220-225.
32. NI Learning Center. LabVIEW Tutorial: Getting Started with LabVIEW Programming Basics. NI Learning Center; 2022 https://learn.ni.

com/learn/article/labview-tutorial
33. Knabe K. Apple guide: a case study in user-aided design of online help. Proceedings of the Conference Companion on Human Factors in

Computing Systems; 1995:286-287.
34. Code Inc. Hour of code. CoDesign; 2020. http://code.org/learn.
35. Resnick M, Silverman B, Kafai Y, et al. Scratch: programming for all. Commun ACM. 2009;52(11):60.
36. Cooper S, Dann W, Pausch R. Alice: a 3-D tool for introductory programming concepts. J Comput Sci Coll. 2000;15(5):107-116.
37. Bergman L, Castelli V, Lau T, Oblinger D. DocWizards: a system for authoring follow-me documentation wizards. Proceedings of UIST.

Springer; 2005:191-200.
38. Fernquist J, Grossman T, Fitzmaurice G. Sketch-sketch revolution: an engaging tutorial system for guided sketching and application

learning. Proceedings of UIST. Springer; 2011:373-382.

https://learn.ni.com/learn/article/labview-tutorial
https://learn.ni.com/learn/article/labview-tutorial
http://code.org/learn


RITSCHEL et al. 19

39. Metcalfe J. Learning from errors. Annu Rev Psychol. 2017;68:465-489.
40. Barobo Inc. RoboBlockly. Barobo Inc.; 2020 https://roboblockly.com
41. Li W, Grossman T, Fitzmaurice G. GamiCAD: a gamified tutorial system for first time autocad users. Proceedings of the 25th Annual ACM

Symposium on User Interface Software and Technology; 2012:103-112.
42. Davis JU, Gong J, Sun Y, Chilana P, Yang XD. CircuitStyle: a system for peripherally reinforcing best practices in hardware computing.

Proceedings of UIST. Springer; 2019:109-120.
43. Metcalfe J. Learning from errors grantee submission. Psychology. 2017;68:465-489.
44. van der Meij H, Van Der Meij J. A comparison of paper-based and video tutorials for software learning. Comput Educ. 2014;78:150-159.
45. Brooke J. SUS-A quick and dirty usability scale. Usab Eval Ind. 1996;189(194):4-7.
46. Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. J HCI. 2008;24(6):574-594.
47. Lewis JR, Sauro J. The factor structure of the system usability scale. Proceedings of the International Conference on Human Centered

Design; 2009:94-103.
48. Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: adding an adjective rating scale. J Usab Stud.

2009;4(3):114-123.
49. Weintrop D, Shepherd DC, Francis P, Franklin D. Blockly goes to work: block-based programming for industrial robots. Proceedings of

Blocks and Beyond Workshop (B&B); 2017:29-36.

How to cite this article: Ritschel N, Sawant AA, Weintrop D, et al. Training industrial end-user programmers
with interactive tutorials. Softw Pract Exper. 2022;1-19. doi: 10.1002/spe.3167

https://roboblockly.com

	Training industrial end-user programmers with interactive tutorials 
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Tutoring systems and tutorials: An overview
	2.2 Disconnected and coexisting tutoring systems
	2.3 Integrated tutoring systems
	2.4 Tutoring systems for physical programming

	3 APPROACH
	3.1 A brief tour of CoBlox
	3.2 A brief tour of CITs
	3.3 Key CIT features
	3.3.1 Embedded instructions
	3.3.2 Immediate feedback


	4 EXPERIMENTAL EVALUATION
	4.1 Participants
	4.2 Research questions and study protocol
	4.2.1 Training
	4.2.2 Tasks
	4.2.3 Usability questionnaire
	4.2.4 Data analysis


	5 RESULTS
	5.1 RQ1: Time spent on training
	5.2 RQ2: Performance on programming tasks
	5.2.1 The C<0:sc>reate</0:sc> task
	5.2.2 The M<0:sc>odify</0:sc> and R<0:sc>everse</0:sc> tasks

	5.3 RQ3: Programming aspects most affected by CIT-based training
	5.4 RQ4: Perceived training quality and usability

	6 DISCUSSION
	6.1 Robot programming: Simulation versus practice
	6.2 A place for videos
	6.3 Learning versus usability
	6.4 Training and completion times
	6.5 Threats to validity

	7 CONCLUSION

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	AUTHOR CONTRIBUTIONS
	ORCID
	REFERENCES

