STOP THE (AUTOGRADER) INSANITY:
Regression Penalties to Deter Autograder Overreliance

Elisa Baniassad
ebani@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, BC, Canada

Braxton Hall
braxtonh@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, BC, Canada

ABSTRACT

Autograders are an invaluable tool for deploying assessments in
large classes. However students sometimes rely on the autograder
in place of careful thought for ways to improve to their solution. We
sought to naturally encourage students to check their own solutions
more, and hammer the grader less. To do this, we imposed a penalty
each time a student’s grade went down: we called these regression
penalties. We assessed whether the introduction of these penalties
resulted in less reliance on the autograder without hurting student
performance.

Encouragingly, the number of autograder submissions was re-
duced by roughly half while only slightly decreasing the median
final grade. Students reported feeling nervous about their submis-
sions, but noted that they checked their own solutions by testing
their code far more than they would have without the penalty.
Students also expressed positivity about the regression model.

CCS CONCEPTS

« Social and professional topics — Computing education
; Computer science education.

KEYWORDS

assessment, software engineering, autograder

ACM Reference Format:

Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. 2021.
STOP THE (AUTOGRADER) INSANITY: Regression Penalties to Deter Au-
tograder Overreliance. In The 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE °21), March 13-20, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432430

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 13-20, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432430

Lucas Zamprogno
lucasaz@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, BC, Canada

Reid Holmes
rtholmes@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, BC, Canada

1 INTRODUCTION

Autograders are an invaluable tool for deploying assessments in
large classes. They allow us to pose challenging problems that
would be intractable to grade manually. We rely heavily on auto-
graders as educators at a large, publicly funded institution, with a
typical class size of roughly 320, split over multiple sections.

However, educators who have used autograders in their courses
know that students use autograders in place of their own careful
reflection. Some autograders can be configured to pose artificial
barriers such as wait times between submissions, or limits on the
number of times they can submit (e.g., [5, 14]) as a means to encour-
age self-reliance. But even with these baffles, the students tweak
and submit as often as they can and predominantly rely on auto-
grader feedback to direct their work. Ultimately, they are learning
the grader, not learning the concepts. !

We characterize scores moving up and down as turbulence, and
we saw significant turbulence in our students’ grades; we observed
8.5% of submissions induced regressions for our 3rd year software
engineering course in Fall 2019 (326 students, 163 pairs). Nearly
half of teams regressed once, and one in five regressed twice or
more. This turbulence is visible in Figure 1 where each line depicts
a team’s grade across submissions. Grades go up, but they also go
down.

One of the goals of most general software engineering classes is
to teach students the value of testing and also to instill them with a
sense of software hygiene, including the proper use of development
and production branches. Commits made to development branches
can fail tests: the code can get worse before it gets better, and
the branch can serve as a sandbox for developers to tweak and
refine their projects. Production branches, however, are the code
that is used by clients. This code should not get worse and better
- it should only improve. Production branches should not have
failing tests, and changes must be well thought-out and validated.
Examining how students were using our autograder, we realised
they were using their production branch and the autograder in

In a conversation entitled The things you learn the hard way - beware return
scores instantly on the forum for the grading tool Formative, an educator laments:
“Today, I witnessed a student simply clicking until green without even reading the question!”.
The suggested solutions by the tool developer was limiting the number of tries, or
hiding scores until final submission. [10]

https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/3408877.3432430
https://discuss.goformative.com/t/the-things-you-learn-the-hard-way-beware-return-scores-instantly/1880
https://discuss.goformative.com/t/the-things-you-learn-the-hard-way-beware-return-scores-instantly/1880

15 20 25

Submission Number

Figure 1: Student submissions without regression penalties. 8.5% submissions caused a regression, showing considerable tur-
bulence in grade changes. Each subsequent submission by a team adds an additional point along the X-axis.

100

75

50 Z

Grade (%)

25 =

5 10

15 20

Submission Number

Figure 2: Student submissions with regression penalties. Autograder submissions decreased by 48%. 2% of submissions caused
a regression, representing a significant drop in turbulence as compared to the prior semester.

place of their own tests: essentially, they were treating it like a
development environment to gain feedback from the autograder
for direction.

Although we have encouraged testing with test coverage grades,
test coverage often lagged behind grades, suggesting that students
were achieving good coverage after submitting code, as opposed
to before, and were relying on the autograder to tell them if their
project had improved, not relying on their own testing.

To reduce over-reliance on the autograder, we imposed a penalty
each time a student’s grade went down: we called these regres-
sion penalties. Regression penalties are designed to organically
inspire students to write their own tests. A regression penalty is a
permanent penalty on a student’s grade, corresponding to the size
of the regression. In our case, we set the penalty at half the value of
their regression as a permanent penalty on their final grade. For ex-
ample: if their grade regressed from 89 down to 87 in a subsequent
submission, their final grade was now capped at 99 (2 percentage
points regression becomes a 1 point final penalty).

To pair regression penalties with a sense of natural, real-world
consequence, we wove the new grading scheme into a stronger
Software Engineering narrative:

When you submit to the autograder, you are releasing to
GE | your client. You cannot remove functionality from the client.
You must have confidence that when you push to production,
you will be improving the client’s life, not making it worse.

|
L

Can regression penalties reduce student reliance on the
autograder as tester? And if so, to what extent?

]

Research Question J

2 RELATED WORK

There is extensive work and associated literature on the provision of
automatic grading for programming assignments (e.g., [2, 5, 12, 14]).
Techniques involve running test cases against submissions and us-
ing success combined potentially with other factors such as test cov-
erage [5, 12], style checking [11], or structural checking [4]. Other
approaches involve assessing students tests themselves against ref-
erence implementations, each with their own mutations, to identify
how many of the mutants student tests identify [13]. Another allows
educators to validate the fairness of their assessment framework
through mutation testing [3].

Prior work has found that there are benefits moving from sin-
gle submissions to allowing resubmissions for formative feedback.
However, students can become reliant on the automated feedback
over their own tests [1], or resubmit rapidly without taking the time
to think about their submission [8]. In an attempt to address these
downsides, some automated assessment tools employ features such
as limiting submission number or frequency, limiting feedback, and
randomizing exercises [7]. Web-CAT is a representative example of
such a system, in which test cases are used to establish a grade for a

submission, and a maximum number of submissions could be set [5].
Other tools employ industry-standard tools for assessment [6].

We are only currently aware of one approach that used over-use
of a grader as a motivation for their technique: The AUTOGRADER
system by Liu et al. [9]. Their approach uses semantic analysis of
programming submissions to determine a program’s correctness,
and synthesise counter examples to assess students’ adherence
to a correct solution. They cite the risk of autograder overuse as
a motivation for this style of analysis, synthesis, feedback, and
assessments, suggesting that with this approach, tinkering is not
as likely.

These techniques are complementary with our approach and
results. Our regression-penalties approach can be applied as an ad-
dition to any autograding system that allows multiple submissions.

3 METHODOLOGY

To answer our research question, we applied our approach to one
instance of a third year software engineering course and used the
prior instance of the same course as a point of comparison.

3.1 Measures

We tracked several per-team quantitative indicators of success for
both the Fall 2019 semester (prior to regressions) and the Winter
2020 semester (with regressions):

e The number of submissions. A submission reduction could
point to a reduced reliance on the autograder.

o The grades at each submission. Grades that steadily increased
might indicate that students are taking increased care.

o The average grade across all submissions. An improved aver-
age grade across all submissions might indicate that students
are submitting higher quality code to the autograder.

o The final grade. It was not our wish to hurt students’ grades
- we only wanted to reduce using the autograder as a crutch.
If average final grades were similar this would suggest that
students obtained the same level of learning.

e The number of times grades fell. By comparing the two
semesters we would be able to see if teams’ grades fell fewer
times, suggesting that they were being more careful in their
submissions, and were tweaking their submissions and using
the autograder as a crutch, less than without penalties.

o The final penalty amount (for Fall 2019 this is the penalty that
would have been incurred, had regressions been in place).
By comparing the two semesters, we would be able to see if
students naturally incurred fewer penalty points, allowing
us to compare the magnitude of reduction in code-tweaking.

At the end of the Winter 2020 semester we polled all students
asking: Did having regression penalties change the way you did the
project, and if so, how? We designed this question in this way to
mitigate response bias: had we asked a leading question such as
Did you think regression penalties helped you learn? or Do you think
regression penalties made you test more?, we would have run the
risk of biased results for which we could not correct. We also did
not want to give students a specific checklist of things to consider,
for the same reason. Instead, we asked this open ended question,
and then coded the responses for specific concepts.

We coded responses for:

o Specific mentions of increased personal testing.

e Specific mentions of stress (positive or negative).

e Specific mentions of perceived adverse effects on learning,
process, or grades.

o Specific mentions of attaining the learning outcome of only
pushing well-tested code to production.

o General statements related to increased caution when push-
ing to production.

3.2 Course demographics

We evaluated our approach on the Winter 2020 (January—-April) in-
stance of our third year software engineering course; this instance
had 274 students who performed the project in pairs. We then com-
pared our results to the Fall 2019 (September—December) instance
of the same course; this instance had 326 students who performed
the project in pairs.

The student demographics were equivalent between the two
instances. The project deliverable specifications were identical, stu-
dents had the same amount of time to complete the work. The
student-to-TA ratio was the same across both semesters. The stu-
dent backgrounds were similar since all students must follow a pre-
ordained sequence of courses. The same ratio of students (roughly
an 8th of students) had co-op work experience between the two
semesters.

3.3 Baseline Course Design

The Fall 2019 course instance served as the baseline for our eval-
uation, in which there were 163 pairs of students. We focus on
the first (of three) major deliverables for the project in this course.
The subsequent deliverables changed slightly between semesters,
which meant that student behaviour would be less comparable
across semesters, while the first major deliverable was stable. This
deliverable had 42 unit tests that evaluated the student submissions.
Final student solutions for this deliverable averaged 1056 source
lines of code in the latest instance of the course.

Students were allowed to check their grade every 12 hours, but
could submit their code any time. The grading rule was that we
would take the maximum grade from all submissions, regardless of
whether they requested a grade or not. Due to a limitation in our
setup, we are not able to distinguish between times when students
requested a grade versus when they were committing incremental
work. However, students were aware that they were being graded in
the background on every submission (e.g., on every git push), and
knew there there was no harm in committing since we always took
their maximum grade. Additionally, the grader returned linting
errors on the most recent commit from each submission, so sub-
mitting even without requesting a grade, did have grade-relevant
value to the students. Hence, in our comparison to the Winter 2020
semester we believe it is a fair comparison to count all commits as
grader submissions.

Since a portion of the grade was allocated for test coverage, some
submissions improved coverage, but did not affect core functionality.
To isolate the submissions that were core functionality related we
culled the submissions that improved only test coverage, so that we
would be able to compare similar submission types across the two

semesters. We then considered only the core functionality scores
when comparing to the Winter 2020 semester.

Students were able to submit their code to their repository any
time, as this was the way they shared code within the team. Every
submission triggered a background grading process (on the most
recent commit in the submission) which gave them basic informa-
tion about their submission, such as whether the submission would
build on the test infrastructure, whether it timed out when run, and
whether it passed the code style check. It did not report on the core
functionality. For that, students had to request a grade from the
grader by placing a comment on their commit in GitHub.

3.4 Semester With Regression Penalties

In Winter of 2020, we introduced regression penalties in a section
with 137 pairs of students. The regression penalties represented the
only meaningful change between the two course instances we eval-
uated. We made other minor changes to facilitate the introduction
of the penalties:

e Because students were new to the penalty approach, we
softened the regression rule slightly by saying that their
worst regression would be forgiven.

e We removed all formerly applied artificial baffles for them
using the autograder. Specifically, we removed the 12 hour
wait time between autograder submissions along with the
portion of their grade that corresponded to test coverage.

e We developed a set of smoke tests so that students could
deploy their development code on the production architec-
ture - this did not give them access to the production-level
(client-level) tests. This mimics how a real development en-
vironment would work: it would be the same architecture as
the production environment, or as close as possible to it, to
allow thorough testing but were only sufficient to indicate
whether their code would run on the production environ-
ment.

4 RESULTS

In this section we describe the quantitative and qualitative impacts
of the implementation of regression penalties on autograder usage.

Fal'l9 Winter’20 % Change

n=163 n=137
Regression penalties applied X v —
Teams regressing >= 1 times 46% 6.5% -39.5%
Teams regressing >= 2 times 18% 0.7% -17.3%
Average calls to grader 8.96 4.62 -48.4%
Submissions that regressed 8.50% 2.00% -78.6%
Average # of regressions 0.76 0.08 -89.5%
Average penalty points 8.48% 1.45% -82.9%
Average assignment grade 92% 82% -10.9%
Median assignment grade 97% 96% -1.0%

Table 1: Quantitative regression results.

4.1 Quantitative Comparisons

The broad quantitative differences between the course instances
can be found in Table 1. In the Fall 2019 instance, without regression
penalties students, invoked the autograder an average 9.0 times.
46% of teams regressed at least once, and the average regression
penalty would have been 8.5%, were a penalty in place. The median
grade for the deliverable was 97%.

In the Winter 2020 instance, while subject to regression penalties,
students invoked the autograder an average 4.6 times. 6.5% of teams
regressed at least once, and the average regression penalty was 1.5%,
which represents a significant drop in turbulence. The median grade
for the deliverable was 96%.

The largest impact of the regression penalty seemed to be on the
average number of regressions per team, which fell by almost 90%.
This drop can be linked to the percent of teams regressing at least
once: In the Fall 2019 semester, nearly half the teams regressed,
whereas with regression penalties, this fell to 6.5%. The number
of submissions to the grader also fell by nearly 50%, as did the
percentage of submissions that resulted in a regression (from 8.54%
to 1.7%), meaning that students were submitting to the grader only
half as much, and regressed far less than that.

8.5% of submissions caused a regression before the penalties
were applied but only 2% caused a regression afterwards, which
is a significant drop in turbulence. These differences can be seen
comparing the autograder performance before (Figure 1) and after
(Figure 2) the regression penalties were added.

The average grade for the submission also fell by roughly 10%.
We will discuss this in more detail in the Analysis section on Student
Performance (Section 5.2).

4.2 Student Perceptions

241 out of 247 students (97%) responded to the survey in which we
asked them to report on changes to their process that resulted from
the introduction of regression penalties. 209 (86%) indicated that
they felt their process was influenced by the presence of regression
penalties.

4.2.1 Testing. 83 students (~33% of those who reported influence)
responded that they perceived an increase in their own testing
practices as a way to prepare submissions to production.

In previous classes with autograders I would just make

“ changes and test using the autograder rather than write
my own exhaustive test suite. The regression penalty discour-
aged me from doing that and forced me to write my own
tests.

4.2.2 Caution. 163 students (~68%) reported an increase in their
level of caution that aligned with our goals for the approach:

It was the first time I really double checked and triple checked
G6 | my code before merging into master for a school assignment

Some students reported feeling hesitant to submit a new version
if their score was already high, and that this may have hurt their
overall score:

Regressions were definitely on my mind throughout the
“ project. Those combined with my partner usually being ready
to commit a day or two after me lead me to accept the first
mark we received when merging to master more often than
not. I think I may have approached it differently with more
time or in a work setting, but on a time crunch it lead me to
adopt a “better safe than sorry” mindset.

4.3 Stress & Risk Avoidance

50 students (~20%) explicitly indicated they felt stress with the
penalties. 36 students (~15%) mentioned feeling that the penalties
brought undue risk, and 13 students reported that they believe their
final grade was hurt by not taking more risk with their submissions.
One group indicated they failed the deliverable because of waiting
so long to merge that they missed the deadline. The other 12 groups
reported not attempting a perfect score when reaching 90-95%
because they perceived the risk of a penalty to outweigh the benefit
of a perfect score. 19 students (~8%) reported feeling stressed but
also feeling positive about the penalties. They provided comments
similar to this:

Yes, it is both good and bad. Good thing is that it motivates
GG | me towrite more tests and check if my code satisfies all the
specs before submitting to autobot. However, it does add a
lot of stress at the same time as we might spend additional
unnecessary time checking on trivial details on the project
before where we could just submit and get feedback right
away. Overall, I do think regression penalties is somewhat
useful as it simulates a real world working experience and
forces us to be more responsible on our code.

4.4 Positive Assessment

Many students (76/241, ~31%) reported having a positive regard for
the regression penalties, making statements similar to this:

Yes, I was very careful I didn’t break anything before com-
GG | mitting to master. I think if it weren’t for this policy, I would
have been tempted to use the test suite used to grade our
projects as my primary measure of progress. Having to avoid
regressions though, forced me to ensure that my own tests
were sufficient. This definitely helped me in the long run,
because I actually knew what I was testing, as opposed to the
hidden test suite. Overall, it definitely got me into the habit
or writing better test suites.

Of those, 26 students (~10%) specifically mentioned the product-
release quality learning outcome we were trying to instill as a
benefit for the policy:

The regression penalties forced me and my partner to be more

GG | methodical when debugging and brainstorming solutions to
our problems. I think even though it brings on some pressure,
it’s an adequate reflection of pushing a working prototype
in a real workplace, so at least now I sort of have an idea of
what to expect. Overall I like them.

5 DISCUSSION

In this section we synthesise various quantitative and qualitative
results to analyse the efficacy of the regression penalties technique

with respect to the two main components of our research question:
decreasing autograder abuse and maintaining student performance.

5.1 Reduction in Autograder Over-reliance

To assess whether students’ reliance on the autograder was reduced,
we examined both the turbulence of the autograder submissions
and the student’s perception of their own process changes. We
observed a reduction in turbulence in student submissions when
regression penalties were in place. This was observed quantitatively
using several measures:

(1) The number of submissions in the regression penalty in-
stance was substantially lower than in the prior course in-
stance, pointing to a more measured development practice.

(2) Examining the proportion of submissions that caused a re-
gression. In the regression penalty instance, the proportion
of submissions causing regressions was dramatically lower
than in the prior course instance.

(3) With respect to the magnitude of the regressions, the regres-
sions tended to be much larger prior to the penalties as well,
suggesting students were able to submit smaller less risky
changes once the penalties were in place.

Reduced autograder reliance was also supported by the sub-
jective responses from students. 163/247 (~65%) of the students
reported increased care prior to submitting. Of those, 82 specified
that this specifically involved increased testing using their own test
suites.

5.2 Student Performance

To assess student performance we examined both the average and
median grades for the deliverable and the students’ perception
of their own performance. Although the average grade differed
substantially between the two instances, the median grade is quite
similar. To look at this further, we plotted the grade histograms
for the two course instances in Figure 3. This shows that the the
distribution of grades between the instances was similar, although
the peak was lower and the tail was longer in with the regression
penalties.

80 80

60 60

40 40

20 20

0 — - 0
8888888888, 8888888888
°S2R88%88R888 °e°88%88RE8E

Checkpoint 1 Grades Fall 2019 Checkpoint 1 Grades Winter 2020

Figure 3: Comparison of grades between instances.

We can look more deeply at grade impacts by examining student
comments. 13 students’ perception that grades were somewhat
compromised was borne out. All but one of these reports were
students saying that once they hit 95% they stopped because the
risk of a penalty outweighed the reward of achieving a perfect
grade. However one otherwise strongly performing team reported
that they achieved a poor grade because they had been hesitant
to submit to the grader, and hence missed the deadline. Those

comments may explain the slightly lower peak at the top of the
histogram, and also increased activity in the lower grades.

But is this an unequivocally bad thing? Increased caution, at the
expense of risk-taking, may not be a negative within a Software
Engineering context. Some students reported fear at pushing their
changes, which is actually quite representative of how it feels to
publish code to real clients. When combined with the reduction in
submissions, and self-reported increase in testing, this suggests that
students were thinking more, and considering the problem more. As
educators in software engineering, we actually find it encouraging
that students are reporting choosing to be meticulous about their
code before release. It was our suspicion that in the Fall of 2019
and prior to that, students were receiving inflated grades because
of their ability to submit risk-free to the grader, effectively gaming
the grader as opposed to considering the problem. It is conjecture,
but we believe that the grades that were reported in the Winter of
2020 were more accurately reflective of students’ comprehension of
the problem and a more realistic assessment of their level of skill.

In future semesters, we may need to tune it so that students
still feel a sense of caution, but do not feel paralysed. Or, we might
employ increased coaching to remind students about how the penal-
ties work, and that they get one free penalty (the 12 teams that
reported not trying for perfect grades had no prior regressions, so
they would actually have been able to try risk free).

6 STUDY LIMITATIONS

There are a number of limitations to our in vivo experimental design
for evaluating regression penalties.

6.0.1 Unable to Compare Coverage. A drawback of this study is
that we are unable to compare coverage performance, and so cannot
accurately gauge the quality of the tests written by students during
the Winter 2020 semester. Because there were no grades allocated
to coverage, many students chose not to commit their tests to their
repositories.

6.0.2 Max Grade as Confounding Influence. The grading rule that
we would take the maximum grade from all submissions may have
exacerbated the thrashing that appears at the end of the Fall 2019
deliverable submission period. We believe the influence of this rule
is mitigated by two factors:

(1) In prior semesters we had a rule that it was the last submis-
sion to the autograder that counted. This resulted in students
reverting their submission to their own best commit right
before the deadline, and then submitting that commit.

(2) The same grading rule is in place for the semester with the
regression penalties.

6.0.3 Smoke Tests as Confounding Influence. In Winter 2020 we
provided the students a set of smoke tests against which they could
run their development code. These were tests that allowed students
to see whether the code would run properly on the architecture,
and did a basic feature check. Smoke tests were not sufficient to
determine whether the code would achieve a satisfactory grade
when pushed to production. This is supported by the fact that only
14 of the 209 students who indicated an effect on their process
mentioned using the smoke tests. While we did not have tests
specifically called smoke tests in the Fall 2019 semester, we did give

students automatic feedback on the status of their code style, build
status, and timeout.

6.0.4 Potential Response Bias on Perception of Penalties. Students
knew that we were introducing regression penalties to better tie
practice to their learning outcomes. Thus, there may have been
some wish to tell us what we wanted to hear when reporting on the
experience with the penalties. We cannot rule this out completely,
however we believe this effect was muted because:

(1) Students knew their responses were entirely anonymous and
would not be viewed until after the course was over.

(2) We did not directly ask whether students liked or disliked
the penalties. We specifically asked them to indicate how it
influenced their process. We did not tell them that we were
hoping they would reflect on their own tests.

6.0.5 Generalisability to Other Courses. We employed regression
penalties in a software engineering course that was explicitly teach-
ing a client-centric view of releasing code. We believe our results
show that students benefited from the introduction of regression
penalties. But would courses in other fields of computing, or even
more broadly, garner the same benefits? The fact that a large num-
ber of students specifically noted being more careful, regardless of
whether they appreciated the policy, or were aware of the intended
learning outcomes, suggests that the increased care is separate from
the broader context of the introduction. That said, students in other
courses may feel that the rule is more arbitrarily introduced. If this
were to be included in a different field, it may be necessary to weave
it into a sensible, learning-driven outcome that students would ap-
preciate beyond suggesting that they should learn to consider their
submissions more carefully within their own understanding of the
problem and solution, rather than repeatedly using the autograder
as a crutch.

7 CONCLUSIONS

Based on our analysis, the regression penalties performed well in
terms of reducing over-reliance on the autograder as a feedback
crutch. We saw a large reduction in grade drops when penalties
were introduced, which was supported by over half the students’
perception that they used more care, and in roughly a third of the
cases specifically mentioned more reliance on their own test cases
to bolster their confidence prior to submitting to the grader. We
observed a small dampening effect in terms of risk taking, however
given the nature of the domain, risk aversion is a positive learning
outcome. We believe that these results could translate to any course
employing an autograder, however we found that it was valuable to
have an area-relevant narrative to justify the penalties and would
advise anyone employing this technique to insert a similar mecha-
nism. We still believe the penalties would reduce turbulence, but
the positive and situated mindset associated with the penalties may
have played a non-trivial part in their success, and the mood of the
class with respect to their inclusion.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers, our colleagues
Meghan Allen and Margo Seltzer for their substantive input, and
Andrew Stec for his help with data wrangling.

REFERENCES

(1]

[2

[

(3

=

N
fluat

Kirsti M. Ala-Mutka. 2007. A Survey of Automated Assessment Approaches
for Programming Assignments. Computer Science Education (Feb. 2007). https:
//doi.org/10.1080/08993400500150747

Luciana Benotti, Federico Aloi, Franco Bulgarelli, and Marcos J. Gomez. 2018.
The Effect of a Web-Based Coding Tool with Automatic Feedback on Students’
Performance and Perceptions. In Proceedings of the Technical Symposium on
Computer Science Education (SIGCSE). 2-7. https://doi.org/10.1145/3159450.
3159579

Benjamin Clegg, Siobhan North, Phil McMinn, and Gordon Fraser. 2019. Simulat-
ing Student Mistakes to Evaluate the Fairness of Automated Grading. In Proceed-
ings of the International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET). 121-125. https://doi.org/10.1109/ICSE-
SEET.2019.00021

Anton Dil and Joseph Osunde. 2018. Evaluation of a Tool for Java Structural
Specification Checking. In Proceedings of the International Conference on Education
Technology and Computers (ICETC). 99-104. https://doi.org/10.1145/3290511.
3290528

Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Automati-
cally Grading Programming Assignments. SIGCSE Bulletin 40, 3 (June 2008), 328.
https://doi.org/10.1145/1597849.1384371

Sarah Heckman and Jason King. 2018. Developing Software Engineering
Skills Using Real Tools for Automated Grading. In Proceedings of the Tech-
nical Symposium on Computer Science Education (SIGCSE). 794-799. https:
//doi.org/10.1145/3159450.3159595

Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppéla. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the International Conference on Computing Education Research

[12

[13

[14

]

(KOLI). 86-93. https://doi.org/10.1145/1930464.1930480

Ville Karavirta, Ari Korhonen, and Lauri Malmi. 2007. On the Use of Resubmis-
sions in Automatic Assessment Systems. Computer Science Education (Feb. 2007).
https://doi.org/10.1080/08993400600912426

Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu. 2019. Automatic Grading
of Programming Assignments: An Approach Based on Formal Semantics. In
Proceedings of the International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET). 126-137. https://doi.org/10.
1109/ICSE-SEET.2019.00022

Formative Authorised Educator MGarcia. 2018. The things you learn the hard way
- Beware “return scores instantly”. (2018). https://discuss.goformative.com/t/the-
things-you-learn-the-hard-way-beware-return-scores-instantly/1880/16
Karoly Nehéz, Sandor Kiraly, and Oliver Hornyak. 2017. Some aspects of grading
Java code submissions in MOOCs. Research in Learning Technology (RLT) 27 (07
2017). https://doi.org/10.25304/rlt.v25.1945

Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K.
Hollingsworth, and Nelson Padua-Perez. 2006. Experiences with Marmoset:
Designing and Using an Advanced Submission and Testing System for Pro-
gramming Courses. ACM SIGCSE Bulletin 38, 3 (June 2006), 13-17. https:
//doi.org/10.1145/1140123.1140131

John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples for Pro-
gramming Problem Comprehension. In Proceedings of the International Confer-
ence on International Computing Education Research (ICER). 131—-139. https:
//doi.org/10.1145/3291279.3339416

Lucas Zamprogno, Reid Holmes, and Elisa Baniassad. 2020. Nudging Student
Learning Strategies Using Formative Feedback in Automatically Graded Assess-
ments. In Proceedings of the International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity - Education Track (SPASH-E).
1-11. https://doi.org/10.1145/3426431.3428654

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/3159450.3159579
https://doi.org/10.1145/3159450.3159579
https://doi.org/10.1109/ICSE-SEET.2019.00021
https://doi.org/10.1109/ICSE-SEET.2019.00021
https://doi.org/10.1145/3290511.3290528
https://doi.org/10.1145/3290511.3290528
https://doi.org/10.1145/1597849.1384371
https://doi.org/10.1145/3159450.3159595
https://doi.org/10.1145/3159450.3159595
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1080/08993400600912426
https://doi.org/10.1109/ICSE-SEET.2019.00022
https://doi.org/10.1109/ICSE-SEET.2019.00022
https://discuss.goformative.com/t/the-things-you-learn-the-hard-way-beware-return-scores-instantly/1880/16
https://discuss.goformative.com/t/the-things-you-learn-the-hard-way-beware-return-scores-instantly/1880/16
https://doi.org/10.25304/rlt.v25.1945
https://doi.org/10.1145/1140123.1140131
https://doi.org/10.1145/1140123.1140131
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3426431.3428654

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Measures
	3.2 Course demographics
	3.3 Baseline Course Design
	3.4 Semester With Regression Penalties

	4 Results
	4.1 Quantitative Comparisons
	4.2 Student Perceptions
	4.3 Stress & Risk Avoidance
	4.4 Positive Assessment

	5 Discussion
	5.1 Reduction in Autograder Over-reliance
	5.2 Student Performance

	6 Study Limitations
	7 Conclusions
	References

