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Block-based programming environments, already popular in computer science education, have been success-
fully used to make programming accessible to end-users in domains like robotics, mobile apps, and even
DevOps. Most studies of these applications have examined small programs that fit within a single screen,
yet real-world programs often grow large, and editing these large block-based programs quickly becomes
unwieldy. Traditional programming language features, like functions, allow programmers to decompose
their programs. Unfortunately, both previous work, and our own findings, suggest that end-users rarely
use these features, resulting in large monolithic code blocks that are hard to understand. In this work, we
introduce a block-based system that provides users with a hierarchical, domain-specific program structure and
requires them to decompose their programs accordingly. Through a user study with 92 users, we compared
this approach, which we call guided program decomposition, to a traditional system that supports functions,
but does not require decomposition. We found that while almost all users could successfully complete smaller
tasks, those who decomposed their programs were significantly more successful as the tasks grew larger. As
expected, most users without guided decomposition did not decompose their programs, resulting in poor
performance on larger problems. In comparison, users of guided decomposition performed significantly better
on the same tasks. Though this study investigated only a limited selection of tasks in one specific domain,
it suggests that guided decomposition can benefit end-user programmers. While no single decomposition
strategy fits all domains, we believe that similar domain-specific sub-hierarchies could be found for other
application areas, increasing the scale of code end-users can create and understand.
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1 INTRODUCTION

Programming has become integral for the work of millions of employees. Previous work estimated
that in 2012, between 55 and 90 million employees in the U.S. performed basic programming tasks
as part of their work [Ko et al. 2011; Scaffidi et al. 2005], a number that has likely grown over the
past decade. However, as statistics from the US Department of Labor [2021] show, most of these
employees are not professional developers. They are end-user programmers, who have not received
formal education or training for performing programming-related tasks.

Because end-user programmers have limited formal programming training, they need tools
that are specifically designed with their needs in mind [Dorn 2010; Wiedenbeck et al. 1995].
Although an extensive and diverse corpus of programming tools for end-users exist [Barricelli
et al. 2019], block-based programming environments have emerged as one particularly successful
form of beginner-friendly programming tool. Block-based environments provide a user interface
that represents program syntax using graphical blocks and lets users compose blocks via drag and
drop. These features are typically combined with a simplified high-level programming language
to mitigate many of the frustrations that novice programmers typically encounter [Maloney et al.
2010].

Though block-based environments were originally conceived for computer science educa-
tion [Maloney et al. 2010], they have been successfully used to support novice programmers
in other domains. For example, end-users have automated their homes [Gongalves et al. 2021],
developed augmented reality apps [Mota et al. 2018], created mobile apps [Wolber et al. 2011],
and programmed industrial robots [ABB Group 2021; Weintrop et al. 2017] using block-based
environments.

Previous studies have shown that end-users find block-based languages easy to learn and
use [Gongalves et al. 2021; Mota et al. 2018; Weintrop 2019; Weintrop et al. 2018], although these
evaluations were almost exclusively based on small programs that fit within a single screen. Code
is easier to understand if it fits on a single screen without scrolling. Linting tools and coding
styles have long been used to restrict the length of coding units created by professional software
developers [Abbes et al. 2011; Charalampidou et al. 2015; Fowler 1999]. To write larger programs
that are still understandable, developers must decompose their programs into short, related units
of functionality (e.g., functions). Unfortunately, decomposing programs in this manner requires
expertise that end-users typically lack.

Although most block-based environments provide procedural abstractions, their users rarely
utilize them to structure their programs. Instead, they create programs that exhibit properties
commonly understood to be problematic, employing long methods and code clones [Hermans
et al. 2016; Robles et al. 2017]. Block-based languages support procedural decomposition and
abstraction in theory, but they do little to encourage their use. Many evaluations of block-based
programs include programs written for educational and other non-professional purposes. However,
all available evidence suggests that users of block-based systems tend not to decompose their
programs [Amanullah and Bell 2019], even though decomposition is crucial to successfully write
larger programs.

In this paper, we present a block-based programming environment that guides users as they
decompose their programs. The system specifically targets the programming of mobile robot workers
(which we introduce in Section 2.1). Unlike other block-based programming tools, our environment
presents users with a pre-defined program hierarchy and requires that end-users systematically
decompose their programs. Instead of traditional functions, the environment features “tasks”, which
resemble parameter-less procedures, but impose domain-specific restrictions that limit how they
can be composed and which instructions can be used within and outside of them. To make these
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restrictions more intuitive for users and make programs easier to navigate, the environment is
divided into two side-by-side canvases, one of which is used to define tasks and the other one to
compose them.

To evaluate whether our environment can make larger programs easier to understand for
end-users, and thereby improve their programming performance, we conducted an experimental
evaluation with 92 novice participants recruited via AMT. We randomly assigned each participant
to either use our guided programming environment or a traditional block-based programming
environment with support for custom blocks. We asked all participants to solve a series of three
tasks that cover cases of interest: a small task that would not typically require decomposition,
a large task with an obvious and easy to decompose structure, and another large task with a
more challenging structure that is not optimally suited for our guided approach. Consistent with
previous studies [Goncalves et al. 2021; Mota et al. 2018; Weintrop 2019; Weintrop et al. 2018], we
found that participants from both cohorts performed well on the small task. However, for the tasks
that required larger programs (and even the one that was easy to decompose), many participants
in the cohort that used the traditional environment did not use abstractions or structure their
programs at all. These participants were less successful at completing the given tasks. In comparison,
the participants who used the environment with guided program decomposition were over 20%
more likely to complete their tasks successfully, even for the task where this decomposition was
sub-optimal.

The primary contributions of this work are:

(1) The design and implementation of a programming environment that guides end-users as

they decompose their programs.

(2) A study of 92 novice participants that found that few of those who used a traditional block-

based environment used abstractions to decompose their programs.

(3) Evidence from said study that suggests that a system that makes decomposition mandatory

and guides users as they apply it can improve their performance when solving tasks.

This work demonstrates that program decomposition is a relevant and difficult challenge for
beginner programmers that must be addressed by tools that target end-users and aim to support
large programs. The presented study only explored a limited set of tasks, but our findings suggest
that enforcing decomposition and providing additional, domain-specific guidance to users can
help them write better programs. We hope that these results encourage further work that explores
domain-specific abstraction and decomposition mechanisms and applies them to a wider range of
tasks and domains.

2 BACKGROUND

In this section we briefly introduce the domain this work targets, one-armed mobile robot workers,
and the challenges that programmers (and end-user programmers in particular) face when they
structure their programs using block-based programming languages.

2.1 Domain of Inquiry: One-Armed Mobile Robot Workers

This work focuses on the programming of one-armed mobile robot workers. This type of mobile
robot consists of two separate hardware components: a robot arm that can manipulate objects, and
a mobile base that can autonomously navigate between locations. An example of such a mobile
robot is shown in Figure 1. The robot is stopped at one station (e.g., the table on the right), but can
also move to other stations (e.g., the table behind the robot). The use case for the mobile robots that
we target assumes that a robot has a designated task, requiring it to navigate between multiple
workstations and conducting work at each of them. This scenario was inspired by the use of mobile
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Fig. 1. Mobile robot with two components: a mobile base and a mounted robot arm for manipulating objects,
stopped at one workstation (table right), but can also move to another workstation (table above left).

robots to automate lab work, such as the recent use of mobile robots to perform experiments around
the clock [Burger et al. 2020].

Because mobile robot workers can perform a wide range of tasks and can be re-purposed without
disassembling and reassembling their hardware, they are ideally suited to support end-user workers.
Similar mobile robots have been used for assisting end-users before, but all programming was
performed by experts [Hvilshej et al. 2009]. Programming mobile robot workers is challenging,
since tasks often require a large number of individual steps and depend on many environmental pa-
rameters, such as the locations of workstations and items available at them. Consequently, programs
for these mobile robots are typically larger than those examined by past research investigating
end-user block-based programming.

We target the mobile robot programming domain for two reasons: First, robot programming
is a domain of relevance that has been targeted by previous work on end-user and block-based
programming [Weintrop et al. 2017], but mobile robots, although already deployed in many ware-
houses and on factory floors [Siegwart et al. 2011], have not yet been targeted by end-user-centric
work. Second, tasks for mobile robot workers are typically conceptually simple—moving boxes
from station to station or re-arranging a stack of boxes—but require many individual instructions
to complete. This makes them an ideal target for a system that explores program decomposition
while otherwise using a fairly simple (and therefore easy to introduce) set of instructions.

2.2 Structuring Block-Based Programs

Most block-based languages support abstraction and program decomposition, often in the form of
user-defined procedures or first-order functions. Section 7 provides a more extensive overview and
discussion of these existing abstraction mechanisms.
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Fig. 2. Styles of structuring programs.

Although users could benefit from structuring larger programs using the abstraction mechanisms
that block-based languages offer, they rarely do so in practice [Hermans et al. 2016; Robles et al.
2017]. This leads to programs that contain long sequences of instructions and frequent code
duplication. Work on professional developers suggests that this style of code can be detrimental to
program comprehension, even for those professionals [Fowler 1999]. One expects inexperienced
programmers, such as end-users, to be even more impacted by poorly structured code, and the
observations we present in Section 5 support this assumption.

Drawing from previous work, and our own observations of end-users writing block-based
programs, we have identified two common patterns for these programs: One subset of users always
creates programs as a single, linear sequence of commands without any attempt made to decompose
the code. We call this style unstructured programming and have illustrated it in Figure 2a. The other
subset of users appears to be aware of the need for decomposition and attempts to use the tools
available to them (e.g. functions) to structure their code. Unfortunately, these users often struggle to
find a structure that is compatible with their task, resulting in code that is inconsistently structured,
more complicated than necessary, and therefore harder to understand and more error-prone.

The observation that novice programmers struggle to use traditional abstraction techniques,
such as functions, is not surprising. In fact, learning how to use functions has been identified as a
Threshold Concept in computer science education: understanding how to use functional abstraction
dramatically benefits learners, but is challenging to learn [Kallia and Sentance 2017]. If parameters
are used to call functions, learners struggle to understand the semantics of pass-by-value versus
pass-by-reference [Kennedy and Kraemer 2018]. Users also struggle to understand the related
concepts of variable scoping, such as whether they can access global variables within a function,
and are confused by corner cases such as variable shadowing [Kennedy and Kraemer 2018]. In
addition, users might accidentally discover and try to use techniques like recursion, which can lead
to confusion and misconceptions [Lahtinen et al. 2005].

While many different approaches exist to introduce functions and even recursion to beginner
programmers [McCauley et al. 2015], they typically assume a classroom-like situation where learners
can work on carefully selected problems and slowly gain an understanding of the underlying
concepts. However, in the context of end-user programming, users rarely have sufficient time
and support to learn and practice programming skills in such an environment. Instead, they get
exposed to programming systems (including existing block-based systems) that offer them an
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almost unrestricted design space, illustrated by Figure 2b. While this freedom in program design
can benefit experienced users, beginners are more likely to be overwhelmed by this flexibility.
For example, though Figure 2b might show a carefully crafted program with nested function calls
(illustrated as arrows), it might be much harder for an end-user to understand the behaviour of this
program, let alone edit it or create a program with such a structure by themselves. A traditional
programming environment can require end-users to make design decisions that they are unaware
of or unable to assess without external help. Therefore, we speculate that a system that reduces
the abstraction decision space and provides guidance to users, illustrated by Figure 2c, can benefit
these users and improve their ability to reasonably structure their work and consequently construct
larger programs.

3 APPROACH: GUIDED PROGRAM DECOMPOSITION

We propose a programming system that provides more guidance to novice users, such as end-users,
than existing environments. The goal of this system is to reduce the design space to those decisions
that these users are able to make effectively, and to explicitly give them the information needed
to make them. We believe that programming domains typically come with a set of embedded
structures and hierarchies that can facilitate decomposition. End-users that are familiar with a
domain have an informal understanding of these decomposition rules and how to apply them. A
system that targets end-users should build on top of this understanding, provide the necessary
formalization for domain-specific conventions, and enable programmers to decompose their code
in a way that matches these conventions.

Our system, shown in Figure 3, supports a fixed hierarchy of parameterless functions, which we
call tasks. Figure 4 shows the grammar of the underlying programming language and illustrates
how tasks effectively divide the language into two distinct sub-languages: one where tasks are
composed and one where they are defined. Our system further supports this hierarchical design
with an environment that splits the program editor into two side-by-side canvases, where one
provides the user with an overview of their program and the other shows the current task. Our
hypothesis is that this approach for program decomposition and code navigation offers users a
simplified, yet powerful way to structure their programs in accordance with their understanding of
the problem they are trying to solve.

We highlight our design decisions, and motivate and discuss them with respect to the framework
of 13 Cognitive Dimensions of Notation (CDN) [Green and Petre 1996], which provides terminology
for analyzing visual languages. We aim to use CDN terminology in a way that is self-explanatory, but
underline terms to indicate that they are based on an established definition. We further summarize
key insights in boxes using the Q icon.

3.1 Why Do End-Users Not Use Functions?

Kallia and Sentance [2017] noted two factors that contribute to beginners’ lack of function usage,
which we believe must be overcome if we want to make them accessible to end-users. First, functions
are abstract programming mechanisms that do not directly match the tasks users are trying to
accomplish. Translating a high-level task into appropriate sub-tasks, that is performing functional
decomposition, is a hard mental operation, even for professional programmers [Chen et al. 2012]

and likely more-so for novices [Rose et al. 2017]. As they decompose their main task into sub-tasks,
users may become overzealous, for example creating many functions with only a single block (top
right of Figure 2b). The unconstrained nature of task decomposition can quickly lead to confusing
call-chains (e.g., the calling relationships in Figure 2b), or even unintended recursive definitions
(that likely lead to non-termination). These potential misuses of functions contribute to users
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Fig. 3. Proposed programming system showing two tasks and side-by-side canvases. The left canvas shows
the main program while the right one shows the body of the currently selected task(s). Users can test their
programs using the simulator on the right side.

(program)— ‘when started do’ (task)* (taskdef)— ‘to’ (taskname)  (statement)*

(task)— ‘do’ (taskname) ‘at’ (stationname) (statement)— ‘pick from’ (location)
| ‘place at’ (location)
| ‘turn item’ (‘clockwise’ | ‘counter-
clockwise’)

Fig. 4. Grammar(s) of the programming language used in the proposed system. A program (left) can only
contain calls to tasks at the top-level, and that task definitions (right) take place in a separate programming
canvas with its own syntax. As Section 3.4 describes, there are some differences between the language’s
semantics shown here and its block-based presentation shown in Figure 3. Also note that locations are defined
via a visual location picker that is not represented in this grammar.

creating programs structured like in Figure 2b, where functions can confuse inexperienced users
more than they help them.

Second, beginner programmers with no prior experience using functions may not see their
benefit until it is too late [Hazzan 2008; Kramer 2007]. Novice programmers may perceive functions
as requiring premature commitment, as they have an up-front cost in terms of adding blocks and

the understanding program flow, and they must decide whether to use them before they know
how large their program will ultimately become. Thus, users begin writing programs that have no
structure, and as these programs grow they become unwieldy.

Block-based systems have a low viscosity in theory as they allow users to quickly re-arrange
programs via drag-and-drop and have built-in hygiene for names. However, compared to refac-
torings that are found in professional development tools, these features provide little guidance to
programmers. This is especially unhelpful for novices, who might not have a clear vision of how
to improve a program’s structure, even if they are aware of its current issues. As we will see in
Section 5, inexperienced users tend to simply split programs into arbitrary chunks, which provides
minor visibility benefits, but little benefit for their understanding of the code. For this reason, we
also do not believe that simply highlighting overly long functions, nor restricting the maximum
length of continuous code blocks, can be a solution for this problem.
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3.2 Domain-Specific Program Decomposition

To overcome the factors that prevent inexperienced users from using functional abstraction, we
have developed an alternative design for a block-based environment that encourages the systematic
decomposition of programs. Our language design can be summarized with two main points: First, to
give decomposition more meaning to end-users, and to better align with their programming goals,
we introduce “tasks”. Tasks are parameterless procedures that are assigned to a single workstation
and can only contain instructions that relate to this workstation. Second, we make tasks mandatory
by splitting the environment and the underlying language into two distinct components: the main
program editor, which can only be used to compose tasks, and a task editor, which defines the
instructions of each task.

Tasks are designed to explicitly support end-users as they create programs for the mobile robotics
domain. By explicitly catering to the kinds of programs end-users create for this domain, our design
aims to naturally guide end-users to create tasks that promote the single responsibility principle.
Each task is assigned to a specific workstation, and the instructions available to define a task are
limited to those that can be executed locally at this workstation. Therefore, the task body primarily
contains instructions that move the robot’s arm and manipulate the workstation (e.g. by picking
and placing items). Movement between workstations happens implicitly as the robot switches
between tasks.

7 | To reduce the decision space for inexperienced users, our system design imposes a domain-
w | specific program structure.

We believe the hierarchical program structure with a fixed two-layer call graph makes our system
easy to understand, yet expressive enough to decompose larger mobile robot worker tasks. We
therefore do not offer any additional, more complex mechanisms for decomposing programs beyond
tasks, such as globally or locally defined functions. The system imposes certain restrictions on
users. First, users must decompose all programs into tasks, even small programs where an entirely
flat program structure would be straight-forward to read. This limitation can reduce the visibility
of small programs, but also prevents programmers from making a premature commitment to a flat
program structure when programs must eventually grow larger. We further believe that making
large programs easier to comprehend supports end-users where they need it the most. Second,
the hierarchical design with two fixed levels rules out programs with multiple decomposition
layers (e.g. through nested function calls) or recursion. This can be a limitation for experienced
programmers and lead to redundant code, potentially increasing the resulting language’s viscosity

compared to one without these restrictions. However, we consider the limitations to be beneficial in
the context of end-users, who are more likely to make mistakes when the control flow of a program
becomes complex. In fact, many other block-based systems also prevent or warn users about using
recursion [Conway 1998; Harvey et al. 2013], but do so in more intrusive ways such as disabling
blocks or showing error messages.

7 | The system design allows only a fixed, two-layer call graph, which can limit the design
« | freedom of experts but benefits the understanding of end-users and avoids accidental misuse
of advanced language features like recursion.

3.3 Aligning Physical and Programmatic Scope

Complex scoping rules can be confusing and unintuitive for novice programmers [Kennedy and
Kraemer 2018]. Therefore, we have a system that simplifies the concept of programmatic scope
and matches it with the physical scope in which the mobile robot conducts work. Since each task
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is localized at a single workstation, a task should only contain commands that can be executed
within the physical scope of its assigned workstation. For example, movement commands cannot
take place within a task, and if there are different types of workstations there might be other
restrictions based on the physically available tools and the workstation layout. This is analogous
to how most programming languages have built-in mechanisms to limit the lexical scope that is
accessible from within a given block of code. However, when those rules become complex, they
can increase the error-proneness of code and without sufficient feedback, understanding them can
become a hard mental operation. Block-based languages can go beyond the traditional checks that
text-based languages perform to enforce scoping rules. For example, these systems can actively filter
the syntax they present to users and provide only the valid options. In a structured programming
system like the one we propose, we can leverage this feature.

7 | To provide end-users with further guidance, our system design presents only those commands
= | that are within the physical scope of a robot task.

Similar to previous work on block-based robot programming [Ritschel et al. 2020; Weintrop
et al. 2017], our system supports only one variable type: locations. These locations, for example the
target coordinates where an item is supposed to be placed, can be defined using the programming
environment. Previous work has allowed users to select target locations physically by moving
the robot arm into the intended position [Weintrop et al. 2017]. While that work does not discuss
their design decision in the context of CDN terminology, we consider it highly beneficial for
the closeness of mapping that users experience between the programming environment and the

physical system. For our system, which currently relies on a virtual robot simulator, we had to
replace this approach with a reasonable alternative. We chose a visual picker for target locations,
which is a more indirect representation than physical human-robot interaction, but still substantially
more direct than a purely text-based specification. We have further provided useful feedback in
the form of meaningful domain-specific error messages and warnings such as “Robot is already
carrying an item!” when programs try to carry multiple things at once. We cannot compare the
visual location picker used by our system to the physical approach used in previous work. However,
we believe that both are reasonable, user-friendly choices.

In previous work, all locations were always defined globally [Ritschel et al. 2020; Weintrop et al.
2017]. However, since our system allows programs to span multiple workstations, this approach
is no longer appropriate. Instead, locations must be specific to the workstation at which they are
accessible. Since our system assigns each task to exactly one workstation, we decided to make
user-defined locations task-specific, similar to local variables defined within traditional functions.
This straight-forward mechanism, made possible by matching physical and programmatic scoping,
saves users the hard mental operation of manually filtering the available locations.

7 | The system design allows end-users to define locations visually and per-task, which aligns
w | their programmatic scope with the physical environment.

3.4 A Visual Programming Environment That Supports Decomposition

Our design is implemented as a multi-canvas environment, as shown in Figure 3. The main program
is appears in the left panel of the figure. The middle panel of the figure shows the task that has
been selected in the main program. A robot simulator is shown in the right panel of Figure 3 as our
prototype implementation uses a simulation environment. This environment offers high visibility,
concurrently displaying the main body of the program on the left canvas and the body of the
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Fig. 5. The traditional block-based development environment used by the TR Cohort of the programming
study.

currently selected task in the middle canvas. As users edit tasks, we concretize their editing by
including the currently selected workstation in the task definition’s header. This has no impact
on the language’s semantics or the ability to re-use a task for other workstations. However, the
concretization might mislead users into thinking that they are only changing one instance of a task
at a time. To highlight that they are in fact changing all instances of a task at once, other instances
are also highlighted in the main program when any of them is selected.

7 | The system supports our overall design using a visual environment that uses two separate
* | canvases and a side-by-side presentation of the program and the tasks it calls.

Previous work has either made all function definitions visible at once on the same canvas (e.g.
Scratch), or attempted to spread code over an arbitrary number of small, isolated canvases [Brag-
don et al. 2010]. While the latter approach shares some of the benefits to our design, it suffers
either from visibility issues when too much code needs to be displayed, or introduces additional
hard mental operations as users have to customize their environment manually. Our design on
the other hand uses a fixed number of canvases that are populated automatically and that fol-
low the overview-detail paradigm that is commonly used in interface design and information
visualization [Elmqvist and Fekete 2009]. This approach tries to balance visibility with avoiding

hard mental operations.

7 | An interactive version of the presented environment is available online (select Two-Canvas
* | Mode): https://vcuse.github.io/alvo/first-experiment/

4 EXPERIMENTAL SETUP

Previous studies of block-based environments and how end-users create programs in them have
used small example tasks [Gongalves et al. 2021; Weintrop et al. 2018]. Due to their small size (usually
20 blocks or less), these programs are not complex enough to require the use of decomposition.
Our study focuses on how end-users perform when tackling larger tasks that do not fit on a single
screen.
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In this study of 92 self-identified end-users recruited via AMT, we trained participants to use a
block-based programming environment. We then asked them to solve 3 tasks of increasing size
and difficulty. One participant group used a traditional block-based programming environment
with support for parameterless functions, while the other used the environment with guided
decomposition presented in Section 3. We measured how participants decomposed their programs
in each environment, and how the use of decomposition affected their success in solving the given
tasks. In the remainder of this section, we describe our study design in detail.

4.1 Research Questions

Our study investigated the following research questions:

RQ1 How do end-users decompose their programs in a traditional block-based environment?

RQ2 Does the use of program decomposition impact the task success rate and task completion
time of end-user programmers when writing larger programs?

RQ3 How does an environment with guided program decomposition change the way end-users
write larger block-based programs?

RQ4 Does guided program decomposition impact the task success rate and task completion time
of end-user programmers when writing larger programs?

4.2 Study Design

We recruited our participants through the platform Amazon Mechanical Turk (AMT), which pays
users to conduct online tasks. Using a short pre-questionnaire, we selected only those users that
indicated that they had less than one year of programming experience and did not have experience
programming industrial robots. Participants that passed this screen were randomly divided into
two cohorts. The first cohort (which we call TR from now on) used a traditional block-based
environment to complete the study, while the second cohort (which we call GD) used the novel
system with guided decomposition that we presented in Section 3.

Figure 5 shows the traditional block-based programming environment that participants in TR
used; Figure 3 shows the novel environment that those in GD used. Both environments include an
editor on the left side and 2D simulator on the right side. The editor for the GD cohort required
two canvases, as described in Section 3. The editor for cohort TR was a single canvas with the
option to add simple, parameterless functions as they are supported by many existing block-based
environments. As existing block-based environments use a wide range of terms to describe functions
to their users (see Section 7 for some examples), we decided to call them recipes in our own interface
to match the terminology used in a previous industrial robot programming environment [Weintrop
et al. 2017]. This environment also featured a separate “Move to Station X” command to replace the
implicit robot movements in the environment with guided decomposition. All remaining commands,
such as those for picking and placing items, were identical to the other environment, matching the
the statements listed in Figure 4.

We used a series of 3 tutorials to train all participants to use a block-based programming system.
The first two tutorials focused on the system’s core functionality: commands to move from station
to station and to pick up, carry, turn, and place items. The third tutorial taught users to decompose
programs (using functions or tasks, respectively), and to re-use code by calling the same function
or task multiple times. The tutorials’ content and flow were as identical as possible for each cohort.
All tutorials are available on the previously linked website. Although we intended the tutorials to
take approximately 15 minutes in total, we did not limit the time that participants were allowed to
spend on each tutorial. A small number participants in both cohorts exceeded the intended tutorial
time (see Figure 8), but the majority completed them without our initial time estimate.
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After participants completed the tutorials, we asked them to solve a series of 3 tasks. Each task
consisted of a brief description and an image showing the intended outcome of the task. A simulator
(see Figure 5) allowed participants to test their solutions, and they were allowed an unlimited
number of attempts. However, we did limit the time that participants were allowed to take for
each task, giving them one final chance to submit their solution after they exceeded the maximum
allowed time. Independent of whether a participant’s solution was correct, we saved their final
attempt for later evaluation.

The three tasks, in the order we gave them to participants, were:

Task 1: A short, toy-sized task with a time limit of 10 minutes that we intended as a warm-up for
participants. Users were asked to move two boxes between stations, which can be accomplished
using just 13 blocks without any decomposition, or using 17 blocks in the system that requires task
decomposition.

Task 2: A larger task with a time limit of 15 minutes that we designed to be repetitive and therefore
benefit substantially from code re-use. Users were asked to move a stack of 3 boxes, one at a time,
from one side of a workstation to the other, for four different workstations. The task provided
participants with a functioning program for a single workstation, consisting of 15 blocks, which
they had to apply identically or with slight variations to other workstations. We specifically chose
this task because it consists of a number of spatially isolated and therefore easy to separate sub-tasks.
This meant that users who chose to decompose their programs could avoid redundant work by
re-using or at least efficiently duplicating code. We believe that this task is representative of the
type of work for which our proposed domain-specific decomposition is the most effective. We
therefore expected users of the traditional environment who decomposed their programs to do so
in a similar way as we imposed on users of the other system. The task also featured some clear
redundancy and therefore potential for re-using code in both systems, reducing the minimum
number of necessary blocks from 56 without any decomposition (or 62 in the system that required
task-based decomposition) to just 46 in an optimal solution.

Task 3: Another large task with a time limit of 15 minutes, although for this task the ideal structure
was less obvious since the components of the task were not spatially isolated. Users were asked to
move boxes between stations, each time swapping places with another box. For this task, participants
started without being given code, but we asked them to solve an easier part of the problem with a
single box on each side first, and then approach a more complex version with two boxes that could
be solved by re-using parts of their code. We believe that this task is representative of a type of
work where our proposed decomposition strategy is sub-optimal, since it requires splitting tasks
into more (and smaller) sub-programs than users might find intuitive. This also becomes clear when
comparing block numbers: A solution without any decomposition can solve this task using 48
blocks, while an optimal solution with code re-use requires 40 blocks; the strategy imposed by our
presented system requires 54 blocks with or 64 without re-use. We therefore see it as useful for both
evaluating if such overly strict decomposition requirements harm our participants’ performance,
but also whether those users without guidance are able to find a (potentially different) style of
decomposition that is useful for them.

5 RESULTS

In the following section we discuss the results of our study, aligned with the research questions we
presented in Section 4.1. As a reminder, we refer to the cohort of participants who used a traditional
block-based programming system as TR, and to those we used our proposed novel system as GD.
We highlight key results in boxes using the Q icon.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 133. Publication date: October 2022.



Can Guided Decomposition Help End-Users Write Larger Block-Based Programs? A Mobile Robot Experiment ~ 133:13

Q An interactive version of all tutorials and tasks of our study, as well as the detailed results
and metrics we have collected for each participant, are available online:
https://vcuse.github.io/alvo/first-experiment/

5.1 RAQ1: Program Decomposition in a Traditional System

Figure 6 shows how participants in the TR cohort used functional abstraction, separated into
Figures 6a, 6b, and 6¢, which correspond to Tasks 1, 2, and 3, respectively. The right of each figure
also shows how many participants re-used code as a result of applying functions.

For Task 1, the shortest task, participants used an average of 13.8 blocks (median: 13), of which
8.5 blocks (median: 8) were statements', and defined an average of 0.3 (median: 0) functions.
Participants defined between 0 and 2 functions, as detailed in the following bar chart*:

11111 n

Only 8 (16%) out of 49 participants used functions for this task at all, and 41 (84%) wrote their
program as one continuous block of code. Therefore, the average number of sequential statement
blocks contained in a single chunk of code (either the main program or a function) is 8.1 blocks
(median: 8), which is close to the total average program size. While eight participants, as shown in
Figure 6a, defined 1 or 2 functions, none of them re-used code by calling the same function more
than once.

For Task 2, a larger task, participants used an average of 54.1 (median: 55) blocks, of which 29.9
(median: 31) were statements, and defined an average of 2.1 (median: 3) functions. Each participant
defined between 0 and 4 functions, as detailed by the following bar chart:

L ELRRNRRNNNTNTTRITRTTTTT O | 1T

A higher percentage of participants used functions for this task. However, 19 (39%) did not use any
functions, specifying their entire program as a single, continuous block. As shown in the middle
of Figure 6b, of the programs that contained functions, the majority (69%) were structured in a
way where each function describes the robot’s actions at a workstation. This style of program
decomposition is the one that we impose on users in the guided environment. The remaining 9
programs (31%) were decomposed in different ways, for example by extracting specific pick-and-
place sequences. We tried to categorize these programs but were unable to find any patterns of
note that appeared in 3 or more programs. Overall, participants used an average of 21.1 sequential
statement blocks (median: 10) per code chunk (function or main program), with those participants
who did not use any functions heavily skewing the distribution.

Of the 29 function-using participants, 25 (85%) gave their functions custom names, while the
remaining 4 (15%) did not change the default names assigned by the editor (i.e. “do something” with
numeric suffixes to ensure uniqueness). However, only 10 of the 29 participants that used functions
(34%) called any of them more than once, as shown on the right of Figure 6b, which meant that
there were many missed opportunities for code reuse.

For Task 3, another larger task, the average solution contained 49.0 blocks (median: 49), of which
31.7 (median: 31) were statement blocks. Each participant defined between 0 and 4 functions, as
detailed in the following bar chart:

1111 I TTT TSSOSO UOEN T B,

Only 13 (28%) of our participants used functions at all, a lower percentage than for Task 2, resulting
in only 0.7 functions being used on average overall (median: 0). This led to less structure overall
and even less code re-use than for Task 2, as shown in the middle-right of Figure 6¢. Notably, 33

IWhen we refer to statements in this sub-section, we include function calls and instructions for the robot, but not locations
or function headers

2Green bars (to the left) show successful tasks, red bars (to the right) show failed tasks. The height of the bar corresponds to
the number of functions, dots represent solutions where no functions were used.
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Fig. 6. Categorization of participants in the TR cohort and their programs for the three tasks our study.
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No re-use of Code: 33
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Fig. 7. Categorization of participants in the GD cohort and their programs for the three tasks our study.

participants (72%) constructed their entire program as a single, continuous block of code, as seen in
the middle-bottom of Figure 6¢. Of the remaining participants who did decompose their programs, 5
(38%) used a very coarse structure that split their code into exactly two sub-programs, following the
two parts outlined in the task’s description text. Only 3 participants (23%) used a workstation-based
style that resembled the one used by the environment with guided decomposition. The remaining
5 participants (38%) used different styles that split the task into 3 or more parts and showed no
common decomposition pattern. Overall, the average number of sequential statements used per
code chunk (main program or function) is 25.4 blocks (median: 27), which mostly representative of
those participants who did not use functions. When just considering function users, the sequential
statement number is 11.9 (median: 11), which still suggests of a fairly coarse decomposition of code.

Q When using a traditional block-based system, most end-users did not use functions to
decompose larger tasks, resulting in a single, unstructured code block for 65% of the submitted
solutions for Tasks 2 and 3.
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5.2 RQ2: Impact of Traditional Decomposition on Success and Time

Tasks 2 and 3 were complex, and thus we hypothesized that participants that used functions would
have better success. As can be seen in the middle of Figures 6b and 6¢, most participants that failed
did not use functions to structure their programs. For Task 2, of the 29 participants who used
functions only 5 (17%) failed, and of the 19 participants that did not utilize functions, 9 (47%) failed.
For Task 3, of the 13 participants who used functions only 3 (23%) failed, and of the 33 participants
that did not utilize functions, 18 (55%) failed. Taking both tasks together, when a participant used
at least one function to solve a complex task, they succeeded 81% of the time, whereas when they
did not, they succeeded 52% of the time.

While we saw a correlation between function usage and success rates for both Tasks 2 and 3, we
only saw a substantial difference in how fast participants solved a task for Task 2. For Task 2, the
participants that used functions finished in 9.1 minutes on average, while the participants that did
not use functions finished in 13.4 minutes. For Task 3, the participants that used functions finished
in 14.5 minutes while the participants that did not use functions finished in 14.0 minutes.

Q

5.3 RQ3: Program Decomposition in an Environment with Domain-Specific Guidance

End-users that added functions to their programs were more likely to be successful when
working on larger tasks.

Figure 7 shows how participants in the GD cohort decomposed their code to solve each task. By
design, the development environment with guided program decomposition required all participants
in this cohort to decompose their programs, including the toy-sized Task 1. To avoid ambiguity
between our three study tasks and the “tasks” that the environment offered participants as a way
to decompose their programs (see Section 3) as “sub-tasks”. In Figure 7 we categorize the usage
of these sub-tasks based on their number, since unlike for RQ1, the environment does not allow
differences in decomposition style.

For Task 1, participants used an average of 16.3 blocks (median: 17), of which 7.8 (median:
8) were statements’, and defined an average of 3.8 sub-tasks (median: 4). The total number of
blocks is higher than for the TR cohort, which is primarily due to the overhead introduced by
additional sub-task definitions. The average number of sequential statements per code chunk (main
program or sub-task) is 1.6 blocks (median: 1). Each sub-task only contained an average of 2.0 blocks
(median: 2) and 1.0 statement blocks (median: 1). This level of decomposition is quite extreme,
and demonstrates that the system we propose is not optimized for such small programs where
decomposition is arguably unnecessary. Each participant defined between 1 and 4 sub-tasks, as
detailed in the following bar chart:

AOR O RN NN AN NN NN NN N NnnnnnnNNnnniinn,.

As visualized on the right side of Figure 7a, the vast majority of participants did not re-use code.
However, although this task was short, it did have potential for re-using a sub-task, which two
participants successfully utilized.

For Task 2, participants used 60.3 blocks on average (median: 63), of which 28.1 (median: 31)
were statements, and defined an average of 3.7 sub-tasks (median: 4). Similar to Task 1, the average
program length is therefore slightly higher than for the other cohort, although the average number
of statements is slightly lower. The average number of sequential statements per code chunk (main
program or sub-task) is 6.1 blocks (median: 6). Each participant defined between 0 and 4 sub-tasks,
as detailed in the following bar chart:

RORNNNRRNRRnnnNnnnnNnnnRRnnRRRnn i innnnnl..

3When we use the term “statements” here, we include sub-task calls and robot instructions, but not locations or headers.
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Overall, we saw a very high consistency in how participants solved this task. Almost all par-
ticipants split their program into four about equally-sized sub-tasks that contained the code for a
single workstation. However, although two of the workstations had identical instructions, only
6 participants (14%) re-used code between them. Further, all but 5 participants (12%) edited the
default names for their functions, making use of this opportunity to document their code.

For Task 3, participants averaged 59.9 blocks (median: 65), of which an average of 31.2 blocks
(median: 31) were statements, and defined an average of 12.3 functions (median: 14). As for the
previous tasks, the total program size is larger than for the TR cohort. Each participant defined
between 0 and 18 functions, as detailed in the following bar chart:
Ainnnnnnnnnnnnnnnnunnnnnnnnnnnnnnfins.

As visualized in the middle of Figure 7c, participants needed many functions to solve this task.
Nine participants (22%) solved the task successfully with 12 sub-tasks or less, 22 (55%) with 13-15
sub-tasks, and 2 (5%) used more than 15 sub-tasks. As a result, the average number of sequential
statements per code chunk (main program or sub-task) is only 3.6 on average (median: 3), which is
much lower than for the TR cohort at. A total of 28 participants (70%) used names other than the
default names for their sub-tasks, again indicating an interest in documenting code in this way.

Despite the restrictions on how programs can be decomposed in the guided environment,
participants’ programs showed some variation in solving this task. While all of them were structured
around workstations, some participants were following a more stringent order of operations while
others attempted to optimize their solutions. For example, approximately two thirds of the programs
written by successful participants contains redundant movements between workstations that are
likely explained by them trying to keep the order of operations executed by the robot as uniform
as possible. However, only 7 (18%) of the participants re-used sub-tasks at all, despite the potential
for re-use enabled by this uniformity.

Q

5.4 RQ4: Impact of Decomposition Guidance on Success and Time

Users with guidance employ substantially more program decomposition but still struggle
with re-using code.

The effect of the decomposition guidance provided to cohort GD on success can perhaps best be
seen by re-examing the bar charts from Section 5.2 and comparing them with the charts from
Section 5.3. Participants in the GD cohort had much more success, as indicated by the almost
entirely green charts in Section 5.3. Figure 8 shows a more direct comparison of the two cohorts;
the left side of this figure details success rates while the right side details task times.

For the first task, which was relatively simple, the success rates of participants in both cohorts
were high (92% and 95%, shown on left of Figure 8). However, for Task 2, the TR cohort’s performance
dropped significantly (71%) while the GD cohort’s performance remained high (91%). Though Task 3
proved to be the most difficult task for both cohorts, 83% of the participants in the GD cohort
still managed to solve it successfully, versus 54% for the TR cohort. We performed a chi-squared
test of independence to analyze the statistical significance of the relation between participants’
cohort and their success on each task. For Task 1, we did not find the relation to be significant:
)(%askl (1, N =92) = 0.46, p = .496. For Task 2 and Task 3, we did find the relation to be significant:
Yoo (LN =91) =5.64,p = .018; 2 . (1,N = 86) = 7.72,p = .005.

To ensure that the slight difference in tutorial presentation between cohorts did not lead to some
participant group having more time or experience with the system, we also analyzed how long
participants spent working on both the tutorials and tasks. As shown on the right of Figure 8, there
were no practical differences between tutorial times except on Task 3. To investigate this difference,
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Fig. 8. User study results. For box plots: center lines show the medians, box limits indicate the 25th and 75th
percentiles. Whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. Outliers
are represented by dots, only outliers < 20 minutes are shown.

we performed an independent two-tailed t-test, but we did not find a statistically significant
difference: t1y (90) = —0.65, p = .517; t1u2(90) = 1.40, p = .165; try3(90) = —1.20, p = .233.

For times spent on tasks, the differences we observed showed a similar trend as the success rates.
For the first task, the average time of 4.7 minutes (median: 4 min.) was similar to that of the TR
cohort (average: 4.8 min., median: 4 min.). However, for Task 2, participants spent 9.2 minutes on
average (median: 8 min.), which is less time than the average of the TR cohort (average: 10.8 min.,
median: 10 min.). For Task 3, the difference between the cohorts was even more pronounced, as
participants only spent 12.4 minutes on this task on average (median: 12.5 min.) compared to the
TR cohort’s 14.2 minutes (median: 15.5 min.). An independent two-tailed t-test further found a
statistically significant relation between the cohorts and task times for Task 3, but not for Task 1
and Task 2: f1,5¢1 (90) = —0.151, p = .880; traskz(89) = —1.89, p = .062; trysk3(84) = —2.57, p = .006.

Q

6 DISCUSSION

In this section, we discuss the implications and limitations of our approach and the findings from
Section 5. As in Section 3, we use terminology from the framework of 13 Cognitive Dimensions of
Notation (CDN) [Green and Petre 1996] and highlight these by underlining the CDN terms.

Users of the scaffolded environment were significantly more successful when solving larger
tasks.

6.1 Benefits of Program Decomposition

Our findings, both for RQ2 and RQ4, confirm that program decomposition can substantially improve
the performance of end-users as they solve moderately large programming tasks. For the TR cohort,
we found that users that decomposed their programs were more successful in solving tasks. This
could imply that decomposition helped them program more effectively, but also leaves room
for the interpretation that users who performed better at programming also found it easier to
decompose their programs. Our findings for the GD cohort provide a clearer insight into this
connection between decomposition and programming performance: By giving our participants
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Fig. 9. Examples of programs written by participants for Task 2. (a) shows a subset of an unstructured program
(57 blocks in total); (b) shows the top layer of a hierarchically structured program (61 blocks in total).

an environment that required them to decompose their programs and guided them towards a
reasonable domain-specific decomposition, we saw their success rate improve substantially.

It remains an open question how exactly program decomposition benefits beginners, and whether
advice given to professionals on how to ideally structure a code base [Fowler 1999] also applies to
end-users. However, a closer look at some example programs suggests that any structure at all,
even if it was not necessarily the most intuitive or most concise, already has positive effects on a
programs comprehensibility. For example, Figure 9 shows two programs created by participants
during our user study (Task 2). Both of these programs correctly solve the task, yet they highlight
the differences in program comprehensibility. Figure 10a shows the solution of a participant in the
TR cohort: an unstructured program with 57 individual blocks. Programs similar to this one were
written by many of the TR cohort’s participants across all three tasks. In stark contrast, Figure 10b
shows a solution from a participant in the GD cohort. The main program body is only 4 lines long,
and each task’s name summarizes (at least superficially) what is happening inside the task’s body.
Therefore, even though the total length of the program is slightly longer at 61 blocks, and although
the bodies of “Move Stack” and “Move Stack2” are identical and could have been replaced by a
single, re-used task, it is still easier to understand its structure and relate it to the given task.

Notably, block-based programs already provide certain visibility benefits to users compared to
text-based languages. For example, even in Figure 10a, the different block colours can help users
distinguish the individual commands and identify the points at which the robot moves between
workstations. However, as our experiment demonstrates, this visual aid alone is not a substantial
enough measure to highlight a program’s structure. We believe that beyond guiding users to use an
at least rudimentary level of abstraction, another important benefit of decomposition is the ability
to name program components. For example, readers of the program in Figure 10a would have to
perform the hard mental operation of chunking and summarizing the program’s parts manually. In
Figure 10b on the other hand, the user was able to describe that each task moves a stack of boxes.
Previous work has argued for the importance of secondary notation like names and comments,
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Fig. 10. Examples of programs written by participants for Task 3. (a) shows a subset of an unstructured
program (58 blocks in total); (b) shows the top layer of a hierarchically structured program (61 blocks in total).

especially for novices [Holwerda and Hermans 2018]. However, especially block-based languages
often lack places where users can use secondary notation or introduce barriers that make them
difficult to access for beginners.

Figure 10 shows another example of the same pattern, but for Task 3. As described in Section 4.2,
this task was intentionally chosen to contain a lot of steps that move the robot between workstations,
resulting in a very fine-grained task separation when following our guided decomposition approach.
Therefore, the program shown in Figure 10b is rather long and not structured in a way that an
expert would likely consider optimal. Yet, compared to the unstructured programming style shown
in Figure 10a that the majority of participants used for this task, the program is still more readable,
and as for the previous example, the participant has used task names to summarize their code. We
believe that this example illustrates how even a (from an expert perspective) sub-optimal program
structure can help end-users understand their programs better.

6.2 Function Usage in Block-Based Systems

Our results validate previous findings and demonstrate that end-users can quickly learn how to
solve small, toy-sized tasks in a block-based environment, such as Task 1 in our study [Gong¢alves
et al. 2021; Mota et al. 2018; Weintrop et al. 2018]. However, we extended these findings showing
that, when not supported by the programming environment, end-users became less successful as
tasks grew larger, such as for Task 2 and Task 3. We believe this is because they either do not use
functions, as suggested by the quantitative data, or, when they do use functions, they struggle to
use them systematically.

When considering why end-users in the TR cohort tended not to use functions, even though
our study explicitly trained them to do so, a lack of exposure to these features is not a reasonable
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Fig. 11. Example of a program where movement and stationary instructions are entangled. It is not possible
to entangle movement and stationary instructions in this way with our approach.

explanation. Further examination of the data, comparing the results for Task 2 (which offered a
straightforward way to structure programs) and Task 3 (where the ideal structure was less obvious),
we found that users were much more likely to structure their programs in Task 2. This supports our
assumption that end-users understand the need to structure their programs, and attempt to do so
when they are able. However, in all but the most straightforward applications, the optimal program
structure might only become apparent after a large amount of code has already been written. At
this point, a novice user might have already prematurely committed to a specific structure (or to

no particular structure) and it might be difficult for them to manually re-structure their code.

What causes these end-users to struggle with functions? There are many missteps that end-users
can make when using unrestricted functions. Consider Figure 11, where movement and stationary
instructions are entangled within a single function call. When viewing the main program, the
end-user cannot predict which functions might contain a hidden robot base move, giving each
function call a potential side-effect. This visibility issue is solved naturally in our prototype, by
systematically requiring all robot base movements to be defined at the top level, as shown in
Figure 10b by the “at Station X” directive. This fixed abstraction gradient constrains the programs
end-users could potentially write, forcing them to avoid confusing side-effects.

6.3 Domain-Specific Task Support: Beyond Mobile Robot Workers

Previous work on two-armed robots has demonstrated that customized programming environments
for these types of robots can allow end-users to write complex, coordinated programs [Ritschel
et al. 2020]. Similarly, this work demonstrates that a system that guides users in decomposing their
programs can support end-users as their programs grow in size. Other end-user domains, such
as home automation, app development or data collection from websites, might require a different
approach to structuring programs. In particular, mapping between the kinds of goals end-user
programmers have within a domain and the support for tasks, or functions, within an end-user
programming environment will depend on the domain being supported. We believe that finding
tasks that are compatible with the domain-specific expectations of end-users is a challenging, but
not impossible exercise. Therefore, we hope that future work in identifying domain-specific tasks,
for other domains, will allow those domains to benefit from techniques and customized tool support
similar to what we present in this work.

6.4 Code Re-use: An Open Problem

Although participants in the GD cohort of our study performed better than those of the TR cohort
on many metrics, there is one metric that both cohorts struggled with: code re-use. Regardless of
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task, only a small fraction of either cohort called any function or task more than once (9% of TR,
12% of GD). As a result, the average sizes of programs with and without decomposition were about
the same, which eliminates one of the major benefits of modularizing programs.

We did not expect users to employ substantial amounts of code re-use since they were not
explicitly instructed to write code that is concise. Furthermore, both environments did not allow
users to parameterize their functions or tasks, limiting the potential for re-usability. However,
Task 2 in particular had obvious opportunities for code re-use, as illustrated by Figure 9: participants
had to write an identical 12-block sequence of instructions twice for two different workstations,
but very few used this potential to substantially reduce the amount of code they had to write. This
complete absence of re-use in most users’ programs is surprising, considering that we explicitly
taught participants how to re-use code as part of the tutorial sequence they had to complete.

Because we did not anticipate this lack of re-use, we did not ask participants about their reasons
for not re-using code. One of the primary benefits of supporting re-use is the reduction of the
language’s viscosity, as each repetition requires additional work if code changes become necessary.
We speculate that participants might not have seen a benefit in putting effort into re-using the same
function or task, and for this limited study they might have been correct in this assessment. For
instance, we did not tell participants that they had to write programs that were easy to maintain or
modify later on. This might have caused them to prefer code clones, as they might have been more
familiar with the idea of copy-and-paste than they were with re-use.

We did make some attempts to make code re-use easier for participants: As Figure 3 shows, our
guided environment highlighted all calls to the same task and showed the relevant panes on the
right as a visual stack. However, this interface may have been insufficient or confusing to end-users.
Finding a more effective way to encourage code re-use, especially in the presence of parameters,
remains an open problem for future work.

6.5 Limitations

Here we discuss some of the limitations of the study we conducted.

Participant Population: We recruited participants via the AMT platform. We did not collect
detailed demographic information from participants beyond screening them on programming
experience. Previous work suggests that while the pool of AMT workers is not entirely repre-
sentative of the general population of the US, potential biases are comparable to those of other
recruitment methods (e.g. recruiting students) [Paolacci et al. 2010]. We therefore believe that
our AMT participants are an acceptable representation of the end-user demographic we aimed to
investigate.

Recruiting Process: We recruited the 92 participants of our study in two waves, 55 and 37
participants respectively. While we planned to have 50-100 participants in total, we began evaluating
the results of our first 55 participants when making the decision to add a second wave of participants,
introducing a risk of bias. We found little difference in all aspects of the two waves, but out of an
abundance of caution we separated the two waves in the supplemental data to ensure transparency.
Tasks and Training: We aimed to train participants in a way that is time-efficient and comparable
to the quality of training that end-users might receive in real-life. In addition, we have designed the
training methods to be as similar as possible across both of our participant cohorts. We assume that
participants would perform better across all our tasks with more extensive training, but the high
success rate on Task 1 suggests that our training method was sufficient for teaching participants
the foundations of programming mobile robot workers. Another potential limitation is that the
small number of tasks we used in our study cannot fully represent the wide range of possible
programming tasks that end-users might encounter in industrial practice, even within the domain of
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programming a mobile robot worker within the scope we have outlined in Section 2.1. These tasks
and their wording might not match real industrial practice, and real applications might provide
more detailed or precise instructions that make it easier to determine a program’s optimal structure.
Our study further does not investigate how large or complex end-user programs can become, and
whether our decomposition approach can scale further or if it is only applicable to a limited range
of program sizes. Beyond the scope we have targeted, there are also further scenarios in which
mobile robots can be used (e.g., where the robot conducts work while moving instead of stopping at
dedicated workstations). These scenarios are not compatible with the language and decomposition
strategy that we have presented here, and it is not certain that our work or findings are transferable
to them.

Experimental Measures: For our experiment, we have evaluated our proposed system as a whole,
which consists of several components that we have described in Section 3. While we have discussed
the potential benefits of each component, our experiment cannot validate to which degree each
component is responsible for the differences that we have observed between the two cohorts. In
addition, we have compared our proposed system to one that supports parameterless functions in a
style that is conceptually similar to ours, but not necessarily representative of all abstraction and
decomposition mechanisms offered by block-based systems. As we discuss in Section 7.2, other
block-based systems do offer features like function parameters, and the lack of those features might
have held back participants of the TR cohort as they wrote their programs.

Further, there are other potentially relevant factors when evaluating the quality of a real program
than those chosen by us for this experiment. For example, run-time performance might be relevant
in practice, and it might be a goal for real programmers to minimize the time a robot spends moving
between stations. Since such factors are highly dependent on the given situation and robot model,
we decided not to instruct our participants to care for them, and therefore also do not include them
in our evaluation. For our qualitative evaluation, we focused on the number of used functions, the
overall program structure and code re-use. We also reported on other metrics, like the number of
overall blocks or statements in a program. We believe that the performance differences we observed,
despite the almost identical program size between cohorts, shows that block numbers alone are not
a sufficient indicator for how easily an end-user can understand a given program.

7 RELATED WORK

Many block-based environments and programming languages exist, although only a minority
of them target end-user programmers. A few block-based environments support abstraction via
functions and other language features. In this section, we primarily focus on discussing this facet
of related work, although we also discuss visual end-user languages broadly, and end-user robot
programming in particular.

7.1 Blocks: Education vs. End-Users

The most popular block-based programming environment as of today is Scratch [Maloney et al.
2010], which is listed as the 22nd-most popular programming language overall in 2020 [Company
2021]. Scratch primarily targets young programming learners, who can use it to animate sprites
and build simple, interactive 2D scenes. Scratch is currently built using the Blockly [Fraser et al.
2013] framework, which is the foundation of most block-based systems today. Blockly allows users
to create their own block-based programming language and environment for a given domain. Two
examples that show the range and extensibility of Blockly as a framework for educational tooling
are App Inventor for Android [Wolber et al. 2011] for developing mobile apps and the educational
robotics programming kit OpenRoberta [Jost et al. 2014].
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e ‘ define my custom block = x

58 Turn left or right, or stop? JELERTET

my custom block = answer

turn ¢ G degrees

Fig. 12. Scratch “custom block” for procedural abstraction.

In these educational environments there is often a close connection to text-based editing, as the
goal for computer science students is to eventually transition from blocks to text-based source code,
transferring their previously acquired knowledge [Fraser 2015]. Some block-based systems, like
OpenRoberta, Alice [Conway 1998], and Pencil-Code [Weintrop and Holbert 2017] even foster this
transition by allowing users to view the text-based equivalent of their block-based code directly
inside the programming environment.

Only few block-based systems explicitly target end-users, like the robot programming environ-
ment CoBlox [Weintrop et al. 2017] or the system Casa Assistiva EUD [Gongalves et al. 2021] for
smart home control. These environments show less resemblance to text-based programming. In the
example of CoBlox, users define target locations for a robot by manually moving it to its intended
physical position. The entire process of capturing the robot’s coordinates and assigning them to
a variable takes is invisible to the user and not represented in the block-based code. This design
decision comes with a trade-off: removing the concept of variables entirely makes the programming
environment easier to learn, but limits its expressiveness.

7.2 Abstraction in Block-Based Programming

Several popular block-based programming languages make efforts to support larger programs
by defining functions. For example, the block-based environment Scratch [Maloney et al. 2010]
supports procedural abstraction through user-defined “custom blocks”, as shown in Figure 12.
Other block-based programming languages, like App Inventor for Android [Wolber et al. 2011] and
OpenRoberta [Jost et al. 2014] even support functions that return a value.

Unfortunately, when block-based environments allow users to define functions, usability issues
abound. Since all functions exist on the same canvas, they can, and often are, placed arbitrarily
on the canvas, potentially confusing the user. Worse yet, as Scratch does not enforce scoping, a
function parameter like x in Figure 12 could be easily dragged into the main program body and
misused outside of its definition range, which Scratch silently ignores.

Usability issues like these may be the reason why few block-based programmers appear to use
abstraction, even when it is offered. For example, a survey of Scratch programs in the wild found that
code clones and other code smells are common in block-based code written by beginners [Hermans
et al. 2016; Robles et al. 2017].
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Nonetheless, some systems attempt to support even complex forms of abstraction. Snap! supports
higher-order functions [Harvey et al. 2013], and App Inventor for Android supports object-oriented
programming [Wolber et al. 2011]. Unfortunately, attempting to fit these abstractions into a block-
based environment results in further usability concerns, like the need for type coercion, a language
feature that is often seen as problematic and confusing [Pradel and Sen 2015]. We believe that
making abstractions like these more usable in block-based environments is a promising avenue for
future work.

7.3 End-User Robotics Programming

To use expert robot programming tools, users typically need extensive background knowledge
in both computer science and robotics. Fortunately, there are two types of systems that aim
to make robot programming accessible to end-users: those that are manual and those that are
automatic [Biggs and MacDonald 2003].

Manual systems make programming simpler by adding support features for beginners and creat-
ing domain-specific languages with simple, high-level commands (e.g., move arm). An example of
a manual system is CoBlox, a block-based programming environment for one-armed robots [Wein-
trop et al. 2018]. Automatic systems, on the other hand, use techniques that require no traditional
programming at all, such as demonstration-based learning. In demonstration-based learning, users
guide a robot arm by hand and then replay these movements as a program [Pan et al. 2010]. Other
techniques like object or gesture recognition have also been applied successfully [Argall et al. 2009].

Both manual and automatic robot programming systems can target a variety of end-user types.
Systems such as Lego Mindstorms EV3 [Benedetelli 2013] (manual; using a visual programming lan-
guage) target users with no previous programming experience, whereas systems like Polyscope [Uni-
versal Robots 2013] (manual; using a tree-based programming language), target intermediate users
with some knowledge of robotics. The chosen target audience for an end-user tool typically affects
its usability but also the complexity of the programs it can generate.

In the context of this work, all the presented tools face similar issues as block-based programming
languages when they have to support larger programs. Flat programs without abstraction do not
scale well beyond small tasks, no matter if they are represented as blocks or nodes in a visual
graph. For programs learned by demonstration, which may not have a visual representation at all,
large programs are especially difficult to teach and modify. Therefore, we see potential for further
research on how the block-based representations presented in this work could be used to better
represent programs for existing approaches.

8 CONCLUSION

Technology has become an integral part of the workplace, and as systems become more pervasive,
the line between users and programmers continues to blur. Training more professional software
developers is not enough to keep up with this progression. Instead, it is crucial to enable end-users
to write code without having to become programming experts first. Block-based programming has
been shown it can enable this need, but is held back as the designers of block-based systems rely
heavily on established programming concepts.

Existing block-based tools have been designed primarily for teaching and require extension to
move into the industrial workplace. The results of our study demonstrate that with traditional block-
based environments, few end-users are able to complete larger development tasks. To overcome
this limitation, block-based tools must become more mature and offer end-users help in similar
ways as traditional development environments assist their professional users. Our results suggest
that an environment with additional guidance on how to decompose programs can be a first step
in this direction, as we have observed that it helps end-users substantially when writing larger
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programs. It remains an open question for future work to explore guided decomposition in other
domains, or even find strategies that generalize to most end-user domains. However, we hope that
this work can serve as inspiration for language and tool designers to push end-user programming
beyond its current limitations.
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