
Block-based Programming for Two-Armed Robots:
A Comparative Study

Felipe Fronchetti

fronchettl@vcu.edu

Virginia Commonwealth University

Richmond, Virginia, USA

Nico Ritschel

ritschel@cs.ubc.ca

University of British Columbia

Vancouver, British Columbia, Canada

Logan Schorr

schorrl@vcu.edu

Virginia Commonwealth University

Richmond, Virginia, USA

Chandler Barfield

barfieldca@vcu.edu

Virginia Commonwealth University

Richmond, Virginia, USA

Gabriella Chang

grazianige@vcu.edu

Virginia Commonwealth University

Richmond, Virginia, USA

Rodrigo Spinola

spinolaro@vcu.edu

Virginia Commonwealth University

Richmond, Virginia, USA

Reid Holmes

rtholmes@cs.ubc.ca

University of British Columbia

Vancouver, British Columbia, Canada

David C. Shepherd

dshepherd@lsu.edu

Louisiana State University

Baton Rouge, Louisiana, USA

ABSTRACT
Programming industrial robots is difficult and expensive. Although

recent work has made substantial progress in making it accessible

to a wider range of users, it is often limited to simple programs

and its usability remains untested in practice. In this article, we

introduce Duplo, a block-based programming environment that

allows end-users to program two-armed robots and solve tasks that

require coordination. Duplo positions the program for each arm

side-by-side, using the spatial relationship between blocks from

each program to represent parallelism in a way that end-users can

easily understand. This design was proposed by previous work, but

not implemented or evaluated in a realistic programming setting.

We performed a randomized experiment with 52 participants that

evaluated Duplo on a complex programming task that contained

several sub-tasks. We compared Duplo with RobotStudio Online

YuMi, a commercial solution, and found that Duplo allowed par-

ticipants to solve the same task faster and with greater success.

By analyzing the information collected during our user study, we

further identified factors that explain this performance difference,

as well as remaining barriers, such as debugging issues and diffi-

culties in interacting with the robot. This work represents another

step towards allowing a wider audience of non-professionals to

program, which might enable the broader deployment of robotics.

KEYWORDS
two-armed, robots, end-users, block-based, programming

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3623329

ACM Reference Format:
Felipe Fronchetti, Nico Ritschel, Logan Schorr, Chandler Barfield, Gabriella

Chang, Rodrigo Spinola, Reid Holmes, and David C. Shepherd. 2024. Block-

based Programming for Two-Armed Robots: A Comparative Study. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3597503.3623329

1 INTRODUCTION
The introduction of collaborative robots [13]—robots that can safely

work hand-in-hand with humans—allows robots to be deployed

in many new environments and dramatically increases the range

of tasks robots can perform [32]. Unfortunately, even though this

increases the theoretical utility of industrial robots, they remain

difficult and expensive to program, hindering their practical adop-

tion [28]. For traditional robot programming environments such as

ABB RobotStudio [2] or ROS Development Studio [39], being easy to

learn and use is not a priority, which means that they can intim-

idate new users and overwhelm novices. To use them effectively,

engineers must be both competent general-purpose programmers

and experts in the domain of robotics [35], a combination that is

both rare and expensive. This has led to the creation of a cottage

industry of robotics integration companies that buy, program, and

re-program robots for companies.

There have been many attempts to make robot programming

simpler and more accessible to non-experts, such as end-users who
usually do not have formal programming education [11]. Such

work has focused on tasks like moving robotic arms, picking up

and carrying items, or tending machines. Programs for these simple

tasks can sometimes be created without any traditional program-

ming at all, using tools often branded as no-code environments (e.g.,

ScalableArc
1
, FuzzyStudio

2
). In contrast to creating traditional pro-

grams, users leverage techniques like demonstration-based learn-

ing [8], natural language teaching [38], or object recognition to train

robots [7]. However, no-code approaches are inherently limited:

1
https://scalablerobotics.ai/

2
https://flr.io/products/fuzzy-studio/

https://doi.org/10.1145/3597503.3623329
https://doi.org/10.1145/3597503.3623329
https://scalablerobotics.ai/
https://flr.io/products/fuzzy-studio/

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Fronchetti et al.

replaying movements precludes branching behavior, modifying

existing programs becomes tedious, and more complex tasks such

as coordinating multiple robots are difficult or impossible.

To bridge the gap between traditional programming and no-code

approaches, a number of low-code tools, which make programming

accessible to users with little to no training, have been developed.

Figure 1 shows RobotStudio Online YuMi (ROY), a commercially-

available low-code programming environment that targets two-

armed robots. ROY builds on top of the widely-deployed expert

robotics language RAPID [4], but instead of using low-level, built-in

commands, it provides a higher level of abstraction via commands

like Move or OpenHand. The ROY environment does not allow

direct editing of program code as text, but instead uses a set of

buttons (on the right of Figure 1) that trigger a graphical workflow to

add and define new commands. ROY helps end-users by raising the

programming abstraction level and guiding their edits, but inherits

many of the drawbacks of both traditional and no-code tools. For

example, while graphical workflows help with inserting new code,

they make editing existing code complicated, and the environment

provides little help with understanding advanced commands like

MoveSync that target two robot arms at once.

Following the increasing interest in collaborative robots and the

wide range of applications they can target, our goal is to explore

how block-based programming can support end-users in developing

code for collaborative two-armed robots. In this paper, we refer

to end-users as individuals with little to no experience in robot

programming. Block-based programming is a framework commonly

used as a foundation for low-code systems, including the robotics

domain [40]. It has become prevalent in computer science education,

with millions of children learning to code in environments like

Scratch and Alice [14, 23, 41].

Unlike traditional programming tools, block-based programming

environments do not use text, but instead visualize the structure of a

program using jigsaw-like shapes that can be dragged, dropped, and

connected. This visual metaphor allows users to predict how code

elements interact with each other and makes it explicit whether

code elements can be combined into an executable program [45].

Numerous studies have shown that block-based programming is an

effective mechanism for introducing novices to programming [44].

There exist several tools that try to adapt the block-based frame-

work to robotics, the most notable being OpenRoberta [19] and

CoBlox [43]. However, these approaches do not target robots with

more than one arm, largely due to the inherent complexity that

arises from parallel programming. This makes them inherently

limited, as common industrial tasks require two robot arms to co-

operate to solve tasks, such as carrying large items or assembling

machine parts [21]. Due to the lack of beginner-friendly environ-

ments focused on two-armed robots, our study proposes a practical

investigation of how block-based environments can be used in the

programming of two-armed robots by end-users.

To do so, this paper introduces and evaluates Duplo, an easy-

to-use block-based programming system for cooperative programs
that controls an industrial robot with two arms. As illustrated by

Figure 2, Duplo presents users with two block-based programming

canvases side-by-side and features cross-canvas blocks that are syn-

chronized between the canvases to represent parallel commands.

This design was explored by previous work through mock-up pro-

grams and a front-end prototype, but never implemented or tested

with actual robots [33]. Our work implements the design in a re-

fined form and evaluates the use of the block-based paradigm using

a two-armed robot.

In our evaluation of Duplo, we compare it to RobotStudio Online

YuMi [1]. ROY is the only existing robotics tool we are aware of

that targets end-users and supports the programming of two-armed

robots. In addition, ROY provides a similar set of features as Du-

plo and targets the same two-armed robot model, with equivalent

robot commands being available in both languages. This makes

ROY an ideal candidate for evaluating the impact that the block-

based editing paradigm and synchronized blocks have on end-users

programming two-armed robots.

Figure 1: RobotStudio Online YuMi programming interface
for two-armed robots: Two canvases show RAPID code for
each arm side-by-side, with buttons allowing the quick in-
sertion of commands into the code.

To compare the two programming environments, we performed

a randomized controlled experiment with 52 end-user participants.

Our participants, primarily university students with little to no

robot programming experience, were randomly assigned to one

of the two programming systems and given a brief introduction

on how to use it. They were then presented with a programming

task that consisted of multiple stages in which participants had to

coordinate two robot arms to jointly carry and assemble a series of

items. We recorded whether participants completed each stage of

the programming task, how long they took to do so, the number and

kind of programming mistakes they made, and how many attempts

they needed to test their programs. We found that participants who

used the Duplo block-based environment made fewer programming

mistakes, were able to solve the given tasks with greater success,

and required less time on average.

2 BACKGROUND
In this Section, we provide a brief overview of the two program-

ming environments we compare in our experiment: the existing

graphical-based system RobotStudio Online YuMi that is available

commercially [1], and the block-based programming tool Duplo we

introduce in this work.

Block-based Programming for Two-Armed Robots:
A Comparative Study ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 2: Interface of the Duplo programming language.
Users can drag blocks from a toolbox on the left onto the
programming canvases and attach them to existing blocks to
create a program. Blocks that affect both arms are duplicated
across canvases and vertically aligned.

2.1 RobotStudio Online YuMi
RobotStudio Online YuMi

3
(ROY) is a programming interface cre-

ated by the robot manufacturer ABB to control their two-armed

collaborative robot YuMi. It is designed to demonstrate the range

of tasks that two robot arms can solve when they cooperate. ROY is

developed to be beginner-friendly and accessible to end-users who

would be overwhelmed by traditional tools like ABB’s RobotStu-

dio [2]. To the best of our knowledge, it is the only programming

tool available in the market that is both beginner-friendly and

supports the programming of a two-armed industrial robot.

As Figure 1 illustrates, ROY’s main interface contains two can-

vases on the left where the RAPID code is displayed and a panel

on the right with graphical buttons used to implement new robot

instructions. The two canvases on the left contain the program code

for each robotic arm that is targeted by the environment, and are

used to visualize instructions created by the user. When the user

presses a button on the right panel, the RAPID instruction assigned

to that button is displayed on the canvas respective to that robot

arm. The instructions displayed on the canvases are similar to the

ones from professional tools of the same manufacturer, although

boilerplate codes such as function headers and variable definitions

are hidden. As users compile and run their code (using the button

on the bottom right), the two programs are combined with their

respective boilerplate code and deployed onto their respective robot

arms. The entire project can also be saved into a single file and

restored later to continue editing the code in ROY.

The programming process in ROY is purely based on button

interactions on the interface. The first button on the main interface,

“Current position from both arms”, generates code that simultane-

ously moves both arms to their current position. The second row

has two buttons, “Current Position this arm” for each arm, that gen-

erates code to move only the corresponding arm. For these buttons,

the target location is automatically set to a variable that contains

the current location of the connected physical robot at the moment

the button is clicked. This way of capturing locations by directly

manipulating a physical robot is called lead-though programming
and is commonly used in end-user robotics systems [8, 40]. The

3
https://www.youtube.com/watch?v=jEbaaqNPh9c

third row has four buttons, “Open Gripper” and “Close Gripper” for

each arm, that generate code to open or close the grippers in its

respective canvas. Lastly, the button on the left side of the bottom

row adds a command to both canvases that make the program being

executed in each arm wait for each other, for example when one

arm is supposed to remain idle while the other one conducts work.

All of the described buttons can only be used to insert new code

at the currently selected line number. However, users can also edit

the program’s source code of each arm using the “Edit this arm”

button on top of each canvas. This button switches into a similar

interface that only shows a specific arm’s instructions. To edit ex-

isting commands, users can manually delete code and replace it

with new instructions using buttons on the “Edit this arm” inter-

face. Existing variables can also be overridden with a new location,

allowing users to fine-tune their existing programs without having

to edit the code manually. By providing a programming environ-

ment where beginners can implement programs for two-armed

robots using simple button interactions, ABB defines ROY as a “fast
introduction to robot programming” [1].

2.2 Duplo: Block-based Cooperative
Programming

Duplo is a block-based programming tool that supports cooper-

ative two-armed robot programs. Duplo uses similar commands

as existing beginner-friendly block-based programming languages

for robots [46, 17, 43], which feature high-level commands such

as “Move arm <speed> to <position>” and “Open gripper”. However,
unlike previous block-based languages, which focused on a single

robot arm executing a single program, Duplo targets two robot

arms at once and allows users to write programs that are executed

simultaneously. It further integrates lead-through programming to

define locations, similar to how positions are declared in ROY.

Figure 2 shows Duplo’s user interface. Similar to ROY, it fea-

tures two programming canvases side-by-side, each containing the

program for one robot arm. On the left side of the environment, a

sidebar provides a number of drawers with available programming

blocks. The blocks are grouped thematically into movement com-

mands, gripper commands, and synchronization commands. Blocks

can be dragged from the drawers onto one of the two canvases and

attached to existing blocks, as illustrated by their jigsaw shape.

A unique feature of Duplo compared to other block-based lan-

guages is the availability of blocks that target both robot arms at

once, and that therefore exist in both of the programming can-

vases. The “Wait for each other” block synchronizes the state of

both arms before proceeding to the next instruction, and the “Move
arm <speed> to <position> and follow on the other side” block is used

to perform a simultaneous movement of both arms at once. When

a programmer drags one of these blocks onto one of the program-

ming canvases, it is automatically inserted into the other canvas as

well. The blocks can be edited and moved to a different point in the

program by dragging either of the two representations, with the

other representation following along accordingly. The environment

ensures that complementary blocks are always vertically aligned,

making it easy to identify how they correspond to each other. This

allows users to visually track the timing of the two programs as they

https://www.youtube.com/watch?v=jEbaaqNPh9c

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Fronchetti et al.

edit them and signals them to potentially add more synchronization

blocks to ensure the correct sequence of commands.

The design of Duplo is based on the findings of previouswork [33],

which evaluated different design alternatives for coordinating two-

armed robots. The Duplo environment follows the design approach

that was deemed best by that work, using explicit synchronization

blocks and vertical alignment to represent concurrent robot be-

havior. However, unlike previous work, which used mock-ups and

front-end prototypes to compare design alternatives, Duplo features

a fully functional implementation that targets a real two-armed

robot.

This implementation allows us to compare Duplo to ROY, which

features a similar complexity of programming features and targets

the same robot model. Even though both languages adopt distinct

programming styles (block-based vs. graphical-based), the similari-

ties between Duplo and ROY make them suitable for comparison.

Both are among the few tools available for two-armed robot pro-

gramming. They are specifically designed to be user-friendly for

individuals without experience in robot programming and offer

comparable movement and synchronization commands. The indus-

trial robot and the lead-through capability used in both languages

are also the same. In other words, equivalent solutions can be im-

plemented in both languages. More technical details on how we

implemented Duplo and the data collected from our case study are

available in our replication package
4
.

3 RELATEDWORK
Our work on Duplo is inspired by previous attempts to make robot

programming accessible to end-users. We have already explained

the most directly related tool, RobotStudio Online YuMi, in Sec-

tion 2.1. In this section, we situate Duplo and ROY in the context of

other relevant work. We focus on end-user approaches that either

target the robotics domain or use block-based programming.

End-user Robotics Tools
There exists a large corpus of previous work that has tried to make

robot programming more accessible to end-users. Most studies

focus on implementing new programming systems to support end-

users, and we will discuss them in this section [6, 9]. We use the

categories of Biggs and MacDonald’s survey of programming sys-

tems from 2003 to categorize them, as their categories still apply

to today’s systems [11]. This survey categorized robot program-

ming systems based on their approach: manual or automatic. Man-

ual tools use custom domain-specific programming languages like

RAPID [4] to support robot programming. Automatic tools strive

to eliminate the need for traditional programming by using al-

ternative modalities, such as lead-through programming [28] or

demonstration-based learning [8].

Both manual and automatic tools have an extensive range of

target audiences in end-user robot programming, and their ap-

proaches to making robot programming easier are diverse. The

manual systems Open Roberta [19] and BEESM [36], for example,

implement block-based languages to support end-users with no

programming experience in robotics. Other manual systems, such

as the RC+ Express [16] and Polyscope [30], propose more complex

4
https://github.com/fronchetti/ICSE-2024

programming environments and target users with prior experience

in robot programming. In automatic systems, the alternatives are

also diverse. To replace traditional programming languages, studies

have explored other technologies to support the programming of

robots. Mixed and virtual reality environments have been created as

an alternative to more conventional approaches [27, 22, 48, 12]. Pro-

cedural languages have also been replaced with other programming

tools based on familiar robotics concepts, such as path planning [31,
29].

The primary influence for our work was CoBlox, a beginner-

friendly programming environment for collaborative robot arms [40].

CoBlox combines manual and automated robot programming tech-

niques: Users can use a block-based programming environment to

define the overall structure of their programs and then use lead-

through programming to define the target position for each arm

movement. An evaluation by the authors of CoBlox found that

novice programmers can learn how to use CoBlox faster and solve

simple programming tasks more effectively than with other com-

mercially available tools [43]. CoBlox is easy to learn but also limits

the complexity of the programs it supports. All programs are linear

sequences of commands that move a single robot arm. CoBlox can-

not be used to program any tasks where multiple robot arms need

to interact.

Both manual and automated systems typically have to compro-

mise between beginner-friendliness and the maximum task com-

plexity they can support. CoBlox, the main inspiration for Duplo,

combines the qualities of both types of systems but is limited to

one-armed robots. The study presented in this work aims to ex-

pand the capabilities of CoBlox to two-armed robots to evaluate

how end-users perceive block-based programming systems on real

two-armed robots.

Block-based Programming
Block-based programming is a visual alternative for text-based lan-

guages [25]. In this visual approach, programmers combine visual

jigsaw-styled blocks representing programming functionalities to

implement their solutions. These blocks are usually organized and

colored by type (e.g., operators, data, control) and can be dragged

and dropped into a canvas where the program is visually repre-

sented. Block-based languages are widely used in computer science

education and other fields related to end-user programming. In

robotics, block-based programming is also used as one of the com-

mon end-user programming alternatives to traditional languages.

Blocks in the robotics domain usually represent robot instructions

translated to the robot controller by a back-end application.

Among the block-based solutions that inspired our work are

educational tools such as Scratch [23] and Snap! [46], as well as the
aforementioned robotic solution CoBlox [40]. Regarding two-armed

robot programming, we focused our inspiration on a previous work

that explored different layouts for block-based languages in this

context [33]. Their best-performing design solution was adapted

to our application and used as the primary influence for Duplo.

Although many studies already exist on block-based programming,

none has yet explored the programming of two-armed robots on

physical robots in practice. We believe that our study may provide

https://github.com/fronchetti/ICSE-2024

Block-based Programming for Two-Armed Robots:
A Comparative Study ICSE ’24, April 14–20, 2024, Lisbon, Portugal

insight into end-user programming with block-based languages on

real-world robots.

4 METHOD
In this section, we describe the controlled experiment we conducted

to compare Duplo and RobotStudio Online YuMi using a two-armed

collaborative robot. The goal of our experiment was to evaluate how

end-users solve a complex task using a two-armed robot using either

ROY or Duplo. Figure 3 presents an overview of the experimental

procedure and the individual steps that were split across three

experimental phases. The entire methodology was refined through

a pilot study using feedback from 31 individuals and approved in

advance by an institutional review board.

4.1 Recruitment
We advertised our experiment to undergraduate students enrolled

at a single university in the United States. To ensure a diverse

range of participant backgrounds, we sent advertisement emails

to different departments and distributed flyers to students around

the campus. We advertised that the experiment involved robot

programming, but emphasized that it was focused on end-users

without any previous programming experience. A 50 USD gift card

for a local bookstore was offered as an incentive to all participants.

4.2 Experimental Setup
Each participant was provided with one of the two programming

environments and a robot to execute their code and record positions

via lead-through programming. The robot used in the experiment

was an ABB YuMi (IRB 14000) [3], a collaborative robot with lead-

through capabilities. Figure 4 shows the physical layout of the

experiment as it was presented to participants. A laptop running

the assigned programming environment was placed on a table adja-

cent to the workstation where the two-armed robot was mounted.

Participants were able to program using either the laptop’s touch-

screen monitor or the built-in keyboard and touchpad. In addition

to the robot, the workstation contained 3D-printed objects relevant

to the task participants were asked to solve.

4.3 Experimental Procedure
Participants were randomly assigned to one of two groups after

they consented to join the experiment. One group was assigned the

Duplo environment, and the other group used the ROY environ-

ment. Although participants were divided into two groups, each

participant was scheduled for an individual session to try the exper-

imental procedure. The only individual rather than the participant

in a session was a proctor, who was instructed not to provide extra

information to the participants.

Other than the assigned programming environment and respec-

tive training, both groups were provided with the same setup and

task descriptions. The experiment was limited to a maximum of 120

minutes. During the first 15 minutes of the experiment, participants

were introduced to their assigned programming environment and

trained on how to use it. Next, participants received the task they

were to solve along with a clear understanding of what would con-

stitute successfully accomplishing the task. During the following

105 minutes, participants were allowed to solve the given task at

their own pace.

4.3.1 Training Procedure. The training for both environments was

designed to be as similar as possible consisting of two brief videos.

The first video explained how to use the assigned programming

environment. Although the two environments required different

instructions and consequently different videos, we made them as

similar as possible in both length and content. Each video was ap-

proximately 7 minutes long and covered all the basic programming

features of the respective environment. Neither video referenced

the concrete task that participants were expected to solve.

The second video was three minutes long and introduced the task

to the participants. This video introduced them to the 3D-printed

objects they were to assemble. It also showed them the desired,

fully assembled state of the components after all steps of the task

were completed. The video did not show the assembling process,

as we expected participants to implement their own solutions. It

did however suggest the order in which participants could tackle

the assembly steps, effectively breaking the task down into three

smaller sub-tasks that allowed participants to keep track of their

progress.

After watching both training videos, the proctor supervising

the experiment gave participants a brief in-person introduction to

the robot workspace. The proctor demonstrated how to execute

programs and how to move the robot arm in lead-through mode to

capture its current position. Participants were also given a “cheat

sheet” with some reminders and tips, including how to open and

close the robot’s grippers while recording positions.

4.3.2 Task Procedure. The experiment task involved writing a pro-

gram that could perform a series of steps that involved picking

and placing 3D-printed objects and executing this program on the

physical robot to assemble the final object. Pick-and-place tasks are

commonly used in robot experiments because they often occur in

practice and typically lead to challenges that participants encounter

and have to overcome [10]. In our experiment, participants were

asked to assemble three components using the two-armed robot.

First, participants had to pick up a “spacer”, a small cuboid-

shaped plastic component, and place it onto a narrow metal shaft

in the center of the robot workstation. This part of the task only

involved one robot arm and was therefore suitable as a warm-up

step. However, only one of the two robot arms could reach the item,

so this step also served as a check of whether participants could

identify and program the correct robot arm for the sub-task.

Second, participants were instructed to pick up a “gear”, a larger

and differently shaped component, and move it on top of the previ-

ously placed spacer. To solve this programming step, participants

had to use the robot’s second arm as only that arm was able to reach

the item. While this sub-task seems similar to the previous one (re-

quiring only one robot arm), it did involve coordination because

the two tasks had to be executed in the right order. This and the

previous sub-task could be parallelized by picking up the two items

simultaneously and then placing them one after another, but we did

not instruct participants to solve them this way. However, a naive

implementation is likely to cause a concurrent execution of both

tasks in both programming environments. If participants decided

to retain the parallelism, they had to ensure the two arms do not

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Fronchetti et al.

Before the experiment

Participants invited via
mailing lists and local

advertising in a
university

After the experiment

Descriptive analysis of the
annotated data and

qualitative analysis based
on the feedback of
participants in the

questionnaire

Data Analysis

During the experiment

Group Assignment
52 participants randomly

assigned to try one of the two
programming tools

Participants had 105 minutes to
solve the three picking and

placing tasks

Task Resolution

Training
Video tutorials trained

participants about the assigned
tool and experiment task

Proctors observing
participants annotated
information about their

performance, completion
times, and mistakes

Data Annotation

Participants responded to
demographic questions and
gave feedback on the tool.

Questionnaire

Participants
Recruitment

Figure 3: Experimental design and procedure divided into three phases: before, during, and after the experiment.

Figure 4: Experimental setup: Participants used a touch-
screen-enabled laptop (left) to program a two-armed collabo-
rative robot (right).

collide, which can occur if they try to place objects simultaneously

or do not move out of each other’s way.

For the last sub-task, we asked participants to pick and place

a “propeller”, a wide plastic object that could not be carried and

assembled accurately using a single robot arm. Instead, participants

had to carry the item with both robot arms and use synchronized

movements to move it into the correct position on top of the pre-

viously placed items. Unlike in prior sub-tasks, this required the

two arms to work in tandem. This also required synchronization

to ensure it was only executed after both previous sub-tasks were

completed.

In Figure 5, we show a potential solution for the assembly task,

although in the experiment, the specific sequence in which objects

had to be placed was not specified or enforced. For example, while

Figure 5 shows the order we used above (spacer first, gear second,

and propeller third), participants were allowed to start by placing

the propeller and then placing the gear or spacer. This means that

participants could move on to a different sub-task if they felt like

they were stuck. The task description video did, however, show

the assembly in the order as shown in Figure 5, as we expected

this to be the order with the most appropriate difficulty curve for

participants.

Participants were free to spend the 105 minutes provided for the

experiment as they wished. In particular, we did not direct them to

move on to a new sub-task if they spent longer than anticipated on a

Figure 5: Potential solution: The spacer at the bottom (in
blue), the gear in the middle (in red), and the propeller at the
top (in green), all placed into the small metal shaft. There is
no specific order of how the objects had to be placed.

single step. The proctor would only intervene if participants explic-

itly requested them to repeat previously given instructions or the

task description, or if there were technical issues. After participants

indicated that had finished the task, the proctor would ask them

to run their program one final time to verify the solution. If the

program did not solve the task and there was time left, participants

could resume programming and try to fix their mistakes.

4.3.3 Post-Experiment Questionnaire. After completing the experi-

ment, participants were asked to answer a post-experiment ques-

tionnaire. The questionnaire was composed of eight questions. The

first five questions asked participants about their demographic

information; this included participant age, area of study, overall

programming experience, experience with robot programming, and

whether they had ever used a block-based programming language

before. The last three questions were open-ended and asked what

participants found easy, what they found difficult, and if they had

any other feedback about the experiment or the environment they

used.

4.4 Data Collection and Analysis
A proctor supervised the experiment at all times and collected data

in a spreadsheet for later analysis. Using a digital clock, the proctor

recorded the duration the participant took to complete each sub-task

Block-based Programming for Two-Armed Robots:
A Comparative Study ICSE ’24, April 14–20, 2024, Lisbon, Portugal

in the experiment, from picking up their first object to placing the

last one. They also counted occurrences of particular events in the

experiment, including the number of times a participant executed

their program solution, the number of objects accidentally dropped

during executions, and the number of times the robot collided

with itself or the surrounding workspace. Once a participant had

successfully finished the task, the proctor inspected the code and

collected information about the participant’s solution, including

the number of used lines or blocks of code used and the number

of robot positions the participant defined in their solution. All the

collected variables are defined in Table 1.

We performed a range of analyses on the data collected by the

proctors and provided in the post-experiment questionnaire. While

most experimental data was quantitative, the written responses to

the questionnaire required qualitative analysis that was performed

by three researchers who used open card sorting [37] to organize

and categorize responses. The researchers were instructed to create

codes for participant comments that described features or attributes

they found easy and difficult to use. At first, each researcher per-

formed the analysis individually and met to compare their results

to arrive at a final, common set of codes. Constant comparison was

employed to guarantee consistency in the codes [15]. Finally, two

additional researchers inspected the final set of codes to ensure

they were easy to understand.

Type Variables

Integer

Program Executions, # Robot Positions Created,

< Blocks, Lines > Implemented, # Objects Dropped

Robot Collisions with < Environment, Robot >

Datetime

Participant started the experiment, Participant

< picked / placed > the < spacer / gear / propeller >

Table 1: Variables annotated by the proctor during the exper-
iment. Each variable corresponds to a different column in
the spreadsheet. Similar or equivalent variables are grouped
using < symbols > in the table.

5 RESULTS
In this section, we present the results of our experiment. We be-

gin with an introduction of the participants’ demographics and

then analyze the performance data we collected throughout the

experiment. Finally, we present the feedback participants provided

through the post-experiment questionnaire.

5.1 Demographics
A total of 52 participants joined and completed the experiment.

Participants were randomly assigned into one of two groups of

26 participants, with one group using Duplo and the other using

ROY for the experimental task. The participants indicated that they

pursued 31 distinct majors. Some were from computing-related do-

mains such as Electrical Engineering (4 participants) and Computer

Science (4 participants), but the vast majority were from other areas

of study, such as Biology (6 participants), Cinema (3 participants),

and Nursing (2 participants). The average participant age was 22

years (min: 17, max: 50, sd.: 6.61).

When asked about their programming experience, 10 partici-

pants using Duplo (38%) and 11 participants using ROY (42%) had

no prior programming experience. The remaining participants de-

clared some level of programming experience, with 9 participants

of each group (34%) indicating one or more years of experience

in programming. For Duplo, 12 participants (46%) indicated hav-

ing at least some experience with block-based languages, while

only 5 participants testing ROY (19%) indicated the same. Only 2

participants testing Duplo (8%) and 1 participant testing ROY (4%)

indicated at least some robot programming experience.

5.2 Participant Performance
During the experiment, the proctor recorded the times and out-

comes at which participants completed the sub-tasks and the overall

task. Figure 6 shows the success rates for each sub-task in the exper-

iment, split by their assigned programming environment. Note that,

as explained in Section 4.3.2, sub-tasks were not strictly sequen-

tial, so participants might have completed later sub-tasks despite

missing previous ones.

For Duplo, 21 out of 26 participants (80%) completed all sub-

tasks successfully. All participants in the Duplo group successfully

completed the first sub-task placing the spacer on the rod. One

participant failed to place the gear for the second sub-task. Four

participants could not pick up or place the propeller in the third

sub-task.

For the ROY alternative, only 12 out of 26 participants completed

all six sub-tasks (46%). 3 participants failed to pick up the spacer

during the first sub-task, and 2morewere unable to place it correctly.

For the second sub-task, 4 participants did not succeed at picking

up the gear and 3 more failed to place it. For the third sub-task, 11

participants failed to pick up the propeller and 3 more were unable

to place it.

We employed the Chi-squared test of independence [49] to ex-

amine if the sub-tasks completion rates differ among groups trying

each programming environment. We rejected the hypothesis that

these variables were independent for p-values < 0.05. Our analysis

yielded a significant result for the "Place Propeller" sub-task, with

p-value equals to 0.008. The "Place Spacer" (p-value: 0.059), "Place

Gear" (p-value: 0.054) and "Pick up Propeller" (p-value: 0.066) tasks

also presented p-values close to the threshold. Such results sug-

gest that there may be a difference in completion rates for certain

sub-tasks depending on the programming environment.

5.3 Completion Times
During the experiment, the proctors also recorded participants’

completion times for each sub-task and for the overall task. Fig-

ure 7 shows the time participants took to complete the experiment,

with bar colors indicating each participant’s assigned environment.

Participants who ran out of time and did not complete all sub-tasks

are marked with a black circle. As the Figure illustrates, Duplo par-

ticipants were more successful and faster overall. This observation

also holds when only considering participants who successfully

completed all sub-tasks. Those who completed all the sub-tasks

using Duplo took 52.7 minutes on average to finish the experiment

(min: 28, max: 97, sd: 22.06), and those who used ROY took 74.6

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Fronchetti et al.

(a) Duplo

26 26 26
25

22 22

4 4

20%

40%

60%

80%

100%

Pick up
Spacer

Place
Spacer

Pick up
Gear

Place
Gear

Pick up
Propeller

Place
Propeller

Pa
rt

ic
ip

an
ts

 (
%

)

Completed Did not complete

(b) ROY

23 21 22 19
15 12

3 5 4 7
11 14

0%

20%

40%

60%

80%

100%

Pick up
Spacer

Place
Spacer

Pick up
Gear

Place
Gear

Pick up
Propeller

Place
Propeller

Pa
rt

ic
ip

an
ts

 (
%

)

Completed Did not complete

Figure 6: Percentage of participants who completed each sub-
task in a programming option. The bar labels provide the
exact number of participants per sub-task.

minutes (min: 35, max: 105, sd: 18.33). Table 2 shows the partici-

pants’ average completion times for each sub-task, divided by their

assigned group.

We performed survival analysis [18] on our results. This statisti-

cal method allows us to compare the completion times of the two

groups while factoring in the unsuccessful participants who were

cut off after 105 minutes. Note that “survival” in this context means

that participants have not yet completed the task at a given point

in time. A log-rank test on the survival curves [47] found that there

is a statistically significant difference between the two groups (df =

1, 𝜒2= 9.59, p < 0.005).

●●●●●●●●●●●●●●●●●●●

0
25
50
75

100

M
in
u
te
s

Figure 7: Participants’ completion times (in minutes) in as-
cending order. Each bar represents one participant, and its
color indicates the assigned environment (blue for Duplo,
yellow for ROY). A black circlemarks participants who didn’t
complete all sub-tasks.

Pick up

Spacer

Place

Spacer

Pick up

Gear

Place

Gear

Pick up

Prop.

Place

Prop.

Total

ROY 18.70 14.05 22.68 15.26 30.67 21.25 74.58

Duplo 8.15 5.45 9.27 11.24 14.64 14.50 52.67

Table 2: Average completion time for each sub-task (in min-
utes). Only participants who completed the task were con-
sidered. The total average only considers participants who
completed all sub-tasks.

5.4 Programming Obstacles
In addition to participant performance, we also investigated the

errors participants made. Three errors ended up being the most

common: dropping the object held by the robot in the wrong posi-

tion, collisions of the robot with its surrounding workspace, and

collisions of the robot with itself. Note that, unlike the other two

errors, the robot’s controller detected and automatically prevented

self-collisions. This provided quicker feedback to participants and

prevented damage to the robot hardware.

Figure 8 shows how often participants encountered the top three

programming obstacles using each method. On average, partici-

pants using Duplo dropped blocks 4.7 times during the experiment

(min: 0, max: 15, sd.: 4.26), while participants using ROY dropped

blocks 6.9 times (min: 1, max: 21, sd: 5.22). For workspace collisions,

the average number of occurrences was also higher for ROY, with

an average of 15.1 workspace collisions per participant (min: 7, max:

33, sd: 6.32) compared to an average of 10.7 collisions (min: 1, max:

27, sd: 8.84) from participants using Duplo. The number of collisions

prevented by the robot controller is closer for both languages: ROY

users encountered an average of 2.0 prevented collisions (min: 0,

max: 9, sd: 2.54), and Duplo users encountered 2.3 of them (min: 0,

max: 8, sd: 3.09).

To determine if there were significant differences between the

obstacle occurrences in both groups, we conducted the Mann-

Whitney-Wilcoxon Test [26]. The hypothesis that the occurrences

were identical for both groups was rejected for p-values < 0.05. We

found a significant difference in the number of workspace collisions

(p-value: 0.008). However, the number of objects dropped (p-value:

0.067), and predicted collisions (p-value: 0.684) did not reach the

threshold for statistical significance. These results suggest that al-

though two out of three obstacles were less frequent for Duplo

participants, we cannot confirm a statistically significant difference

in occurrence values.

5.5 Program Analysis
To gain further insight into the participants’ programming expe-

rience, we also analyzed their final code and the number of times

they executed code while programming. Both participant groups

used approximately the same number of test executions during the

study: the Duplo group ran their code 37.4 times on average (min: 9,

max: 85, sd: 18.59) compared to the ROY group which ran theirs 37.1

times (min: 19, max: 64, sd: 12.27). Duplo users required an average

of 33 blocks to write their final solution for the entire task (min: 22,

max: 44, sd: 6.42), while participants using ROY wrote an average

of 45 lines of text-based code (min: 11, max: 68, sd: 36.61). Note that

these numbers include incomplete programs from unsuccessful par-

ticipants but do not include empty lines in ROY. We further found

that participants using ROY defined 24 positions (min: 8, max: 39,

sd: 18.5) on average using lead-through programming, compared

to 16 on average for Duplo (min: 8, max: 29, sd: 4.8).

5.6 Feedback from Participants
We gave participants the opportunity to comment on the exper-

iment and their assigned programming environment after they

completed the task. In our analysis, we only considered those com-

ments that were in some way related to the programming interfaces

Block-based Programming for Two-Armed Robots:
A Comparative Study ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(a) Objects Dropped

0 5 10 15 20 25 30 35 40

Duplo

ROY

Occurrences

(b) Collisions with environment

0 5 10 15 20 25 30 35 40

Duplo

ROY

Occurrences

(c) Collisions with the robot

0 5 10 15 20 25 30 35 40

Duplo

ROY

Occurrences

Figure 8: Box-plots of occurrence numbers of the top 3 pro-
gramming obstacles.

and ignored those that provided feedback on the robot hardware,

the training, or the experimental task.

Table 3, presents an overview of the codes we developed dur-

ing our analysis that described programming challenges and their

prevalence in the provided feedback. For ROY, the biggest challenge

was editing code, with 12 participants mentioning this problem.

Among their comments, participants highlighted that it was not

possible to reorganize lines of code without deleting them, that

they were unable to rename robot positions, that it was not possible

to edit both arms at the same time, and there was no option to

undo changes. A further 5 participants also mentioned difficulties

debugging code, primarily because ROY does not always provide

clear feedback when errors occur, which makes it difficult to locate

issues. Another 3 participants complained about not being able to

execute subsections of code (which could be useful for debugging),

and two mentioned how the MoveSync command, used to move

both arms at the same time, was confusing to them.

For Duplo, participants mostly commented that using arm syn-

chronization confused them, including how to program both arms to

execute different commands simultaneously. They also mentioned

issues understanding the “wait for each other” synchronization

block. Another 3 participants also mentioned issues with the po-

sition reteaching feature as it is hidden in a drop-down menu and

was not mentioned in the training tutorial. Lastly, three more par-

ticipants mentioned problems with debugging their code, similar

to those encountered in ROY.

Participants also commented on what aspects of the two systems

they found particularly useful or easy to use. These comments were

mostly similar for both systems. For both interfaces, participants

mentioned that they were simple and more intuitive than writing

code manually. Also for both interfaces, participants pointed out

that defining positions using lead-through programming was in-

tuitive to them. Some participants also noted that they liked the

commands for synchronized movement (the MoveSync command

in ROY and the “follow other arm” block in Duplo, respectively).

The only repeated comment we identified that was specific to one

environment was that 3 participants found it helpful that they could

review the definition of robot positions in Duplo.

ROY

Difficult to edit code. 12

Difficult to debug problems. 5

It is impossible to execute specific chunks of code. 3

MoveSync command is counter-intuitive. 2

Duplo

Arm synchronization features are confusing. 6

Difficult to reteach positions. 3

Difficult to debug problems. 3

Table 3: Programming challenges mentioned by participants
in the post-experiment questionnaire.

6 DISCUSSION
This section discusses our findings and how different factors may

have influenced participants throughout the experiment.

6.1 How Do the Programming Environments
Affect End-user Performance?

Our findings in Section 5.2 indicate that the programming environ-

ment we assigned to our participants substantially affected how

well they solved the given task. As shown in Figure 6, while less than

half of the participants (46%) using ROY completed the assigned

task in the given, nearly twice as many (80%) Duplo participants

succeeded. Participants testing Duplo not only solved the task more

effectively but did so faster. As Table 2 indicates, participants using

Duplo spent less than half the time required by participants using

ROY on almost all of the sub-tasks. Our performance observations

match our expectations as we set out for Duplo to improve ROY’s

usability. However, performance numbers alone cannot account

for which of Duplo’s features set it apart from ROY. To do this, we

refer to the feedback given by participants.

As indicated in Table 3, 12 of the 26 participants using ROY

(46%) complained about the difficulty of editing code while using

the interface. This feedback matches our observations, as ROY’s

graphical elements are only integrated with text-based editing on a

superficial level. Although inserting new code in ROY is easy, to

edit an existing line of code, users must either delete and re-write

their code or access a secondary interface to redefine positions.

It was also not straightforward for users to move lines of code

(for example, swap their order). In ROY, users have to manually

copy and paste code similar to text-based editing, which can easily

interfere with the alignment of instructions and the synchronization

between the two robot arms. This introduces a potential source of

errors or confusion. Conversely, in Duplo users can drag and drop

blocks within the canvas as desired, automatically updating the

surrounding code’s alignment.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Fronchetti et al.

× Participant I (ROY/Difficult): “I couldn’t move lines of code
after placing them, so I had to delete them and remake them in the
correct line.”
× Participant II (ROY/Difficult): “The fact that you could not move
lines up and down the sequence in the code was frustrating because
errors could not easily be fixed...”
× Participant III (Duplo/Easy): “It was very easy to use the blocks
to ask the robot to make actions, link the blocks together, and break
them apart. It was also easy to move the robot’s arms.”

Another indicator that features affected our participants’ perfor-

mance is the second and third most frequent comment highlighted

by ROY participants in Table 3: the difficulty of debugging problems

and being unable to execute specific chunks of code. This feature is

particularly important for a use case such as robot programming,

where commands can take several seconds to execute, making it

tedious to repeatedly re-execute long code sequences. Although we

did receive a similar comment from a Duplo participant, the block-

based environment made it easier for users to test partial programs

because it allowed them to detach code from the main program.

This feature, while conceptually similar to commenting out code in

a text-based system like ROY, ensures that even temporarily unused

code remains valid and is not accidentally forgotten. ROY, being a

fundamentally text-based environment, only had regular comments

available, which were also not graphically represented in the user

interface. This might be responsible for ROY users spending more

time solving the given tasks.

Another debugging feature both environments provided is high-

lighting the currently executed line of code when running a pro-

gram. This feature is found in many end-user languages, but for

the specific use case of Duplo and ROY, it can become confusing for

users since there are two separate executions (for the left arm and

the right arm) that take place simultaneously. In Duplo, the vertical

alignment of blocks guarantees that synchronized blocks that get

executed, such as synchronized movements, are always in a single

line. However, this is not necessarily the case in ROY, which creates

additional mental effort for users. We speculate that this additional

mental strain might have been a factor why some ROY users found

the command for synchronized movements unintuitive.

× Participant IV (ROY/Difficult): “It took me longer than it would
have otherwise taken me because I could not start in the middle of
my program...”
× Participant V (ROY/Difficult): “Setting the robot back to a
designated position required running the program from the start
and pausing before it began a new cycle.”
× Participant VI (Duplo/Difficult): “Debugging, it was extremely
difficult to control the robot outside of a program. If I wanted to
open the arms so that I could replace a piece before another cycle, I
had to start the program and stop it before it got too far.”

Our previously discussed findings alignwith studies where block-

based languages and other end-user robot programming tools are

evaluated [40, 42, 24]. In a study where participants had to program

a pick-and-place task using Polyscope, researchers pointed out de-

sign recommendations for new end-user programming interfaces

[5]. According to the authors, “interfaces should minimize use of

tabs and keep similar actions and commands coherently grouped to-
gether...”. They also emphasized that “...end-user robot programming
interfaces should have easy-to-use replay capabilities to visualize
contextualized portions of the robot program...”. The ROY interface

does not implement either of these features. One participant also

highlighted the lack of options to undo commands in ROY, another

recommendation proposed by the prior study.

Summary 6.1: By representing robot commands as puzzle

pieces, block-based programming contributed to end-users

ability to insert, edit, and debug code. The freedom to reor-

ganize blocks using the puzzle metaphor and the alignment

of instructions on vertical columns allowed Duplo partici-

pants to complete more tasks in less time. For future work,

other common features should be included, such as the

ability for users to undo commands.

6.2 What Learning Barriers Do End-users Face?
Our participants only had a short time to learn how to use either

environment they were assigned. Similar time constraints are not

unusual when industrial workers have to learn jobs on-task, and

previous studies found that end-users can overcome learning chal-

lenges quickly as they get hands-on experience with a reasonably

end-user-friendly system [34]. Identifying and addressing potential

learning barriers can substantially improve how quickly end-users

become familiar with a new system. In a study about learning bar-

riers in end-user programming systems [20], researchers identified

six categories of challenges end-users face while solving tasks in a

programming environment: design barriers (what to do?), selection
barriers (what to use?), use barriers (how to use?), coordination barri-
ers (how to combine different things?), understanding barriers (what
is wrong?), and information barriers (how to check what is wrong?).
The difficulties highlighted by participants in our post-experiment

questionnaire show that neither of the evaluated systems is free

of those barriers, although end-users encounter them in different

situations.

Understanding and information barriers. Programming an

industrial robot involves the understanding of both virtual (soft-

ware) and physical (mechanical) concepts. For example, to teach a

robot a new position, users have to use lead-through to manually

move the robot to a new physical location and use the programming

environment to record the position. If a defect occurs in their code,

they must determine whether the problem is in the programming

logic or the physical workspace. In some cases, the logic behind

the code may be correct, but the physical locations taught to the ro-

bot may still produce errors (e.g., collisions, robot singularities). In

our experiment, some users struggled to identify what was wrong

with their implementation and reported it as a difficulty in the

questionnaire.

× Participant VII (ROY/Difficult): “...I also did not like that it did
not always show me which movement code line had a problem if it
was after a movement error...”
× Participant VIII (ROY/Difficult): “...I didn’t know why there
were errors sometimes when it looked like it worked... ”

Block-based Programming for Two-Armed Robots:
A Comparative Study ICSE ’24, April 14–20, 2024, Lisbon, Portugal

× Participant IX (Duplo/Difficult): “Figuring out what I did
wrong.”

We believe lead-through programming can make defining positions

substantially easier, and participants have echoed that sentiment

in their feedback. However, there might be room to provide more

guidance or training for lead-through, for example in the form of

visual aids or immediate feedback during the programming process.

Selection and use barriers. Some participants also reported

difficulties understanding certain features of both programming sys-

tems. In particular, both systems involved features to program two

arms simultaneously, and some users commented that the provided

synchronization commands (i.e., MoveSync in ROY, “wait for each

other” in Duplo) were unintuitive. While we primarily received

this feedback from ROY users, we observed that some participants

were not aware of a feature in Duplo that allows them to access

and review an already-defined location. This feature, which other

participants explicitly named as a useful tool to understand their

programs, could have been represented more prominently in the

system to make users aware of its existence and explained better

to convey its usefulness.

× Participant (ROY/Difficult): “...I wasted a lot of time deleting
sync steps before I understood how to combine one-sided steps with
sync steps... It would also be nice to tell the robot, “move to the
locations I told you in Step 10 and then stop”. It’s unclear to me
whether that’s possible to do. ”
× Participant (Duplo/Difficult): “... The first (difficulty) was think-
ing the “Wait for each other” blocks could be placed anywhere
instead of only in line with each other. My solution was instead of
placing those blocks, I slowed down the movement speed of one of
the arms (The block did come in handy later)...”
× Participant (Duplo/Difficult): “At first, I didn’t know which arm
was the right or left. Also, I didn’t know how exactly to reteach a
position, but after a while, I got it.”

Summary 6.2: Because Duplo eliminated many of the

programming challenges for end-users, it enabled the iden-

tification of second-order problems. Primary among these

was physical positioning and mapping. It became clear that

end-users had trouble mapping between position names

(e.g., "AboveGround") and physical positions in 3D space.

7 LIMITATIONS
In this section, we discuss some of the limitations of our study:

Number and background of participants. We conducted our

study on 52 participants, which required a substantial effort to

recruit, considering the time and effort participants had to invest

in the in-person experiment. We also aimed to recruit students

from diverse backgrounds to represent the wide range of end-users

interacting with robots. However, it is possible that the limited

number of participants and the fact that they were all students from

the same university limit how well our participants represent the

overall population of end-users.

The fact that 12 out of 26 participants testing Duplo had prior

experience with block-based programming may also limit our con-

clusions. We ran Pearson’s Chi-squared test of independence to

compare participants’ success with their experience in block-based

programming and found a significant association between the vari-

ables (p-value < 0.05). The same association wasn’t found for other

demographic values such as general and robot programming expe-

rience. We hope our findings inspire additional work that can be

evaluated more thoroughly with other end-users of robotic systems.

Training and time constraints.We had limited time to train

our participants and allow them towork on the given task. It is likely

that with more available time or resources, participants of both

groups might have performed better overall when solving the task.

However, as outlined in Section 6.2, we believe that restrictive time

constraints are not uncommon in practice and can be particularly

useful in investigating a system’s learnability and usability qualities.

Task choice. We only evaluated a single task in our study, al-

though that task was split into several sub-tasks that required

different forms of coordination. We believe the combination of sub-

tasks covered various challenges and requirements end-users face

in practice. However, future work is needed to investigate other

tasks, particularly those requiring coordination in ways neither of

the tested environments supports.

Selected tools. Comparing Duplo and ROY introduces limi-

tations to our work as these programming environments make

specific implementation decisions that may not generalize to all

programming tools. The difference in programming method (ROY

is graphical-based while Duplo is block-based) provides insight

into these different methods but also introduces some confounds.

Although differences exist between the two programming systems,

both are designed to be beginner-friendly and represent two of

the most capable end-user tools available for two-armed industrial

robots, making them a nice pick for comparison.

8 CONCLUSION
In this work, we have presented Duplo, a new block-based program-

ming environment for real-world two-armed robots. This environ-

ment is the first practical evaluation of a design concept that uses

blocks to visualize the flow of time and coordination between robot

arms. We have evaluated the system in comparison to an existing

commercial alternative that has graphical elements and targets end-

users but is inherently text-based and does not provide comparable

visual support. We found that Duplo allowed participants to solve

a complex two-armed pick-and-place task faster and more success-

fully. Based on our observations and our participants’ responses, we

have identified which differences between the two environments

might have caused this effect. We have further identified barriers

that remain when participants try to learn either system. We be-

lieve that this work can inform future work on how to design robot

programming environments that are more user-friendly and make

use of the strengths of existing visual frameworks.

9 DATA AVAILABILITY
The artifacts used in this paper are available on GitHub

5
.

ACKNOWLEDGMENTS
This work is supported by NSF (2024561).

5
https://github.com/fronchetti/icse-2024/

https://github.com/fronchetti/icse-2024/

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Fronchetti et al.

REFERENCES
[1] ABB Ltd. 2015. RobotStudio Online YuMi. URL: https://apps.microsoft. com/store/

detail/9NBLGGH2SQFM.

[2] ABB Ltd. 2023. Robotstudio suite. URL: https://new. abb. com/products/ robot-
ics/robotstudio.

[3] ABB Ltd. 2023. Yumi - irb 14000 collaborative robot. URL: https://new.abb.com/
products/robotics/robots/ collaborative-robots/yumi/irb-14000-yumi.

[4] ABB Robotics. 2014. Technical reference manual: rapid instructions, functions

and data types. ABB Robotics.
[5] Gopika Ajaykumar and Chien-Ming Huang. 2020. User needs and design oppor-

tunities in end-user robot programming. In Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, 93–95.

[6] Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. 2021. A survey

on end-user robot programming. ACM Computing Surveys (CSUR), 54, 8, 1–36.
[7] Peter K Allen. 2012. Robotic object recognition using vision and touch. Vol. 34.

Springer Science & Business Media.

[8] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A

survey of robot learning from demonstration. Robotics and autonomous systems,
57, 5, 469–483.

[9] Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio Piccinno.

2019. End-user development, end-user programming and end-user software

engineering: a systematic mapping study. Journal of Systems and Software, 149,
101–137.

[10] Johannes Baumgartl, Thomas Buchmann, Dominik Henrich, and Bernhard

Westfechtel. 2013. Towards easy robot programming-using DSLs, code genera-

tors and software product lines. In ICSOFT. Citeseer, 548–554.
[11] Geoffrey Biggs and Bruce MacDonald. 2003. A survey of robot programming

systems. In Proceedings of the Australasian conference on robotics and automation,
1–3.

[12] Andrzej Burghardt, Dariusz Szybicki, Piotr Gierlak, Krzysztof Kurc, Paulina

Pietruś, and Rafał Cygan. 2020. Programming of industrial robots using virtual

reality and digital twins. Applied Sciences, 10, 2, 486.
[13] J Edward Colgate, J Edward, Michael A Peshkin, andWitayaWannasuphoprasit.

1996. Cobots: robots for collaboration with human operators. In Proceedings of
the 1996 ASME International Mechanical Engineering Congress and Exposition.
ASME, 433–439.

[14] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3D tool for

introductory programming concepts. Journal of Computing Sciences in Colleges,
15, 5, 107–116.

[15] Juliet M. Corbin. 2015 - 2015. Basics of qualitative research : techniques and
procedures for developing grounded theory. eng. (Fourth edition. ed.). SAGE,

Thousand Oaks, California. isbn: 1412997461.

[16] [n. d.] Epson rc+ express manual. https://files.support.epson.com/far/docs/eps

on_rc_express_6-axis_rev.5_en.pdf. Accessed: 2023-03-01. ().

[17] Annette Feng, Eli Tilevich, andWu-chun Feng. 2015. Block-based programming

abstractions for explicit parallel computing. In Proceedings of the 2015 Blocks
and Beyond Workshop. IEEE, 71–75.

[18] Manish Kumar Goel, Pardeep Khanna, and Jugal Kishore. 2010. Understanding

survival analysis: kaplan-meier estimate. International journal of Ayurveda
research, 1, 4, 274.

[19] Beate Jost, Markus Ketterl, Reinhard Budde, and Thorsten Leimbach. 2014.

Graphical programming environments for educational robots: OpenRoberta -

yet another one? In Proceedings of the 2014 International Symposium on Multi-
media. IEEE, 381–386.

[20] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in

end-user programming systems. In 2004 IEEE Symposium on Visual Languages-
Human Centric Computing. IEEE, 199–206.

[21] Soenke Kock, Timothy Vittor, Björn Matthias, Henrik Jerregard, Mats Källman,

Ivan Lundberg, Roger Mellander, and Mikael Hedelind. 2011. Robot concept for

scalable, flexible assembly automation: a technology study on a harmless dual-

armed robot. In Proceedings of the 2011 International Symposium on Assembly
and Manufacturing (ISAM). IEEE, 1–5.

[22] Konstantinos Lotsaris, Christos Gkournelos, Nikos Fousekis, Niki Kousi, and

Sotiris Makris. 2021. Ar based robot programming using teaching by demon-

stration techniques. Procedia CIRP, 97, 459–463.
[23] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn

Eastmond. 2010. The scratch programming language and environment. ACM
Transactions on Computing Education (TOCE), 10, 4, 1–15.

[24] Christoph Mayr-Dorn, Mario Winterer, Christian Salomon, Doris Hohensinger,

and Rudolf Ramler. 2021. Considerations for using block-based languages for

industrial robot programming-a case study. In 2021 IEEE/ACM 3rd International
Workshop on Robotics Software Engineering (RoSE). IEEE, 5–12.

[25] Siti Nor Hafizah Mohamad, Ahmed Patel, Rodziah Latih, Qais Qassim, Liu Na,

and Yiqi Tew. 2011. Block-based programming approach: challenges and bene-

fits. In Proceedings of the 2011 International Conference on Electrical Engineering
and Informatics. IEEE, 1–5.

[26] Francis Sahngun Nahm. 2016. Nonparametric statistical tests for the continuous

data: the basic concept and the practical use. Korean journal of anesthesiology,
69, 1, 8–14.

[27] João Neves, Diogo Serrario, and J Norberto Pires. 2018. Application of mixed

reality in robot manipulator programming. Industrial Robot: An International
Journal.

[28] Zengxi Pan, Joseph Polden, Nathan Larkin, Stephen VanDuin, and JohnNorrish.

2010. Recent progress on programming methods for industrial robots. In ISR
2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German
Conference on Robotics). VDE, 1–8.

[29] Marco Piccinelli, Andrea Gagliardo, Umberto Castellani, and Riccardo Mu-

radore. 2021. Trajectory planning using mixed reality: an experimental valida-

tion. In 2021 20th International Conference on Advanced Robotics (ICAR). IEEE,
982–987.

[30] [n. d.] PolyScope manual. https://s3-eu-west-1.amazonaws.com/ur-support-si

te/44018/Software_Manual_en_Global.pdf. Accessed: 2023-03-01. ().

[31] Camilo Perez Quintero, Sarah Li, Matthew KXJ Pan,Wesley P Chan, HFMachiel

Van der Loos, and Elizabeth Croft. 2018. Robot programming through aug-

mented trajectories in augmented reality. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 1838–1844.

[32] Marina S Reshetnikova, Irina A Pugacheva, Elena G Popkova, and Inna V An-

dronova. 2022-3-30. The Global Industrial Robotics Market: Development Trends
and Volume Forecast. Current Problems of the World Economy and International
Trade. Jai Press, Greenwich, Conn. : isbn: 978-1-80262-090-0.

[33] Nico Ritschel, Vladimir Kovalenko, Reid Holmes, Ron Garcia, and David C

Shepherd. 2020. Comparing block-based programming models for two-armed

robots. IEEE Transactions on Software Engineering.
[34] Nico Ritschel et al. [n. d.] Training industrial end-user programmers with

interactive tutorials. Software: Practice and Experience.
[35] Gregory F Rossano, Carlos Martinez, Mikael Hedelind, Steve Murphy, and

Thomas A Fuhlbrigge. 2013. Easy robot programming concepts: an industrial

perspective. In 2013 IEEE international conference on automation science and
engineering (CASE). IEEE, 1119–1126.

[36] Mazyar Seraj, Serge Autexier, and Jan Janssen. 2018. Beesm, a block-based

educational programming tool for end users. In Proceedings of the 10th Nordic
Conference on Human-Computer Interaction, 886–891.

[37] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Me-

dia.

[38] Maj Stenmark and Pierre Nugues. 2013. Natural language programming of

industrial robots. In IEEE ISR 2013. IEEE, 1–5.
[39] Ricardo Tellez. 2017. The ros development studio by the construct.URL: https://www.

theconstructsim. com/the-ros-development-studio-by-the-construct/.
[40] D. Weintrop, D.C. Shepherd, P. Francis, and D. Franklin. 2017. Blockly goes to

work: block-based programming for industrial robots. In Proc. of Blocks and
Beyond Workshop (B&B), 29–36.

[41] David Weintrop. 2019. Block-based programming in computer science educa-

tion. Communications of the ACM, 62, 8, 22–25.

[42] David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li, David C

Shepherd, and Diana Franklin. 2018. Evaluating coblox: a comparative study

of robotics programming environments for adult novices. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, 1–12.

[43] David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li, David C.

Shepherd, and Diana Franklin. 2018. Evaluating CoBlox: a comparative study

of robotics programming environments for adult novices. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems Article 366. ACM,

366:1–366:12.

[44] DavidWeintrop and UriWilensky. 2017. Comparing block-based and text-based

programming in high school computer science classrooms. ACM Transactions
on Computing Education (TOCE), 18, 1, 1–25.

[45] David Weintrop and Uri Wilensky. 2017. How block-based languages support

novices. Journal of Visual Languages and Sentient Systems, 3, 92–100.
[46] David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the

question: students’ perceptions of blocks-based programming. In Proceedings
of the 14th International Conference on Interaction Design and Children. ACM,

199–208.

[47] Stefan Wellek. 1993. A log-rank test for equivalence of two survivor functions.

Biometrics, 877–881.
[48] Enes Yigitbas, Ivan Jovanovikj, and Gregor Engels. 2021. Simplifying robot

programming using augmented reality and end-user development. In Human-
Computer Interaction–INTERACT 2021: 18th IFIP TC 13 International Conference,
Bari, Italy, August 30–September 3, 2021, Proceedings, Part I 18. Springer, 631–
651.

[49] Minhaz Fahim Zibran. 2007. Chi-squared test of independence. Department of
Computer Science, University of Calgary, Alberta, Canada, 1, 1, 1–7.

Received 29 March 2023; revised 10 July 2023; accepted 23 August 2023

https://files.support.epson.com/far/docs/epson_rc_express_6-axis_rev.5_en.pdf
https://files.support.epson.com/far/docs/epson_rc_express_6-axis_rev.5_en.pdf
https://s3-eu-west-1.amazonaws.com/ur-support-site/44018/Software_Manual_en_Global.pdf
https://s3-eu-west-1.amazonaws.com/ur-support-site/44018/Software_Manual_en_Global.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 RobotStudio Online YuMi
	2.2 Duplo: Block-based Cooperative Programming

	3 Related Work
	4 Method
	4.1 Recruitment
	4.2 Experimental Setup
	4.3 Experimental Procedure
	4.4 Data Collection and Analysis

	5 Results
	5.1 Demographics
	5.2 Participant Performance
	5.3 Completion Times
	5.4 Programming Obstacles
	5.5 Program Analysis
	5.6 Feedback from Participants

	6 Discussion
	6.1 How Do the Programming Environments Affect End-user Performance?
	6.2 What Learning Barriers Do End-users Face?

	7 Limitations
	8 Conclusion
	9 Data Availability

