
Semi-Automatic, Inline and Collaborative
Web Page Code Curations

Roy Rutishauser
Department of Informatics

University of Zurich

Zurich, Switzerland

rutis@ifi.uzh.ch

André N. Meyer
Department of Informatics

University of Zurich

Zurich, Switzerland

ameyer@ifi.uzh.ch

Reid Holmes
Department of Computer Science

University of British Columbia

Vancouver, Canada

rtholmes@cs.ubc.ca

Thomas Fritz
Department of Informatics

University of Zurich

Zurich, Switzerland

fritz@ifi.uzh.ch

Abstract—Software developers spend about a quarter of their
workday using the web to fulfill various information needs.
Searching for relevant information online can be time-consuming,
yet acquired information is rarely systematically persisted for
later reference. In this work, we introduce SALI, an approach
for semi-automated inline linking of web pages to source code
locations. SALI helps developers naturally capture high-quality,
explicit links between web pages and specific source code lo-
cations by recommending links for curation within the IDE.
Through two laboratory studies, we examined the developer’s
ability to both curate and consume links between web pages
and specific source code locations while performing software
development tasks. The studies were performed with 20 subjects
working on realistic software change tasks from widely-used
open-source projects. Results show that developers continuously
and concisely curate web pages at meaningful locations in
the code with little effort. Additionally, we found that other
developers could use these curations while performing new and
different change tasks to speed up relevant information gathering
within unfamiliar codebases by a factor of 2.4.

Index Terms—Semi-automated link curation, knowledge man-
agement, web browsing, collaboration

I. INTRODUCTION

Software engineering is a knowledge-intensive profession.
While “source code is king” [1], developers often need ad-
ditional information to understand and maintain software [2],
[3]. The internet has become an essential source for fulfilling
information needs [4], [5], and browsing the web takes a
large part of developers’ time [6], [7], [8]. Unfortunately,
information acquired from web pages is rarely systematically
persisted, maintained, and shared with collaborators [8], [9],
[10], [11], [12]. This means that the implicit links between
source code and any relevant web pages, such as API docu-
mentation, tutorials, or code snippets, are usually lost, which
can negatively impact productivity [2], [13]. Recovering this
important implicit knowledge from collaborators has been
shown to require “great effort” [2].

While links can be persisted as comments within source
code, they can quickly clutter the code. Developers must also
both remember save the links they used, and must do so manu-
ally, inhibiting this form of persistence from being consistently
applied [10], [11]. Several approaches have been devised to
increase the retention of these links, either through fully-
automated or manual techniques. Fully-automated approaches

(e.g., [14], [15]) try to detect implicit links, usually by leverag-
ing developers’ “expertise” based on their interaction history,
but unfortunately suffer from many false positives. In contrast,
manual approaches (e.g., [6]) do not suffer from false positives
but offer little support for easing the collection and curation
of web pages. Crucially, prior research has not examined the
costs associated with curating the links between web pages
and source code, nor has it investigated the value of having
access to these links.

To address these shortcomings, we have created SALI, a
Semi-Automated approach for Linking web pages to source
code locations Inline. SALI is semi-automated in that it
monitors developers’ web page and source code interactions,
estimates the relevance of the web pages they have visited
to the source code they are working on, and provides link
recommendations between these web pages and specific source
code locations inside the IDE. These recommended links are
not automatically preserved: the developer has to explicitly
choose to include them if they consider them “relevant”. We
refer to this inclusion as curation. Once curated, these links are
automatically available to all developers on the same project.

Our work examines the two most salient aspects of preserv-
ing such implicit links in a collaborative setting:

RQ1: Can our approach help developers identify and curate
relevant implicit links between web pages and specific
source code locations?

RQ2: Can developers successfully leverage previously-
curated links on their own change tasks?

We performed two consecutive laboratory studies to exam-
ine these research questions. In the first study, ten developers
worked on two realistic change tasks and were asked to curate
links using our approach. In the second study, ten different
developers worked on two follow-up tasks, one task with
developer-curated links from the first study and one without.
The first study showed that developers continuously curated
relevant web pages with little effort with our approach. The
second study demonstrated that these curations could reduce
the time required to locate relevant starting points for other
tasks.

This paper makes three contributions:

• First, we introduce SALI, a semi-automated approach for



curating links between web pages and source code to
foster knowledge exchange within a development team.

• Second, a study demonstrating when and how developers
curate web pages to specific locations in the source code,
the links they choose to curate, and the effort associated
with link curation using SALI.

• Third, a follow-up study demonstrating the utility of
developer-curated web page links for collaborators work-
ing on future change tasks.

Together, these two studies provide the first investigation into
both the curation and consumption of web page links, showing
that developers are able to curate links and that these links can
be used to improve software development. The supplementary
material, including the source code for SALI, is available
online [16].

II. RELATED WORK

While completing their daily tasks, developers need to keep
track of a broad set of information from several different
sources [3], [17], [18]. These information needs comprise
questions ranging from understanding what coworkers have
been working on, to what code caused a specific program state,
to how resources developers depend on might have changed.
Fritz and Murphy [17] identified a total of 78 questions that de-
velopers frequently ask. Answers to these questions are often
dispersed across different artifact types and independent data
repositories, including source code, changesets, work items,
and web pages, making rediscovery tedious [17]. Another
challenge in fulfilling developers’ information needs is caused
by information that was never explicitly recorded, making it
much more time-consuming to recover [2]. While completing
tasks, developers frequently encounter problems that require
understanding the context of prior code changes; when this
context cannot be directly acquired, developers often have to
defer completing their task until more data can be gathered [3].

A. Information Artifact Linking

A variety of prior approaches aimed to support developers
by linking different types of artifacts to ease information
access. These approaches identified links between emails [19],
conversations [20], or a combination of multiple information
types [21], [17], including source code, bugs, and work items,
based on structural relationships or textual similarity [22],
[23]. Hipikat [21] is a recommendation system that can infer
links between many different types of artifacts and present
the results within the IDE. Codebook [24] builds up a graph
inspired by social networks, linking many artifacts together
and exposing links underlying the social aspects of software
development. This graph helps developers to keep track of task
dependencies, connections to other teams, artifacts, project
histories, and rationale. Similar to these approaches, SALI
captures cross-cutting user activity (in the browser and the
IDE) and ultimately supports rediscovery. In contrast, our
approach leverages the expertise of the developer to curate
relevant web pages and link these to meaningful and precise
locations in the source code. Finally, TagSEA [25] is a

collaborative and lightweight source code annotation tool that
enhances navigation, coordination, and capture of knowledge.
To improve source code orientation, TagSEA uses inline high-
lighting of the manually placed annotations. SALI repurposes
this concept of user-defined, inline, and visual landmarks but
aims to reduce manual effort by semi-automatically capturing
external knowledge at specific locations in codebases.

B. Integrating Web Pages

The web plays an increasingly important role in supporting
software developers’ information needs [4], [26], [5]. Q&A
web pages, such as StackOverflow, are prominent in this space,
allowing developers to exchange knowledge and discuss cod-
ing problems. Overall, developers were shown to spend almost
one-quarter of their work time on the web [27], [7], often using
the web to answer development-related questions [6], [8].

Due to the prevalence of the web in developers’ workflows,
various studies have explored how developers use the web
to fulfill their information needs [28], [29], [27], [30], [28],
[31]. Unfortunately, the vast amount of information available
on the web comes at a cost: researchers found that code-
related online searches are more time-consuming than regular
searches [29], that they are often less successful for novice
developers [32], and that it can be challenging to ask the
right questions [33], [31]. Researchers addressed this problem
with approaches that ease web search and information retrieval
by integrating web context into the IDE through search [34],
source code examples [35], or StackOverflow posts [36], [37].
While these approaches focus on surfacing novel information
from the web to developers in the browser or the IDE, SALI
focuses on the rediscovery of previously visited web pages to
curate implicit links between relevant web pages and source
code for sharing with collaborators.

Most closely related to SALI are Codetrail [6], Reverb [15],
and HyperSource [14]. These approaches support users in
capturing web context and making it accessible within the IDE
to ease information rediscovery without cluttering the source
code. Reverb automatically recommends relevant previously
visited web pages to developers by extracting and matching
code elements from the active editor viewport to compare
against previous browsing history. SALI differs from Reverb
in that it offers an inline display of curated web pages without
modifying the source code, focuses on collaborative use cases,
and provides the user agency over the displayed selection of
web pages through curation. Codetrail connects the IDE with
the web browser to detect web pages containing Java API
documentation and automatically links the documentation in
the source code for personal or collaborative use. In contrast,
SALI supports developers in retaining relevant information
with a language-agnostic and semi-automated approach to
linking web pages at low granularity levels (lines or key-
words). Finally, Hypersource is an extension for IDEs that
associates a developer’s browsing history with source code
edits. Hypersource is most closely related to our approach;
however, the semi-automated curation feature of SALI leaves
the agency of deciding about the most relevant web pages and

2



specific location in the source code with the developer, reduc-
ing irrelevant web pages at the wrong source code locations.
Moreover, while [14] shows that artificially selected links
presented through Hypersource can be useful to developers
for code understanding, we aim to go one step further by
closing the loop between the creation and consumption of
link curations by using real developer-curated links of our first
study in our second study.

In summary, the approach presented in this work balances
the lower effort associated with automated linking with the
higher quality associated with manual curation approaches.
SALI provides developers with agency over which resources
are saved and shared, offering a low-friction and flexible
option to exchange crucial implicit knowledge collaboratively.

III. APPROACH

To help developers capture relevant links between source
code locations and web pages, we developed a semi-automated

approach called SALI.

A. Concepts

SALI is based on three core concepts: semi-automated
recommendations, inline curations, and collaborative sharing.

Semi-automated. SALI monitors developers as they nav-
igate web pages and interact with source code. Relevant
links between these two types of artifacts are automatically
determined based on temporal and lexical information, and
these are presented as recommendations to the developer
within the source code and the IDE. The developer can then
“curate” these recommended links to web pages with a single
click to associate them with a specific source code location.
While this curation requires the developer to manually select
links, the automated recommendations ease the selection, and
the active curation by the developer ensures that only relevant,
high-quality links are being curated.

Inline. SALI’s goal is to capture curations—curated links
between web pages and relevant locations in the source code—
and to render them subtly without cluttering the source code.
By visualizing curations inline within the IDE (see Figure 1),
SALI makes previously implicit links to web pages explicit
and accessible within the source code with a minimally
invasive mechanism [38]. While SALI overlays the source
code with curated links in the IDE, the link itself is stored
separately from the code. This separation avoids cluttering the
code or affecting users that do not use SALI and allows the
addition of further metadata, such as the creation date.

Collaborative. As curations capture information relevant to
the source code, the linked resources may be valuable to other
developers working on the same code. SALI supports shar-
ing relevant links by automatically synchronizing curations
using the project’s version control system. Other developers
working on the same project can see and take advantage of
these curations. Only links a developer has actively curated
are shared to avoid leaking private information, to give the
developer agency over the information shared, and to ensure
that only high-quality links are persisted.

B. Prototype

SALI is implemented as a Visual Studio Code (VS Code)
extension with four main components that are described below:

Interaction monitor. SALI monitors changes in source
code files and interactions with web pages in the browser and
extracts lexical and temporal features from these interactions.
For source code files, SALI captures the content and line
number of any line modified by a developer. The line content
consists of the tokens delimited by whitespace or punctua-
tion, stored as a bag-of-words (BoW). For web pages, SALI
captures each visit to a web page within 5 minutes before
and after a developer accesses a modified source code file
using standard browser extension APIs1, without violating any
security restrictions. We chose this window as prior work has
shown that a 5-minute window is a good proxy for capturing
development-related activity [6]. For each captured web page,
SALI fetches the page title and content by retrieving the text
contents within the body of each HTML document (except for
‘script’ tags) and then extracts tokens delimited by whitespace
or punctuation using a BoW representation. Finally, SALI
keeps track of the web page access frequency, recency, and
duration.

In an additional processing step, both source code and
web page BoWs are filtered for common stop words (for
details see [16]). Since programming languages often use
underscores or camel case in identifier naming conventions,
we refrained from applying further processing of the tokens.
This design decision retains the lexical integrity of these
identifiers and promotes exact matches between the web page
and source code content. The prototype also does not filter
programming language-specific keywords to offer language-
agnostic curations and to support curations in any file. All
monitored data is only logged locally on the user’s machine
to protect the user’s privacy.

Link recommender. SALI generates link recommendations
every 60 seconds on two granularity levels: keywords and
code lines. These levels enable capturing generic line-level
concepts as well as more specific keyword-level concepts
while also preventing developers from going through long lists
of curations that might accumulate on the method or class
level.

To identify link recommendations, SALI extracts the to-
ken(s) from lines changed by a developer in the code and
calculates the similarity to the tokens extracted from each web
page the developer interacted with within the 5-minute window
around a source code modification (5 mins before and 5 mins
after). For source code keywords, SALI measures similarity
based on the widely-used tf-idf [39] equation:

tfidft,d =
ft,d∑

t′∈d ft′,d
∗ (log

N

nt
+ 1)

where ft,d denotes the frequency of the keyword t in the web
page d,

∑
t′∈d ft′,d denotes the total number of terms in the

web page d, and N
nt

denotes the fraction of the total number of

1https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/API/tabs

3



1

2

3

4

5

(a) Curating web pages

1

2

3

(b) Consuming curated web pages

Fig. 1: (a1) The flame icon in the gutter indicates a link recommendation for a line; (a2) an inline link recommendation for a
keyword recognizable by its purple outline; (a3) temporary visible list of the recently visited web pages opened through the
recent mode; (a4) highest-scoring link recommendations in the SCM Panel; (a5) review context views in the SCM Panel. (b1)
The star icon in the gutter denotes line curations; (b2) by hovering over curated line 12, an inline popup with the linked web
page appears; (b3) the relevant web pages view lists curated and recommended web pages for the currently opened code file.

unique web pages N a developer visited within the 5 minutes
before and after accessing modified source code. divided by
nt, the number of unique web pages containing keyword t.

Since repeated access to a web page indicates high rele-
vance, we further multiply the tf-idf score with the logarith-
mically scaled number of page visits d within the 2∗5-minute
time window.

For source code lines, SALI measures similarity based on
the Jaccard index [40], which indicates how well the tokens of
a modified code line overlap with a web page’s tokens. Similar
to the scoring for keywords, SALI multiplies the Jaccard score
with the logarithmically scaled number of visits to a web
page within the time window. A final post-processing step
examines blocks of consecutively modified code lines and
discards duplicate link recommendations for all but the most
similar code line within the block.

IDE frontend: collecting and presenting links. SALI
displays recommended and curated links in two ways: inline
with the source code and aggregated in side panel views (see
Figure 1). The inline visualization integrates the recommended
and curated links within the source code editor by highlighting
keywords or marking code lines in the gutter (using the flame
icon for recommendations and the star for already curated
links). For recommendations, hovering over the highlighted
keyword or the flame icon opens a popup with up to three
recommendations. Clicking on a recommendation confirms
it and turns it into a curation. Hovering over a previously-
curated link opens a popup with the title and the domain
name of the curated web page. Complimentary to highlighting
link recommendations, SALI supports developers in manually
linking the most recently visited web pages to any keyword
or line in the source code via the context menu. Developers
can use the recent mode to curate a link they want to keep at
any location; this eliminates the need to copy and paste the
link (see Figure 1a (3)).

Additionally, SALI offers four views within VS Code for
managing curations. Three views in the Source Control Man-
agement (SCM) Panel support reviewing and revising curated
web pages. Two review views provide a summary of curated
web pages, and one view lists the top recommendations for
the current code changes that a developer may have missed.
Finally, the relevant web pages view in the Explorer Panel lists
all recommended and curated links relevant to the code in the
viewport for (re-)discovery, as inspired by Reverb [15].

Backend: collaborative sharing and persistence. SALI
automatically persists, shares, and maintains curated links in
the code repository, making them accessible to every developer
on the project after they commit their changes and curations.
At the same time, our approach protects developers’ privacy
by discarding recommendations that are not explicitly curated
after each commit. To not clutter code files, SALI persists
curated links in a metadata file in the root directory of the
code repository.

IV. STUDY METHOD

We conducted two consecutive laboratory studies to an-
swer our research questions (see Figure 2 for an overview).
To investigate the costs associated with curating previously
implicit links between web pages and source code locations
(RQ1), we performed the curation study (Section IV-B) with
ten participants that worked on two code change tasks and
were instructed to curate links using SALI. To examine the
value of link curations (RQ2), we conducted a second study
(consumption study, Section IV-D) with ten different devel-
opers that worked on two follow-up change tasks extending
the source code modified in the first study. Each participant
worked on one task with curated links (treatment) and one
without (control). We randomly selected sets of curated links
from the curations collected in the curation study and mapped
them to the best code solution (reference solution) from the

4



Sets of Curated Links
from PS1,1 - PS1,10

Open-Source
Codebase

Solutions for Task GS1
from PS1,1 - PS1,10

<code*/>

Curation Study (S1) Consumption Study (S2)Link Mapping

Best Solution
for Task GS1

Task
GS2

Solutions for Task GS2
from PS2,1 - PS2,10

Task
GS1

Participants
PS1,1 - PS1,10

pagex → linea
P1P1

pagey → lineb
P1P1

Participants
PS2,1 - PS2,10

Semantic
Mapping

by
pagez → kwc

P1P1

Scoring Co
deb

ase

Fo
r Ta

sk
GS2

by

by

Randomly

Drawn (5x)

Sets of Curated Links
from PS1,1 - PS1,10

pagex → linea*
P1

pagey → lineb*
P1

pagez → kwc*
P1

Fig. 2: Design of the overall study method illustrated for the Gifshot tasks GS1 and GS2 (same applies to the Lighthouse
tasks). Participant-curated links from the curation study were used as input for the subsequent consumption study.

first study to improve comparability between participants (see
Section IV-C). Both studies were approved by the institutional
ethics board.

A. Change Tasks

We designed four realistic change tasks for two widely-used
open-source JavaScript projects. The tasks, listed in Table I,
represent useful and realistic additions to the existing systems
that involve working with external, well-documented APIs.

The first project, called Gifshot2, is a library for creating
animated GIFs from image streams. The tasks GS1 and GS2

ask participants to extend Gifshot and extract specific parts of
an image (a person or a face) using the BodyPix model from
the TensorFlow JavaScript library3. The tasks are completed
when the expected visual effect can be observed.

The second project, called Lighthouse4, is a Google Chrome
extension for improving web page quality and performance.
The tasks LS1 and LS2 ask participants to improve the Light-
house extension by adding context menu items and actions.
The tasks are completed when the expected menu items and
actions can be observed.

Task evaluation scoring. To assess the quality of partic-
ipants’ task solutions, we scored each by applying a rubric
(similar to [41]). More specifically, we awarded one point for
each correctly completed solution step and half a point for
each step that had syntax errors but was otherwise correct.

2https://github.com/yahoo/gifshot
3https://github.com/tensorflow/tfjs-models
4https://github.com/GoogleChrome/lighthouse

Short Task Description # Steps

GS1- Add background removal feature to Gifshot’s GIF cre-
ation to color everything but the person in an image frame black.

4

GS2- Extend the previously added Gifshot background removal
feature to only leave the face showing.

4

LS1- Add a “Generate Report” context menu item to generate
a Lighthouse report for the current tab in Chrome when clicked.

4

LS2- Modify the context menu to allow reports to be created for
either the current tab or all tabs in the current browser window.

3

TABLE I: Simplified task descriptions with number of steps
for a solution. Full descriptions and steps can be found at [16].

The maximum score for an executable and complete solution
for task LS2 was 3 points and 4 points for all other tasks.

B. Study 1: Curation Study

To investigate the costs and experience associated with link
curation using our approach and to collect authentic links for
the subsequent consumption study, we conducted a laboratory
study in which developers performed GS1 and LS1 and were
asked to curate links as they worked.

Procedure. The study was conducted in person on partici-
pants’ personal computers. We provided each participant with
a detailed explanation of SALI, which included a short video
introduction and a 10-minute hands-on tutorial. We then asked
each participant to work on the two tasks GS1 and LS1. For
each task, participants received the change task description
and instructions on how to build and run the open-source
project, along with a starting point (specific method) from

5



which they could begin their task. We provided the starting
point to reduce the initial navigation time in the unfamiliar
codebase, similar to prior work [31]. Our guideline was that
40 minutes should be sufficient for each task, although this was
not strictly enforced, and participants could stop when they felt
they were done or were stuck. After participants finished their
task work, we informed them how to access the logged data for
inspection and asked them to upload it with their solutions to
a secured university server. After participants submitted their
data, we conducted a 20-minute semi-structured interview. In
the interviews, we asked participants about their experience
working on the tasks and with SALI, their current practices
for documenting relevant web pages, and demographic and
background questions. In the end, every participant received
a USD 30 gift card. The complete materials can be found in
the supplementary material [16].

Pilot. We conducted a pilot study with four participants to
learn about any experimental issues. Two participants felt time
pressured and neglected to curate any links. One participant
found our instructions too terse. To address these issues, we
turned the 30-minute time limit into a 40-minute recommen-
dation and improved the pre-study training.

Participants. We recruited 10 participants aged between
24 and 37, with an average age of 29.5 years (±4.4). We
used snowball sampling from our personal and professional
networks for participant recruitment. Nine participants iden-
tified as male, and one chose not to reveal their gender.
Their job titles included software engineer (4), Ph.D. student
(3), information security specialist (1), solution architect (1),
and software engineer/student (1). Participants had up to 10
years of professional software engineering experience, with an
average of 4.1 years (±3.1). Only one participant did not have
any professional software engineering experience. Their self-
assessed JavaScript experiences on a 5-point ordinal scale (1:
none, 5: expert) were 2 (4 participants), 4 (4), and 5 (2). Half
of the participants used VS Code weekly (4 participants) or
daily (1). The other half had little experience with VS Code
since they use it only on a monthly/yearly basis (3) or had
never used it before (2). From the 10 study participants, we
discarded the log data of one participant (PS1,9) as there was
an error during the transmission that could not be recovered.

Data collection and analysis. For the interviews, we
recorded and transcribed the audio recordings. We then coded
the transcripts using a semantic and inductive bottom-up
approach. We performed a thematic analysis to qualitatively
analyze the transcripts by following the six steps defined by the
framework: familiarization, coding, generating themes, review-
ing themes, defining and naming themes, and write-up [42]. To
reduce observer bias, the first two interviews were open-coded
by two authors of the paper, and a common set of codes was
agreed upon. Subsequently, one author iteratively coded the
remaining interviews. For themes, two external researchers, a
post-graduate student with no prior involvement in the project
and a graduate student, both familiar with thematic analysis,
generated themes based on the codes obtained in the second
step. We concluded the open coding by reviewing and defining

these themes. We present each theme in its own paragraph in
Section V-A.

To examine participants’ behavior, SALI automatically
logged the URLs and access times of all visited web pages,
the source code files participants opened (focus events) or
modified, and interactions with SALI (link curations, link
removals, used curation modes, and interaction sources).

Finally, we collected the source code repositories compris-
ing participants’ solutions and curations for the change tasks,
and we scored the solutions as described in Section IV-A.

C. Curated Link Mapping

As the goal of the consumption study was to build on the
participant-generated curations from the curation study, we
first selected a reference solution for the consumption study

participants and then mapped the curations from the curation

study participants onto that solution. We chose one solution
per task so that all participants start at the same point for a
fair comparison of the treatment groups. The mapping was
required because the participant-generated curations were on
their own code solutions, each of which was unique.

Using the scoring rubric (Section IV-A), the average score
in the curation study was 3.2 out of 4 (±0.7) for GS1 and 2.9
out of 4 (±0.8) for LS1. PS1,3 created the best solution for
GS1. PS1,2 created the best solution for LS1. We used these
reference solutions for all follow-up tasks.

We mapped the curated links from all participants who
scored over 50% on GS1 and LS1 (16 of the 20 solutions met
this threshold). For each participant-curated link on those 16
solutions, we mapped the curation to the semantically identical
location in the reference solution. 57 of the 61 curations
could be directly mapped; we discarded the remaining 4 since
they corresponded to code locations that were not part of
the reference solution. Each of the 10 participants in the
consumption study was given one curation study participant’s
set of mapped curations at random; no curation set was reused.
By assigning each participant in the second study a set of
curations from one random participant in the first study, we try
to account for the variation in the curations (and their quality)
that different developers make.

D. Study 2: Consumption Study

To investigate the benefits of having curated links while
performing a change task, we conducted a laboratory study
where developers performed GS2 and LS2 using curated links
from the curation study.

Procedure. The overall procedure of the consumption study

was similar to the one of the curation study, including the
detailed explanation of SALI and participants being asked to
work on two tasks (GS2 and LS2 in this case). Unlike the
curation study, participants were asked to finish each task in
a maximum of 40 minutes to compare their performances.
After the participants finished their two tasks, we concluded
the session with a 20-minute semi-structured interview. The
interviews featured the same demographic questions as the
curation study and asked additional details about how they

6



used the web and SALI as they completed their tasks. In the
end, every participant received a USD 30 gift card.

We used a within-subjects design for the consumption study,
with each developer performing one of the two tasks with
access to a set of curated links created by a prior random
participant from the curation study (treatment condition) and
one without (control condition). The control condition without
additional web pages is a typical and realistic scenario devel-
opers face in practice every day [2], [3]. We assigned the tasks
and the conditions to participants in a counterbalancing order
to mitigate learning effects: half of the participants solved
their first task with curations (treatment condition) from the
prior study before attempting to solve the second task without
curations (control condition); the other half performed their
tasks with the condition assigned in the opposite order.

Pilot. We conducted a pilot with 10 participants, revealing
that the follow-up tasks were too complex to complete in
the initially planned 30 minutes. As a result, we increased
the amount of time allocated for both tasks to 40 minutes
each, simplified LS2, and gave clearer and more thorough
instructions for GS2. We further disabled SALI’s curation
features for the consumption study since pilot participants
started curating links without being asked, interfering with the
objective of RQ2.

Participants. We recruited 10 new participants with the
same means as in the curation study. The participants were
between 20 and 42 years of age, with an average of 27.6
years (±6.4). Three participants identified as female and
seven as male. Their job titles included software developer (3
participants), computer science student (3), part-time software
developer/student (2), Ph.D. student (1), and information secu-
rity specialist (1). Participants had between 0 and 21 years of
professional software engineering experience, with an average
of 3.7 years (±6.3). Their self-assessed JavaScript experiences
on a 5-point ordinal scale (1: none, 5: expert) were 1 (1
participant), 2 (1), 3 (3), 4 (4), and 5 (1). Most participants
use VS Code on a daily (6) or weekly (1 participant) basis,
while the remaining participants use VS Code on a monthly
(2) basis or had no experience (1) with the IDE. From the
10 study participants, two participants (PS2,4 and PS2,8) did
not notice the curated links in the treatment condition with
access to developer-curated links. Without noticing curations,
their participation could have been counted as part of the treat-
ment and/or control group. To avoid ambiguity, we, therefore,
excluded their quantitative data and only report on their semi-
structured interview responses.

Data collection and analysis. To evaluate participants’ task
performance, we scored the submitted solutions and recorded
the time of task completion (max. 40 minutes). To examine
participants’ behavior, SALI logged their interactions with it,
focusing on which curated links they opened, from which
location in the source code or which aggregated view they
accessed, and at what time during the task. SALI further
logged general browser usage, search engine use, and web
page access. For the interview data, we used the same method-
ology as for the one in the curation study.

V. RESULTS

This section presents the analysis from the two studies with
respect to the link curation process (RQ1) and the value of
previously curated links to future collaborators (RQ2).

A. RQ1: Web Page Curation

In the curation study, participants were able to use our
approach to continuously and concisely curate links between
web pages and code. Participants acknowledged the perceived
value of these curations and experienced little overhead from
the curation process.

Developers curated links actively and continuously. Par-
ticipants curated between 1 and 9 links per change task, with
an average of 4.0 links (±2.2) per task. Most participants
curated continuously throughout each task, as illustrated in
Figure 3. On average, participants curated a link every 5.2
minutes (±6.0). While there is a slight tendency to curate
more towards the end of a task, most participants (9 out of
10) explicitly stated that they curated links throughout their
programming work, specifically so they would not forget the
relevant web pages. For example, one participant stated:

“Developers might lose context super fast. [...] So, for me,

it’s always better to do it [i.e., curating links] on the fly,

and perhaps I could review it later.” - PS1,5

Developers curated consciously and concisely. During
the tasks, participants spent an average of 35.2% (±6.1%)
of the total task time using the web browser, visiting an
average of 26.3 (±14.9) unique web pages. Of these web
pages, participants only linked 2.5 (±1.2) unique web pages
at various locations in the code, with an average of one
curated link per 4.5 lines of written code. Some of these
web pages were curated multiple times at multiple locations
throughout the codebase. Several participants wanted to be
even more precise, stating that they would prefer to link to
specific sections within a web page, rather than the full page.
Reflecting this, 25% of curated web pages included an anchor
in the URL referring to a specific location on the web page.

In addition to being highly selective in filtering the web
pages they visited for curation, participants further expressed
the conscious and deliberate nature of the link curation process
during the post-task interviews. They commonly stated that
when they curated links, they considered how other developers
might use a given curation, or even that they felt a responsi-
bility towards their future peers:

“I guess I was trying to keep in mind if it was somebody

else who was going to be using it–would this be a useful

link to have or not in the future?” - PS1,4

Link curations required minimal to no effort and
also provided value to curators themselves. A majority
of participants (7 out of 10) explicitly stated that SALI was
easy to use and intuitive for curating web pages, and three
participants liked that the approach did not “bloat” the source
code with code comments for persisting the curations. Only

7



(a) Task LS1 (b) Task GS1

Fig. 3: Web browsing (gray) and curating links (green and blue) over time, per task and participant in the curation study.

four participants explicitly mentioned that the curation process
required additional effort, but that it did not necessarily slow
them down and was still perceived as valuable.

“There’s no way I would have been faster [without curat-

ing]. I wouldn’t say that. Is it extra work in the mental sense

because you still have to think about it? It certainly is. It’s

like a bit of reporting. It’s very low effort, but something

you have to have in the back of your mind.” - PS1,1

Other participants stated that curating links did not require
additional effort as it decreased their overall work:

“I am someone who documents as well as possible for

others. Therefore, this actually corresponds to my normal

workflow.” - PS1,2

In general, all participants considered curating links with
SALI a valuable activity, providing benefits for themselves
and others. These benefits ranged from keeping track of
important web pages, to fostering better and more frequent
documentation of the source code, through to reflecting on
their programming work. Curating links also eliminated fear
of forgetting relevant web pages.

“Partly, curating is helpful for me, too. It’s basically a

process to reflect on how my code came to exist.” - PS1,10

“I guess as soon as I saw it, I’m like, aha! I found the thing

I need for the task. So I guess it was kind of a bookkeeping

thing that I don’t want to lose this cause I found it.” - PS1,4

Developers generally curated similar or identical web
pages for a task. In total, the 10 curation study participants
made 72 link curations in various code locations, linking a
set of 24 unique web pages (11 for GS1, 13 for LS1). Of the
72 curations, 93.1% referred to external APIs relevant for the
study task completion. The remaining 5 curations comprised
information on the web platform itself, predominantly (4 of 5)
on the Canvas API5, which was used to render webcam outputs
for GS1 and which many participants found challenging to use.
The most commonly curated kind of web page was official
documentation (58.3%), followed by Q&A posts (27.8%), and
tutorials/blog posts (9.7%).

5https://developer.mozilla.org/en-US/docs/Web/API/Canvas API

Considering the links participants curated for both tasks, the
results further showed that different participants often agreed
on which web pages were most relevant for documenting a
particular task. While there were 16 unique web pages that
were each curated by only one participant, the remaining 8
unique web pages were curated by an average of 3.6 (±1.9)
participants, with some web pages being curated by 6 (LS1)
and 7 (GS1) of 10 participants.

Developers linked web pages to semantically meaningful
and precise locations in the code. Participants predominantly
assigned web pages to semantically related words and lines in
the code. For 70.0% of the 20 keyword-based link curations,
the chosen keywords in the code were specific object or
method names from the curated web pages. 25.0% of the
curations were assigned to specific variable names.

Of the 52 line-based link curations, participants either
chose lines that contain a specific API method invocation
(40.4%), an import statement (25.0%), an attribute (15.4%), or
a method signature (7.7%) that were all semantically related
to the curated web page. Only the line contents of 6 (11.5%)
curations could not be clearly categorized.

SALI’s inline link recommendations in the coding editor
were valuable but could be invasive. All but one participant
of the curation study curated some of the automatically
presented recommendations, with a total of 30.0% curations
stemming from inline recommended links (55.6% of the
keyword curations, 19.0% of the line curations). Participants
stated that the visual cues and the immediate nature of link
recommendations facilitated the curation process.

“I found it good that I immediately received recommenda-

tions about which web pages I had visited recently. That

definitely makes it easier.” - PS1,1

“I think it’s quite cool - especially that you get a suggestion

when you hover over it: “hey, didn’t you want to link this

page?”” - PS1,7

At the same time, seven participants mentioned that a high
number of recommendations on the keyword level can be quite
invasive, especially since the keyword recommendations are
highlighted within the code.

8



“So having too many square boxes with keywords might be

disruptive, especially for people that lose attention easily,

which I’m one of them.” - PS1,5

The main participant-suggested improvements for the inline
link recommendations were: (a) improving the accuracy and
precision of recommendations, and (b) refining how the rec-
ommendations were presented using the inline popups (see
Figure 1a). One problem raised was due to the fact that when
SALI displayed link recommendations, only the web page title
and domain are shown, making it difficult for participants to
quickly recognize the web page.

Most curations were based on recently visited web pages.
70.0% of all curations were made in the recent mode, assigning
a recently visited web page from the list presented by SALI to
a specific location in the code. This high number of curations
demonstrates that even this simple mode—which is solely
based on tracking a user’s recent interaction with web pages—
has value and supports successful curation. An analysis of the
participants’ browsing histories leading up to link curations
further showed that recency (with an Area Under the Curve
(AUC) score of 0.91) is a better temporal feature than visit

frequency (0.66) and usage time (0.74) for predicting whether
a web page is curated. This insight suggests that updating
SALI to more strongly favor visit recency could improve
recommendation performance.

Proximity of curated features to the actual source code
is important. The majority of all user interactions (89.8%)
originated from SALI’s source code editor inline curation fea-
tures; side panel views were rarely used. Only one participant
opened a single web page through the relevant web pages

view (depicted in Figure 1b) and no participants interacted
with the highest-scoring link recommendations in the SCM

Panel; the remaining 9.1% of interactions stemmed from the
review context views. This focus on inline representations
close to the developer’s field of attention confirms earlier
observations [38].

Curation fit into existing workflows. The curation study

provides relevant first insights about the ability of link curation
to fit into developers’ workflows. Overall, 8 of 10 participants
said they could see themselves using this or a similar approach
in a real-world application. Two other participants did not
explicitly answer the question, neither denying nor affirming
future use. Some participants explicitly stated that SALI would
work well within their existing workflows since it integrated
into the editor, did not bloat the code, and retained important
implicit knowledge.

“[SALI] kind of mirrors my normal workflow because

whenever I have a site or a website that I copied code

from, I usually leave a comment with the link from that

website, myself. So the problem with that is just that if you

have a bunch of links that it’d get super bloated and having

that hidden in an extension...” - PS1,5

Several participants (6) also stated that SALI would be

helpful for teams, and one emphasized that it could be valuable
for developers new to a project (PS1,4).

RQ1 Summary

SALI enables developers to quickly and concisely
curate links between web pages and specific source
code locations. Curation support should integrate with
developer workflows, be minimally invasive, and pro-
vide visual cues with precise recommendations.

B. RQ2: Collaborative Curation Value

In the consumption study, a different set of participants
worked on two follow-up tasks, using developer-curated links
from the curation study. Overall, participants found the cura-
tions helpful for getting to relevant information faster and for
completing the tasks.

Curations sped up locating relevant information, even on
different tasks. Even though the curated links in the codebase
were created for tasks different to the ones in the consump-

tion study, most participants (8 of 10) made use of these
curated web pages to solve their tasks. Of the 30 previously-
curated links mapped into the reference solutions, 21 of them
referenced specific locations in files where participants had
to perform code changes to complete the task. Of these 21
curations, participants followed a total of 13 curated links,
often relatively soon after they started working on the task (on
average 3.3 (±1.7) minutes into the task). 10 of these curations
were explicitly considered helpful by participants. In one case,
a participant initially decided a curation was not relevant, but
they added that it was still a meaningful contextual reference
point for them. Other participants explicitly mentioned that
the curations were helpful for navigating to task-relevant web
pages, even if the curated web pages did not contain the
exact information they were looking for. Overall, participants
valued the curated links as an initial starting point for better
understanding the tasks they were facing:

“I think curations give you a starting point, and then

you got to explore. So you always learn something from

the curations, as long as you get some information that’s

useful.” - PS2,7

Participants without curations took more time to identify
the web page that was most relevant to solving the task
according to them: 12.1 (±4.0) and 8.9 (±10.8) minutes
without curations for GS2 and LS2, respectively (overall
average of 10.5 ±7.8 minutes), compared to 5.1 (±3.1) and
3.8 (±2.4) minutes without curations (overall average of 4.4
±2.6 minutes). This accounts for a speed-up factor of 2.4 to
locate the most relevant web page. An independent, one-tailed
Welch’s t-test t = 2.092, p = 0.034 showed that this factor is
significant at the 0.05 level.

Without curations, some developers initially felt “lost”.
Without curated links, 6 participants reported having trouble
at the beginning of their task, often stating that they felt “lost”

9



until they found relevant information online. One participant
even studied the wrong API initially and only stumbled upon
the relevant documentation after 25 minutes:

“I thought I was supposed to look at the Lighthouse GitHub

page [...] and I was going through the documentation, but

it was not correct.” - PS2,1

The same participant performed much better when they had
access to curations on their next task and stated that the curated
link helped them to have a contextual starting point from which
it was “pretty easy” to navigate to the relevant web pages.

Curations may have improved task performance. Par-
ticipants performed better with the links curated by other
developers using SALI for task LS2 and performed equally
well for task GS2. Overall, participants scored an average of
3.5 (±1.0) out of 4 points for GS2 and 1.4 (±1.0) out of
3 points for LS2 without curations. In contrast, participants
with access to curated links scored an average of 3.5 (±0.4)
points for GS2 and 2.5 (±0.4) points for LS2. These scores
present a 78.6% improvement in completion score for LS2.
An independent Welch’s t-test t = 0.986, p = 0.348 showed
no significant differences in the average scores for LS2 with
and without curations. A comparison in terms of time is not
meaningful because the consumption study capped the time per
task to 40 minutes, and several participants did not complete
all solution steps in time.

Specificity and proximity of curated links to source code
locations were important. Participants appreciated it when
curated links were presented inline in the source code on the
granularity level of keywords and lines. A majority (6 of 10) of
participants explicitly mentioned that they liked the keyword
granularity:

“It’s nice to actually have the highlighting around the

keyword because then you understand what the context is

that the URL is provided for.” - PS2,2

Several (4 of 10) participants also stated that they did not
like the idea of higher-level granularities (e.g., a curated link
for a whole file, module, or class) and that they would consider
link curations on that level almost as a “red flag” (PS2,9):

“The class level gives you a lot of irrelevant information.

And it will not pinpoint you accurately to the right docu-

mentation [...].” - PS2,1

While participants of the consumption study did use the
relevant web pages view side panel view somewhat more than
participants of the curation study, it was still sparsely used.
Only 2 of 10 participants considered the relevant web pages

view side panel to be helpful.

Positive feedback on the overall experience. 8 of 10
participants commented positively on the approach, especially
within a team setting for onboarding new team members, leav-
ing hints for others, and generally preserving information that
would get lost otherwise. Several participants also explicitly
mentioned that they did not find the curations distracting, and

two participants further mentioned that SALI could help them
personally to resume tasks faster and reduce time for finding
the relevant website:

“If it’s something more specific and there’s a curation, then

I think it’s helpful, because otherwise you’d have to google

1000 times and transform the query until you somehow

come up with something reasonable.” - PS2,10

RQ2 Summary

Curations can reduce the time required to locate rele-
vant web pages by providing contextual starting points
for navigation. Proximity and specificity of curations
within the source code increase their utility, even for
tasks different from the one they were created for.

VI. DISCUSSION

The presented work provides initial evidence on the benefits
of a semi-automated approach for curating links in a collabora-
tive setting and is one of the first to examine both the curation
and the consumption of implicit links.

Capturing implicit knowledge. Prior research has inves-
tigated manual and fully-automatic methods for capturing
implicit links between web resources and source code. Our
two studies suggest that the balance of these two approaches
taken by SALI allows developers to reduce the overhead
of manual approaches without the precision challenges of
fully-automated techniques. While prior work has shown that
links provided by researchers for a specific task may improve
performance (e.g., [43]), the combination of our two studies
shows that user-generated links can have similar positive
effects on developers even when they work on different tasks.

Link presentation. Our study results indicate the im-
portance of finding the right balance between convenience
and invasiveness for presenting link recommendations and
curations. For example, two participants of the consumption

study did not notice the curations in their IDE, suggesting that
they should be more prominently displayed. Additionally, good
recognizability of previously visited web pages in the IDE
was particularly challenging for multiple developers. Providing
web page thumbnails could ease resource recognition in these
cases and aid web page recall [44], [45].

Value and relevance dependent on seniority and ex-
perience. Participants’ interview responses and previous re-
search [3] suggest that curated links may be especially valu-
able for developers new to a codebase. At the same time, the
links a senior developer on a project considers relevant and
curates might differ from the ones relevant to a newcomer.
While our approach encourages developers to curate links
relevant to the current task context, we observed reservations
(4 of 7 participants) about curating “basic” knowledge:

“When you’re more familiar with your codebase, you

implicitly assess things as common knowledge. So you may

10



not remember to put the link there because for you it’s like

“everyone knows that already”.” - PS1,6

Future work should investigate how to best support the
different experience levels without requiring additional effort.

Application in practice. While participants’ feedback on
SALI and its use was positive, there are several open chal-
lenges regarding long-term usage and curation link main-
tainability in the field. The current approach already auto-
matically updates line numbers after file modifications. By
linking curations to specific lines or keywords, developers that
make code changes will only need to re-evaluate the specific
curations linked to the changed code. Yet, other changes, such
as evolving keywords, code refactorings, or modifications to
web page URLs, also have to be addressed but are not unique
to our approach. For example, link decay in source code
is a general challenge [12]. For link decay, SALI could be
extended to automatically check for web pages that are no
longer accessible or outdated, indicate this to developers, or
even remove these links automatically without having to alter
the source code.

Due to the nature of laboratory studies, we can also not
provide conclusive evidence of whether developers will con-
tinue curating links beyond a controlled setting. However, we
believe that our observations, the positive feedback from our
participants, and the voluntary curation of several participants
in our pilot consumption study provide initial evidence for the
approach’s potential and warrant a longitudinal field study as
a next step.

VII. THREATS TO VALIDITY

Our work has several limitations commonly associated with
laboratory studies.

External validity. The studies included 14 professional
and 6 students/part-time developers but may not represent
all professionals. All participants were unfamiliar with the
codebase used for our change tasks, unlike all non-newcomers.
Although our four selected tasks were from real codebases,
they may not be representative of all development tasks. We
designed the tasks to (a) simulate real-world OSS change tasks
as they could be found on the projects’ roadmaps, (b) allow
participants to solve the tasks within the allotted time without
deep prior knowledge of the project, and (c) required to gather
information from the web. The results might differ for other
tasks, especially tasks that are much easier to solve without
having to look up any information on the web or tasks that
are much harder.

Our work also did not study SALI in a field setting.
Adaption, utility, and quality of curations may vary depending
on other factors, such as the number of contributors or
project maturity. Further research is needed to show how our
results generalize in the field with other developers, tasks, and
projects.

Internal validity. Other forms of information could have
been helpful to participants in the treatment of the consumption

study, where participants were not shown any curated links.

We made this decision since it better reflects the current reality
where information from the web is rarely preserved [8], [9],
[10], [11], [12]. We chose not to create artificial curation
sets (e.g., for explicitly testing the impact of false positives)
as we wanted to study the scenario where curators have no
clear understanding of future change tasks. Using realistic
developer-curated links allowed us to gather insights into
whether these links between source code locations and web
pages for one task could be useful for future tasks. To study
the effect of developer-created curations on change task per-
formance under controlled conditions, the authors mapped the
curation locations to a shared codebase for all follow-up tasks;
we reduced the impact of this by mapping to semantically
identical locations in the target codebase and refraining from
filtering or modifying the curated links.

Construct validity. We have yet to establish conclusive
evidence that the additional time required for curating links
does not outweigh their future value, although, during the
curation study, participants mentioned that curating did not
impact their perceived productivity.

VIII. CONCLUSION

Web-based resources are commonly used during software
development, but the implicit links between web pages and
source code are usually lost. This paper introduced and eval-
uated SALI, a semi-automated, inline approach for curating
links between specific source code locations and web pages.
SALI was evaluated with real developers to determine both the
costs of curating links and the benefits to future developers
using those curated links for different tasks. The results
show that developers curated web pages continuously and
concisely at meaningful source code locations with little effort.
The results also show that for developers unfamiliar with
a codebase, curated links can speed up locating relevant
information for specific parts of the source code by a factor
of 2.4. Our study is the first to date that shows both the costs
and benefits associated with recording and using web page
curations; our findings suggest that the implicit information
captured by these valuable links need not be lost and that
support for collecting and rendering these links should be a
part of standard development practice.

IX. DATA AVAILABILITY

All study instruments, data, and analysis scripts as well
as the source code for SALI are available in our replication
package https://doi.org/10.5281/zenodo.7622496.

X. ACKNOWLEDGEMENTS

We thank our study participants for their participation.
We also thank the anonymous reviewers for their valu-
able feedback. This work was funded by SNF under grant
200021 207916.

11



REFERENCES

[1] J. Singer, “Practices of software maintenance,” in Proceedings of the
International Conference on Software Maintenance (ICSM), 1998, pp.
139–145.

[2] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2006, pp. 492–501.

[3] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the International Con-
ference on Software Engineering (ICSE), 2007, pp. 344–353.

[4] C. Treude, O. Barzilay, and M. A. Storey, “How do programmers ask
and answer questions on the web? (NIER track),” Proceedings of the
International Conference on Software Engineering (ICSE), pp. 804–807,
2011.

[5] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,
when and how?” Proceedings of the Working Conference on Reverse
Engineering (WCRE), pp. 142–151, 2013.

[6] M. Goldman and R. C. Miller, “Codetrail: Connecting source code and
web resources,” in Proceedings of the Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), 2008, pp. 65–72.

[7] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and
T. Fritz, “The work life of developers: Activities, switches and perceived
productivity,” IEEE Transactions on Software Engineering, vol. 43,
no. 12, pp. 1178–1193, 2017.

[8] A. Grzywaczewski, R. Iqbal, A. James, and J. Halloran, “Software
developers’ information needs: Towards the development of intelligent
recommender systems,” in Proceedings of the International Conference
on Ubiquitous and Collaborative Computing (UBICOM). Swindon,
GBR: BCS Learning & Development Ltd., 2011, pp. 66–74.

[9] F. Zampetti, L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, and
M. Lanza, “How developers document pull requests with external
references,” in Proceedings of the International Conference on Program
Comprehension (ICPC), 2017, pp. 23–33.

[10] J. Jiang, J. Cao, and L. Zhang, “An empirical study of link sharing
in review comments,” in Software Engineering and Methodology for
Emerging Domains, 2017, pp. 101–114.

[11] S. Baltes and S. Diehl, “Usage and attribution of Stack Overflow code
snippets in GitHub projects,” Empirical Softw. Engg., vol. 24, no. 3, jun
2019.

[12] H. Hata, C. Treude, R. G. Kula, and T. Ishio, “9.6 million links in
source code comments: Purpose, evolution, and decay,” Proceedings of
the International Conference on Software Engineering (ICSE), pp. 1211–
1221, 2019.

[13] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2013, pp. 712–721.

[14] B. Hartmann, M. Dhillon, and M. K. Chan, “Hypersource: Bridging
the gap between source and code-related web sites,” in Proceedings of
SIGCHI (CHI), 2011, pp. 2207––2210.

[15] N. Sawadsky, G. C. Murphy, and R. Jiresal, “Reverb: Recommending
code-related web pages,” in Proceedings of the International Conference
on Software Engineering, 2013, p. 812–821.

[16] Supplementary material. [Online]. Available: https://doi.org/10.5281/
zenodo.7622496

[17] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in Proceedings of the International
Conference on Software Engineering (ICSE), vol. 1, 2010, pp. 175–184.

[18] N. Haenni, M. Lungu, N. Schwarz, and O. Nierstrasz, “A quantitative
analysis of developer information needs in software ecosystems,” in
Proceedings of the European Conference on Software Architecture
Workshops, 2014.

[19] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” vol. 1, 2010, pp. 375–384.

[20] A. Y. Wang, Z. Wu, C. Brooks, and S. Oney, Callisto: Capturing the
“Why” by Connecting Conversations with Computational Narratives,
2020, pp. 1–13.

[21] D. Čubranić and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2003, p. 408–418.

[22] G. Venolia, “Textual allusions to artifacts in software-related reposito-
ries,” in Proceedings of the International Workshop on Mining Software
Repositories (MSR), 2006, pp. 151–154.

[23] R. Holmes and A. Begel, “Deep intellisense: A tool for rehydrating
evaporated information,” in Proceedings of the International Working
Conference on Mining Software Repositories (MSR), 2008, pp. 23–26.

[24] A. Begel, Y. Khoo, and T. Zimmermann, “Codebook: Discovering and
exploiting relationships in software repositories,” vol. 1, 2010, pp. 125–
134.

[25] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared waypoints
and social tagging to support collaboration in software development,”
in Proceedings of International Conference on Computer Supported
Cooperative Work (CSCW), 2006, pp. 195––198.

[26] C. Parnin and C. Treude, “Measuring api documentation on the web,”
in Proceedings of the International Workshop on Web 2.0 for Software
Engineering (Web2SE), 2011, pp. 25—-30.

[27] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in Proceedings of SIGCHI (CHI), 2009, pp.
1589—-1598.

[28] G. Gao, F. Voichick, M. Ichinco, and C. Kelleher, “Exploring pro-
grammers’ api learning processes: Collecting web resources as external
memory,” in Proceedings of the Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2020, pp. 1–10.

[29] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F. Quezada,
C. Parnin, K. T. Stolee, and B. Ray, “Evaluating how developers use
general-purpose web-search for code retrieval,” in Proceedings of the
International Conference on Mining Software Repositories (MSR), 2018,
pp. 465––475.

[30] F. Shull, F. Lanubile, and V. Basili, “Investigating reading techniques
for object-oriented framework learning,” IEEE Transactions on Software
Engineering, vol. 26, no. 11, pp. 1101–1118, 2000.

[31] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, 2006.

[32] A. Li, M. Endres, and W. Weimer, “Debugging with stack overflow:
Web search behavior in novice and expert programmers,” 2022.

[33] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar apis: An exploratory study,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2012, pp.
266–276.

[34] J. Brandt, M. Dontcheva, M. Weskamp, and S. Klemmer, “Example-
centric programming: Integrating web search into the development
environment,” vol. 1, 2010, pp. 513–522.

[35] N. Sawadsky and G. C. Murphy, “Fishtail: From task context to source
code examples,” in Proceedings of the Workshop on Developing Tools
as Plug-Ins, 2011, pp. 48––51.

[36] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow
in the IDE,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2013, pp. 1295–1298.

[37] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and M. Lanza,
“Prompter: A self-confident recommender system,” in In Proceedings
of the International Conference on Software Maintenance and Evolution
(ICSME), 2014, pp. 577–580.

[38] X. Liu and R. Holmes, “Exploring developer preferences for visualizing
external information within source code editors,” in Proceedings of the
Working Conference on Software Visualization (VISSOFT), 2020, pp.
27–37.

[39] G. Salton and M. McGill, “Introduction to modern information retrieval.”
1986.

[40] P. Jaccard, “Etude comparative de la distribution florale dans une portion
des Alpes et du Jura,” 1901.

[41] R. DeLine, M. Czerwinski, and G. Robertson, “Easing program compre-
hension by sharing navigation data,” in Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), 2005, pp. 241–248.

[42] V. Braun and V. Clarke, Thematic analysis. American Psychological
Association, 2012.

[43] M. Adeli, N. Nelson, S. Chattopadhyay, H. Coffey, A. Henley, and
A. Sarma, “Supporting code comprehension via annotations: Right in-
formation at the right time and place,” in Proceedings of the Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), 2020,
pp. 1–10.

[44] A. Woodruff, A. Faulring, R. Rosenholtz, J. Morrsion, and P. Pirolli,
“Using thumbnails to search the web,” in Proceedings of SIGCHI (CHI),
2001, pp. 198—-205.

[45] J. Teevan, E. Cutrell, D. Fisher, S. Drucker, G. Ramos, P. Andre,
and C. Hu, “Visual snippets: Summarizing web pages for search and
revisitation,” in Proceedings of SIGCHI (CHI), 2009.

12


