
CodeShovel: A Reusable and Available Tool
for Extracting Source Code Histories

Felix Grund
Department of Computer Science

University of British Columbia
Vancouver, Canada
fgrund@cs.ubc.ca

Shaiful Chowdhury
Department of Computer Science

University of British Columbia
Vancouver, Canada
shaifulc@cs.ubc.ca

Nick C. Bradley
Department of Computer Science

University of British Columbia
Vancouver, Canada
ncbrad@cs.ubc.ca

Braxton Hall
Department of Computer Science

University of British Columbia
Vancouver, Canada
braxtonh@cs.ubc.ca

Reid Holmes
Department of Computer Science

University of British Columbia
Vancouver, Canada
rtholmes@cs.ubc.ca

Abstract—Being able to accurately understand how source
code evolved is fundamentally important for both software
engineers and researchers. Our ICSE 2021 Research Paper
CodeShovel: Constructing Method-Level Source Code Histories
describes a novel approach for quickly uncovering these method
histories. The approach, codified in the CodeShovel tool, is
available for researchers and practitioners alike to use and
extend. It is available both as a public web service that can be
used interactively or through a REST API and as a stand-alone
Java component. This document details how to install and use
CodeShovel, although all pertinent details are available online
enabling CodeShovel to be reused as desired.

Index Terms—software evolution, code histories, artifact

CodeShovel Public Web Service
To try CodeShovel without installing any tools, use the
public web service (also works with the REST API):

https://se.cs.ubc.ca/CodeShovel

I. CODESHOVEL

CodeShovel is a tool for identifying the complete history
of a method at runtime by traversing the method’s version
history. Compared to traditional tooling like git log or
standard IDE-based approaches, CodeShovel is robust to com-
mon source code transformations methods often undergo.
These include the method being renamed or other signature
changes, the method being extracted to another file, or the file
containing the method being renamed or moved.

To start its analysis, CodeShovel clones the repository con-
taining the method, although no pre-processing is performed
beyond the standard clone. The developer then provides the
required inputs and CodeShovel explores the history of the
method and return results within a second or two.

Inputs. CodeShovel requires several pieces of input to generate
a history, although all are easily available to developers.
Using the web service UI, only the method URL needs to

be provided, all others are filled in by interactively clicking
through the repository to select the method, although the
REST web service and command line require these parameters
explicitly:

• The URL for the repository containing the method.
• The path for the file containing the method.
• The name of the method.
• The line number for the method (used to differentiate

overloaded methods).
• An optional SHA if the history desired should be explored

from a point other than HEAD.

Outputs. In addition to the method change list, CodeShovel
also performs a lightweight analysis of how the method
evolved. Specifically, CodeShovel differentiates between the
following kinds of changes:

• File move
• File rename
• Method move (extract method refactoring)
• Method body changes
• Method signature changes:

– Method rename
– Parameter list change
– Parameter type change
– Return type change
– Exception change
– Modifier change

• Method introduction
Every change will have one or more of these change kinds

associated with it; for example, a method could be extracted
from one file to another, be renamed, and have its visibility
modifier changed all in a single commit. Being able to classify
the change kind can make it easier for a developer to scan
a longer list of changes and either identify the change they
are interested in, or ignore the kinds of changes they are not
interested in.

https://se.cs.ubc.ca/CodeShovel


Fig. 1. The CodeShovel web interface applied to a file from CodeShovel’s history. The row for the third change has been clicked on to show additional
details and individual cells link back to the original version control system.

CodeShovel can return results in a rendered form (as can be
seen in Figure 1) or as JSON for programmatic analysis. The
JSON representation contains all output needed for tools to
examine the change (including version control metadata and
diffs), while the rendered output is more amenable to developer
exploration. For example, all cells in the rendered view can
be clicked to view the diff, the whole source file, or other
relevant details in the version control system.

II. USING CODESHOVEL

There are three main versions of CodeShovel: a browser-
based UI, a REST-based web service, and a command line
client. Each of these can be installed locally, or a public
version of the web service can be used. The instructions for
each version are provided in README.md. CodeShovel is
an open source project that is developed fully in the open
and is licensed under the MIT Open Source License (see
LICENSE.md for details).

Artifact Location
All source code, comprehensive documentation for in-
stalling and using CodeShovel, and evaluation oracles
available online for use or extension:

https://github.com/ataraxie/codeshovel/

Web Service UI. The web UI provides a browser-based in-
terface for interactively exploring method histories. This is
the best version for a developer to use to explore the history
of an individual method. The UI can be accessed either
via the public web service, or by self-hosting the docker-
based service. The public web service is best for evaluating
CodeShovel, but it will be much more performant to self-host
the service.

Web Service REST. The REST-based interface provides pro-
grammatic access to the backed via standard web APIs using

any language. This is the best version to use for mining-style
analyses where remote access might be required. For example,
the history of a method can be accessed by:

curl "https://host/CodeShovel/getHistory? \
gitUrl=${}&filePath=${}&methodName=${}& \
startLine=${}&sha=${}"

Command Line. The command line interface is the quickest
way to use the tool if you are using Java locally or are
performing a single-machine mining repository project. This
version can be invoked as follows:

java -jar codeshovel.jar \
-repopath {rPath} -filepath {fPath} \
-methodname {mName} -startline {lNum} \
-sha {SHA} -outfile results.json

III. ARTIFACT DOCUMENTATION

A CodeShovel branch corresponding to the ICSE 2021
paper [1] (and this artifact) is available online 1,2, although
most users will probably want to download and interact with
more current branches (which will also contain the most up-
to-date documentation).

All relevant details needed to install or use any of the
three CodeShovel versions are described in README.md.
Additional details pertinent to the containerized version can
be found in Dockerfile and docker-compose.yml.

CodeShovel’s source code is in src/main and its test
infrastructure is in src/test. Language-specific oracle files
are available in src/test/resources/oracles.

REFERENCES

[1] F. Grund, S. Chowdhury, N. C. Bradley, B. Hall, and R. Holmes,
“CodeShovel: Constructing method-level source code histories,” in Pro-
ceedings of the International Conference on Software Engineering (ICSE),
2021, pp. 1–13.

1https://github.com/ataraxie/codeshovel/tree/icse2021
2https://doi.org/10.5281/zenodo.4543820

https://github.com/ataraxie/codeshovel/
https://github.com/ataraxie/codeshovel/tree/icse2021
https://doi.org/10.5281/zenodo.4543820

	CodeShovel
	Using CodeShovel
	Artifact Documentation
	References

