
CodeShovel: Constructing Method-Level

Source Code Histories

Felix Grund

Department of Computer Science

University of British Columbia

Vancouver, Canada

fgrund@cs.ubc.ca

Shaiful Chowdhury

Department of Computer Science

University of British Columbia

Vancouver, Canada

shaifulc@cs.ubc.ca

Nick C. Bradley

Department of Computer Science

University of British Columbia

Vancouver, Canada

ncbrad@cs.ubc.ca

Braxton Hall

Department of Computer Science

University of British Columbia

Vancouver, Canada

braxtonh@cs.ubc.ca

Reid Holmes

Department of Computer Science

University of British Columbia

Vancouver, Canada

rtholmes@cs.ubc.ca

Abstract—Source code histories are commonly used by devel-
opers and researchers to reason about how software evolves.
Through a survey with 42 professional software developers,
we learned that developers face significant mismatches between
the output provided by developers’ existing tools for examining
source code histories and what they need to successfully complete
their historical analysis tasks. To address these shortcomings, we
propose CodeShovel, a tool for uncovering method histories that
quickly produces complete and accurate change histories for 90%
methods (including 97% of all method changes) outperforming
leading tools from both research (e.g, FinerGit) and practice
(e.g., IntelliJ / git log). CodeShovel helps developers to navigate
the entire history of source code methods so they can better
understand how the method evolved. A field study on industrial
code bases with 16 industrial developers confirmed our empirical
findings of CodeShovel’s correctness, low runtime overheads, and
additionally showed that the approach can be useful for a wide
range of industrial development tasks.

I. Introduction

Historical data embedded within version control systems

contains a wealth of information that is useful to both de-

velopers and researchers. Source code histories are used by

developers to understand how a particular unit of source

code evolved [1], to provide context for code reviews [2],

to share information among collocated teams [3], and for

identifying experts [4]. Researchers use source code histories

to understand developers’ work habits [5], and to predict the

likelihood and location of source code changes and defects [6],

[7]. Version control systems (VCS) store a project’s source

code history by tracking developers’ line-level changes to

files. Unfortunately, these systems do not provide a complete

understanding of the source code’s evolution [8] primarily due

to the frequent moving and renaming of files across the file

system [9] and groups of lines being moved between files.

Typically both researchers and developers are interested in

accessing only a subset of a project’s history, which is not

well supported by VCS [10], [11], [12]. To address these

information needs, tool support that is robust to the common

development transformations and is able to generate accurate

source code histories is needed.

Studies have focused on improving the accuracy and us-

ability of source code history construction (e.g., [13], [14],

[9], [15]); this is often referred as “history slicing” [11],

[10]. These studies mainly differ in the granularity of the

generated history. For example, in functional level granularity,

one can extract all the relevant commits that are connected

to a specific software feature [11]. Similarly, the history can

be generated only for a given file of interest [9]. There are

also scenarios when the research and the developer commu-

nity desire lower level source code history [12], [15], [16].

Consequently, several studies aimed for line-level history [17],

[18]; unfortunately, these suffered from high false positive and

false negative rates due to many code lines can be similar

just by chance [9], [19]. These observations support the need

for method-level source code histories to balance between

being too coarse (e.g., file-level) and too fine (e.g., line-level)

granularity. Unfortunately, only a few approaches specialize in

building method-level histories [15], [14], [20].

Previous history construction approaches, including the re-

cent FinerGit [20], require preprocessing the entire project

history before making any queries. This up-front cost hinders a

tool’s usability [21]. Historical tracing tools that are commonly

used in practice do not require pre-processing; these include

IntelliJ’s git history feature and git log -L, which gener-

ate code history on demand. Unfortunately, these tools are

not resilient to common code transformations present during

software development and produce inaccurate method history

(Section V). We surveyed 30 industrial engineers and 12

academic developers to gain further insight into method-level

source code histories to learn what questions they are trying to

answer with these data and what shortcomings they experience

with existing approaches. Ultimately, these participants indi-

cated that they wanted up-to-date results without lengthly pre-

processing. They also reported that inaccuracies introduced by



source code transformations inhibit existing tools causing the

tools to frequently return incomplete histories.

To address the shortcomings, we propose CodeShovel, a

tool for surfacing complete histories of source code methods.

CodeShovel builds method histories on demand, as desired

by a developer or researcher, thus requires no pre-processing

or whole-program analyses. The similarity algorithm used by

the approach surfaces all changes to a source code method

along with a categorization of how the method was changed.

The CodeShovel similarity algorithm is robust in the face of

common filesystem and source code transformations that occur

during software development.

We evaluated CodeShovel’s accuracy and runtime perfor-

mance using a manually constructed oracle from 20 popular

open-source project repositories and compared its accuracy

to both the state-of-the-art (FinerGit) and sate-of-the-practice

tools (IntelliJ and git log -L). We also conducted an indus-

trial field study to verify that CodeShovel also generates accu-

rate histories for industrial systems. In both cases, CodeShovel

correctly determined the complete history of ∼90% of the

evaluated methods with a median runtime of ∼2 seconds.

The primary contributions of this paper include:

• A survey with 42 professional developers demonstrating

a lack of tool support for the most frequently performed

historical understanding tasks.

• The open source implementation of CodeShovel, a novel

approach for extracting method-level source code histories

which can be used interactively through a developer-facing

web service or a research-oriented command line client.

• A quantitative analysis of CodeShovel’s accuracy and run-

time performance using 20 popular open source projects.

We also verified CodeShovel’s accuracy and runtime with

16 industrial developers.

• A manually derived history oracle for 200 methods (required

∼100 hours of manual work), to facilitate future research on

source code history construction algorithms.

II. Background & RelatedWork

Source code histories have long been recognized as a key in-

formation source for program understanding and for capturing

change rationale (e.g., [22], [23], [24], [25], [26], [27], [28],

[29], [30], [31], [32]). Several approaches have been proposed

to help developers and researchers better leverage source

code histories. We examined these approaches according to

three requirements important to both industrial developers

and researchers: speed, granularity, and robustness; Table I

provides an overview of many of these.

Analysis burden. Many approaches require a complete

project to be analyzed before any queries can be issued.

These offline analyses can usually be queried efficiently once

a history is created, but can require hours of preprocessing

before they can return results. While it is possible to compute

results incrementally, many tools do not support this; these

tools are best geared towards mining-style analyses rather than

answering developer queries. For example, Historage [14], and

FinerGit [20] (an improvement over Historage) preprocess a

repository to place each method in its own file; they then use

Git’s history mechanism to track changes on each individual

method’s corresponding file [14]. Sunghun et al. [15] pro-

posed a function matching algorithm for the C language. The

algorithm considers metrics including the number of incom-

ing calls (fan-in), which require preprocessing the complete

repository. This is also true for Beagle [33], APFEL [34], and

C-Rex[13]. Unfortunately, preprocessing the entire repository

for each change can cause high feedback-latency, discouraging

developers in adopting a particular tool [21]. Recently, Li

et al. proposed CSLICER [11] for extracting source code

history; this approach requires existing test sets for conduct-

ing dynamic analysis. Tools commonly used in practice like

git-log -L and IntelliJ do not require any up-front analysis,

making them more practical for answering developer queries

on-demand without any prior configuration or analysis.

Granularity. The granularity at which a history can be

generated can be a key factor for the utility of a given tool [35].

Method-level granularity is widely accepted in different areas

such as bug localization [36], [37], [38], and software energy

estimation [39], [40]. Our survey with professional developers

reveals that method-level granularity is also desired for source

code history generation. The importance of extracting previous

method level changes for predicting future change patterns

has been mentioned in the research community [16]. Dif-

ferent approaches provide histories at different granularities.

CSLICER [11] extracts a minimal changeset that completely

isolates a feature. Such changeset may contain information

from multiple files. By default, version control systems operate

on lines within files, but provide incomplete history because

of file movements and renaming. Daniela et al. [9] address

this problem using an incremental origin analysis approach.

By focusing on the text itself, these approaches are language-

agnostic but are unable to answer interesting queries like “find

all changes to this class”. Tools which support queries on

code elements, rather than lines, support various levels of

queries, for instance to classes (e.g., Beagle [33]), methods

(e.g., method log1) or blocks (e.g., APFEL [34]).

Granularities also vary in terms of time: while most tools in

Table I try to find complete histories, pry-git2, and Beagle only

analyze changes between two specific versions of a program or

file and do not try to uncover the complete history. This is also

true for recent approaches like ClDiff [41], and GumTree [42].

Transformations. “The one constant in software is change”.

This makes histories important, but many changes can be

challenging to track. Changes can range from simple single-

line code edits to complex refactorings that involve renam-

ing methods and moving them to new files. Refactoring is

described as the “bread and butter” of software restructur-

ing [43] and refactorings happen remarkably frequently during

development. For example, 80% of the changes to APIs are

refactorings [44] and 19% of the method introductions in the

PostgreSQL source code were caused by refactorings [23].

1https://github.com/freerange/method log
2https://github.com/pry/pry-git



TABLE I
Selection of tools for examining source code histories. These vary in

whether they are on demand or require pre-processing a whole project, the
granularity that can be analyzed (code means a subset of class, method, or
statement), and their tolerance to common source code transformations (M-

refers to method, F- refers to files, ≈ refers to partial or weak support,
and M-Move denotes pull-up method, and push-down method).

Code Transformations
Approach On-Demand? Granularity Intra-File Inter-File

APFEL NO Code ✗ ✗

Beagle NO Code ≈ ≈

Historage NO Code M-Rename F-Rename
C-Rex NO Code M-Rename ✗

pry-git YES Code ≈ ✗

method log YES Code ≈ ✗

git-log -L YES Text ≈ ✗

IntelliJ YES Text ≈ F-Rename

FinerGit NO Code
M-Rename

M-Signature
F-Rename
M-Move

CodeShovel YES Code
M-Rename

M-Signature
F-Rename
M-Move

Approachs like method log (designed for Ruby methods) can

detect transformations within a file (intra-file changes), as

long as enough textual similarity is maintained through the

transformation. Some code-based analyses are able to further

categorize the changes: Historage [14] and C-Rex [13] can

identify method rename refactorings. While dedicated refac-

toring detection tools exist (e.g., [45], [46], [47], [48]), most

history tracking tools, cannot track inter-file transformations,

except for Historage/FinerGit and IntelliJ, which are robust in

file rename events, but often cannot track other inter-file trans-

formations (e.g., extract-method refactoring). Unfortunately,

such refactorings are prevalent in practice [22], [24].

III. Industrial Survey

Many of the existing approaches we identified in the lit-

erature (Section II) were geared at the research community

and did not fully consider the needs of industry developers.

Prior work by Codoban et al. [12] found that developer-

facing history tools (e.g., git log) are not ideal: developers

complained about information overload and wanted more

structured and selective information. To verify these findings

and to gain additional insight into how and why developers use

software histories, we conducted a survey with 42 participants.

We examined the following two research questions:

RQ1 Do developers use source code histories, and if so, at

what granularity?

RQ2 What mechanisms do developers use for generating

histories and what shortcomings do they have?

Survey Design. The survey was administered online and

consisted of 18 Likert-scale and free-response questions along

with two code-oriented scenarios. Each survey took ∼20

minutes to complete. The complete survey and anonymized

responses are available.3

Survey Participants. We recruited 30 professional develop-

ers from industry and 12 from academia (total 42 participants).

3https://github.com/ataraxie/codeshovel/tree/master/misc

Participants were contacted via email from the authors’ pro-

fessional networks; 87 individuals were solicited giving a final

response rate of 48%. The majority (64%) of job titles were

software developer/engineer or similar; all academic partici-

pants were upper-level graduate students or faculty. Across

all participants, 90% had more than 4 years of programming

experience and 80% had used source code history for four

years or more. For the 30 professional developers, 63% had

been employed in industry for four years or more.

A. RQ1: Do developers use histories?

Survey questions: (1) How recently did you last use source

code history of any kind? (2) What were you looking for? (3)

In terms of source code granularity, how interested are you in

gathering information on source code history at the following

levels? (4) When you use code history, how far in the past do

you usually examine?

The majority of the survey participants frequently use source

code history: 76% had used code history within two days prior

to performing the survey (90% within a week). Participants

use source code history for a variety of activities including

version control (e.g., to “check what I modified”), to check

change accountability (e.g., to determine “who had been

contributing”, “who [they] could contact for dev support”,

and “who is associated with [a specific] change”), and for

program understanding (e.g., to “understand how the solution

to a certain problem was implemented” and “how and why [a

property] was changed”).

Around 90% of participants responded positively to us-

ing Method/Function granularities (and class granularity), 79%

responded positively about File granularity while 76% re-

sponded positively about using histories at Block granularity.

This suggests developers are interested in examining histories

at source code granularities other than just the file or textual

range (block) level as is supported by most tools.

In terms of duration, while a few participants only used

recent commits, most (67%) expressed that they would go

back as far as necessary (even years) to find the changes they

were looking for. For example, one participant mentioned that

“sometimes I need to trace back the lifespan of a class until

it was created (which might get tricky if it was renamed).”

According to another participant, “It’ll be great to have the

complete history available all the time.”

RQ1 Summary

Developers frequently use source code histories. They

are most interested in method-level and class-level

(followed by file-level) granularities and often traverse

the full history of the element they are investigating.

B. RQ2: How do developers generate histories?

We asked participants to review a pull request from the

Checkstyle project that involved reasoning about a method in

a file that had changed 47 times over three years.



Survey questions: (1) Is this pull request scenario familiar

to you? (2) How would you identify the commits in which

the method of interest has changed? (3) How well do existing

tools support identifying these changes? (4) How hard would

it be to find the first commit for the given method? (5) How

useful would it be to have support for a more semantic history

in this scenario?

85% of the participants are either Very familiar or familiar

with the pull request scenario where they need to inspect code

history. Developers generally extract code history with their

preferred tools (either using the tooling within the IDE or

in the shell). Participants mentioned several tools that they

used to do this, with git log and IntelliJ’s history feature

among the most popular. 56% of the participants, however,

responded that the existing tools do not support these tasks

well while 27% responded neutrally. Overall, 79% participants

stated that it is Hard or Very hard to find the commit that

actually introduced a method (i.e., to extract the method’s

complete history). In particular, 67% participants believe their

approaches are suited Not very well or Not well at all to

deal with complex structural changes such as method move.

The majority of the participants (91%) stated that it would

be Very helpful or Helpful to have a tool that is robust to

structural changes and can generate complete and accurate

method level history. These results align well with the prior

study by Codoban et al. [12] that showed that developers need

enhanced support for eliciting source code histories.

RQ2 Summary

Existing tools are inadequate for extracting history at

the most desired levels of granularity. When faced with

these tasks, developers most commonly use on-demand

tools like git log and IntelliJ.

IV. CodeShovel: SurfacingMethod Histories

Motivated by the drawbacks of previous approaches (Sec-

tion II) and feedback from the developer survey (Section III),

we now describe CodeShovel, a tool for quickly constructing

accurate source code histories. CodeShovel has been explicitly

designed to robustly identify and track changes in the face

of common code transformations. It generates histories at the

granularity of individual methods; class-level histories can

be constructed by aggregating all method-level histories in

a class. To ensure CodeShovel results are always up-to-date,

and to minimize unnecessary overhead, histories are computed

on demand with no pre-processing. To allow developers to

explore the full history of a method, CodeShovel searches

backwards through time to identify all relevant commits until

it finds the method’s introducing commit. CodeShovel can

be used as a command line tool and as a web service.4 Its

source code, including scripts that can install, build, and run

CodeShovel with a single command, is available.5

4Web service: https://se.cs.ubc.ca/CodeShovel
5Source code, data, and executables: https://github.com/ataraxie/codeshovel

Figure 1 provides a high-level illustration of CodeShovel’s

heuristic approach. To build a history, CodeShovel starts with

the most recent commit for a method and iteratively steps

back through past commits in the version control repository

to find other commits that also modified the method. This

process continues until the introducing commit is found. This

entails two main tasks: First, all of the commits that modified

the method need to be found among the commits in the

repository (Figure 1, left rectangle). Second, the changes to

the method need to be analyzed to determine how the method

was changed; this information can help developers find specific

changes of interest (Figure 1, right rectangle).

Inputs. The inputs CodeShovel requires are readily available

to the developer: a repository identifier (e.g., a git clone

URL), the path of the file containing the method, the method

name, and the line number6 of the method declaration. The

starting commit SHA for building the history can be provided,

but HEAD is used by default.

Outputs. To provide presentation flexibility, CodeShovel

emits a JSON object containing a list of commits that modified

the specified method and relevant metadata. The web service

and command line clients render the JSON output object to

increase usability.

A. Method Matching

At the core of CodeShovel’s method finding procedure is a

similarity algorithm for matching methods across file versions.

Our selection of the matching algorithm is driven by two

factors: First, the algorithm must be on demand; we can

not use complex method features (e.g., whole program call

graph) that require processing a complete repository, making

the algorithm non-performant. Second, developers want the

full method history. This is also true for the MSR community

who are interested in source code origin analysis [23], [9].

As we show later, some methods have years long history

and may have been modified more than 20 times. To locate

a method even in one single commit, we sometimes need

to parse many other files (because the method moved) and

compare with all the methods in those files, which negatively

impacts the runtime. These observations discouraged us from

using complex strategies like AST matching techniques [49],

[50], [51], [52], [42].

Our matching algorithm relies on techniques from clone

detection (e.g., [53], [54], [55], [56], [57], [58]). Textual

similarity is an efficient strategy for clone detection but lacks

accuracy in many cases [53], [55], [56]. One approach for mit-

igating this problem without significantly sacrificing runtime

efficiency is to compare different source code metrics [54],

[59]. Therefore, CodeShovel measures similarity between two

methods by comparing their body similarity and signature

similarity; it also considers the name of the type containing the

method and its line number when needed. When calculating

text-based similarities (e.g., body and signature), CodeShovel

uses the Jaro-Winkler distance algorithm [60]. As we show

6The line number is only used to differentiate overloaded methods that have
the same name but might appear at different file locations.



later, this simple algorithm achieves high accuracy in both

open and closed-source projects with efficient runtime perfor-

mance.

When invoked for the first time, CodeShovel locates the

specified method by cloning the repository, checking out the

appropriate SHA, and reading the method text from the pro-

vided file path and line number. CodeShovel uses a language-

specific parser to generate an AST of all the methods in the

files it analyzes; while for most commits this is just one file,

when a method has been moved, it can include parsing all

files modified in a given commit. The AST enables quick

and systematic identification of all methods, their signatures,

and bodies for the matching algorithm. For a given commit,

CodeShovel stores the current file path (path), line number

(num), method signature (sig), and method body (body) for

the specified method. To build the history for the method,

CodeShovel then considers the preceding commit that modi-

fied the path containing the method. CodeShovel includes all

the branches that contributed to the method’s current state.

Since CodeShovel works backwards through time, from the

most recent commit to the oldest commit, it is generally trying

to determine where the method came from while it searches for

the commit that introduced the method into the repository. Us-

ing a greedy approach, CodeShovel tries to identify the method

using a four phase heuristic; the description of these phases is

presented below, and the pseudo-code for the heuristic can be

found in Figure 2. CodeShovel uses several thresholds when

comparing program elements; these thresholds were derived

using the data-driven approach described in Section V.

Phase 1: Method unchanged. Modifications to the file con-

taining the method do not necessarily imply that the specified

method was changed. To check for this, CodeShovel first looks

for a method with textually-identical sig and body within the

path. If there exists such a method, this means that relative to

the preceding commit, this commit changed some other part

of the file but not the method itself. Therefore, this change is

not added to the method’s history. CodeShovel then iterates,

using the version control system to find the preceding commit

that modified path, and executes again from the beginning.

For efficiency, CodeShovel’s algorithm only considers commits

that modify the file containing the method.

Phase 2: Method modified within current file. If an identical

method is not found in path in Phase 1, CodeShovel then

considers all other methods within the file to check for

instances where the method was modified. It does this by

examining all of the method bodies within path. If a method is

found with at least a 75% similar body, the inputs are updated

for subsequent searches (e.g., to reflect any changes to the sig,

body, or num) and the commit is added to the method’s history

for the next iteration.

Phase 3: Method moved through file rename or move. If no

match is found in the first two phases which only examine

path, CodeShovel widens its search to consider all other files

that were modified in the commit. The files modified in this

commit are important, because CodeShovel knows that by

not matching previously, either the method was moved from

Analyze changes

Find method

Method
unchanged.

Method 
modified within 

file.

Parse file

Find preceeding SHA

Detect moves

Method move

File move

Categorize changes

Signature change

Body change

No

No

No

Return annotated
change stack.

<sig, path, 
num, SHA>

Add change 
to stack

Yes

Yes

Start

Yes

Method 
extracted 
from file.

No

P1

P2

P3

P4

File rename 
or move.

P3
Yes

For each change in 
the change stack

Fig. 1. High-level approach: each query starts with a method name and SHA.
CodeShovel iterates backwards through history until it finds the introducing
commit for that method.

another file (e.g., because the file changed paths or the file was

renamed) or the method was introduced. To check for this,

CodeShovel examines the signature ASTs for all other files

modified in the commit. In this phase, CodeShovel accounts

for path rename refactorings (e.g., the filename is the same

but the overall path has changed). It does this by searching all

files for a method that has the same sig and a body that is at

least 50% similar. If such a method is found, the inputs are

updated and the change is added to the method’s history for

the next iteration.

Phase 4: Method extracted from different file. Finally,

CodeShovel considers the most challenging form of transfor-

mation: method extractions. In an ideal situation, an extract

method refactoring will just move a method from one file

to another. In reality, the methods are often changed along

the way (e.g., their signatures are modified and their body

may be changed). CodeShovel ranks all methods within all

files modified by a change by their body similarity. The most-

similar method is matched if either a method is 95% similar

and is < 20 characters of code, or is 82% similar and is >= 20

characters of code. This size-based discrimination is needed to

decrease the chances of erroneously matching short methods.

If a match is made, the inputs are updated for subsequent

searches and the commit is added to the method’s history for

the next iteration.

Preparing method history. If no candidate is matched in the

final phase, the last change added to the method’s history is

considered the method’s introducing commit. At the end of

this process, the history contains only a list of the changes



1 // Inputs:

2 // sig: method signature

3 // body: method body text

4 // path: path to file method is in

5 // files: list of all files changed in the commit

6

7 // Phase 1

8 // Find unchanged method within same file

9 FOREACH meth in files[path]

10 IF sim(meth[‘sig’], sig) == 1.0 &&

11 sim(meth[‘body’], body) == 1.0

12 return NO_CHANGE

13

14 // Phase 2

15 // Find modified method within same file

16 FOREACH meth in files[path]

17 IF sim(meth[‘body’], body) >= 0.75

18 return meth // method found in file

19

20 // Phase 3

21 // Find method within renamed or moved file

22 FOREACH file in files

23 FOREACH meth in file

24 IF sim(meth[‘sig’], sig) == 1.0 &&

25 sim(meth[‘body’], body) >= 0.5

26 return meth // method found in moved file

27

28 // Phase 4

29 // Find method modified from different file

30 methods = all methods in all files

31 // Sort methods by decreasing body similarity

32 methods = sort(methods, sim(entry[‘body’], body))

33

34 // Find highest matching method

35 FOREACH meth in methods

36 IF isShort(meth) && // < 20 characters

37 IF sim(meth[‘body’], body) >= 0.95

38 return meth

39 ELSE

40 IF sim(meth[‘body’], body) >= 0.82

41 return meth

42

43 // No match, last commit was introducing commit

44 return null

Fig. 2. CodeShovel method matching algorithm: meth refers to method, sim
refers to the previously described similarity matching approach. Thresholds
are explained in Section V.

to the method, each consisting of 〈 path, sig, SHA, num 〉.

To increase the utility of this history, we further analyze each

change to analyze how the method changed before returning

the history to the developer.

It is important to note that, with CodeShovel’s approach,

multiple methods can share the same ancestor method history,

but one method cannot have more than one ancestor method’s

history. Therefore, if several smaller ancestor methods are

merged to form a larger method, the new method’s history will

only contain the best matching ancestor method’s history. This

was a choice we made because tracking multiple anchestors’

histories would negatively impact CodeShovel’s runtime.

B. Change Analysis

Once the list of changes for a method have been iden-

tified, the change analysis phase examines each change to

determine how the method was modified. Each commit in the

CodeShovel output is associated with one or more specific

Change

NoChange MethodChange Introduced MultiChange

SignatureChange

Rename

ModifierChange

ParamChangeReturnChange

BodyChange CrossFileChange

MethodMove FileMove

1..*

ExceptionChange

Fig. 3. Hierarchy of change kinds in CodeShovel.

change kinds. This categorization of changes, presented in

Figure 3, is a simplified version of the change taxonomy

described by Fluri et. al. [50]. At the top-most level, there are

four primary change kinds. The goal of CodeShovel’s analysis

is to find the complete change history back to the method’s

introductory commit; this is captured by the Introduced change

kind. Most changes in practice are MethodChange which

captures the primary modifications that methods undergo. The

MultiChange kind is used to maintain an unordered list of

other change kind instances so the developer can examine

these compound changes. The NoChange is a special kind

that indicates methods that did not change in an identifiable

way (e.g., when a commit modified some other part of the

method’s containing file).

Method changes can occur in several different ways. The

most common of these by far is the BodyChange which

occurs whenever the text of the method body changes. The

SignatureChange kind occurs when the method is renamed

(Rename), or its parameters (ParamChange), return type (Re-

turnChange), modifiers (ModifierChange), or thrown excep-

tions (ExceptionChange) are altered.

Finally, some method changes arise from CrossFileChange;

FileMove occurs due to common filesystem transformations

like file rename or path changes. More complex changes that

move methods between files (MethodMove) include extract

method, push-down, and pull-up refactorings. The significance

of the MethodMove change kind, especially in combination

with the Rename change kind, has been previously identi-

fied [24]. Consequently, we consider a proper identification

of this change kind to be an important goal for building

comprehensive method histories.

C. Implementation

We implemented CodeShovel in Java. While CodeShovel is

language-aware, the core approach is language-independent,

given the required AST parsers. All core components with

language-specific functionality use abstract classes and in-

terfaces with concrete language-specific implementations. To

add support for a new language, two CodeShovel interfaces,

Parser and Method, need to be implemented. For example,

Parser defines a method signature findMethodByNameAnd-

Line(name, line) which finds a Method instance within a



file given its name and start line, and is relatively easy to

implement. Our Java implementation of these two interfaces

has ∼250 LOC, and is the only language-specific code required

to support a new language. To perform Git operations and

to traverse commits in repositories, CodeShovel leverages the

JGit library and JavaParser to generate ASTs. We have

also started to implement support for Python (using ANTLR),

JavaScript (using Nashorn), and Ruby (using jRuby), but have

not extensively evaluated CodeShovel on these languages.

Approach Summary

CodeShovel leverages different source code metrics

(e.g., body similarity, signature similarity, and line

similarity) to decide if two given methods are similar.

If these similarities exceed our data-informed thresh-

olds, then two methods are considered the same. This

process continues until the first (introduction) commit

is found for a given method. Each change commit is

also associated with a change kind (e.g., BodyChange),

which makes CodeShovel’s output helpful for program

comprehension.

V. Empirical Evaluation
From our literature review and the developer survey, we

identified two important requirements for method history ex-

traction tools: first, they need to be able to extract complete

histories and second, they need to run on demand without

requiring pre-processing. These requirements necessitate that

CodeShovel be robust to transformations and quickly perform

online analyses of the version control repository. To assess how

effectively CodeShovel meets these requirements, we examine

the following research questions:

RQ3 How accurate and robust is CodeShovel for producing

complete and correct method histories?

RQ4 What is CodeShovel’s runtime performance, and is it

acceptable for on-demand use?

A. Methodology

This section describes how we constructed an oracle of

method histories and how we tuned CodeShovel’s matching al-

gorithm to evaluate the correctness of the histories CodeShovel

produced. We chose to develop an oracle to allow us to

compute both recall (the proportion of complete histories an

approach can detect) as well as the precision (the proportion

of histories that do not contain incorrect results); we believe

recall to be most important metric for history tracking as

this measures how likely a developer will be able to find the

complete history of a method of interest.

Subjects. For our evaluation, we chose 20 popular open

source Java projects, each with at least 2,000 commits, 900

methods, and 250 stars on GitHub. These projects span a

range of domains, and we consider them a representative set

of mid- to large-scale open source Java projects. Table II lists

the projects and their statistics.

Oracle construction. To verify the correctness of the his-

tories produced by CodeShovel, we manually constructed an

TABLE II
Java repositories used for our empirical evaluation.

Repository # commits # methods # stars

T
ra

in
in

g

checkstyle 8,010 3,084 3,848
commons-lang 5,230 2,197 1,389
flink 14,416 17,009 4,166
hibernate-orm 9,100 23,159 3,318
javaparser 4,781 3,613 1,883
jgit 6,065 8,277 604
junit4 2,228 1,107 6,992
junit5 4,695 2,078 2,323
okhttp 3,262 1,433 28,107
spring-framework 17,041 3,214 22,769

V
a

li
d

a
ti

o
n

commons-io 2,123 996 488
elasticsearch 40,353 18,261 33,640
hadoop 19,805 32,888 7,801
hibernate-search 6,172 5,069 283
intellij-community 226,106 36,387 6,335
jetty 15,991 11,522 2,139
lucene-solr 30,500 29,888 1,840
mockito 4,811 1,366 7,358
pmd 13,360 2,567 1,738
spring-boot 17,818 2,451 27,527

TOTAL 451,867 206,566 164,548

oracle of method histories. To do this we randomly selected

10 methods having at least 3 commits from each project

in Table II, for a total of 200 methods. This was laborious

manual work, and required ∼30 minutes per method. Method

histories were extracted by multiple authors and one non-

author using a combination of tools (e.g., git-log) and

manual inspection. It was then independently validated by two

experienced developers for completeness and correctness. Full

details about oracle construction are available online.7

Training phase. As described in Section IV, CodeShovel

uses a heuristic approach to match methods across changes.

We initially set CodeShovel’s thresholds using our intuition.

For example, we set a high body similarity threshold to reduce

false positives. We then used 100 methods from the oracle

as our training set. We modified the algorithm (e.g., adding a

special condition for short methods) and updated the threshold

values until we achieved 100% training accuracy. In order to

alleviate regression issues while we tuned the thresholds, we

created a separate test method for each training method which

compares the expected method history with the CodeShovel’s

generated history.

Validation phase. During the validation phase, CodeShovel’s

thresholds were fixed at the values previously shown in

Figure 2 and could no longer be changed. When computing

accuracy, we compare the histories generated by CodeShovel

using these threshold values with the remaining 100 validation

methods that were not used for training.

B. Results

This section describes CodeShovel’s accuracy and runtime

performance in accordance with RQ3 and RQ4.

7https://github.com/ataraxie/codeshovel/tree/master/doc/oracle



1) RQ3: CodeShovel’s recall and precision

To evaluate CodeShovel, we examined precision and recall,

recall by different change types, and recall compared to IntelliJ

and git log -L, and FinerGit.

Completeness and correctness. We compared the histories

produced by CodeShovel with the histories of the 100 vali-

dation methods in our validation phase. CodeShovel correctly

identified the exact histories for 90 of the 100 methods; that

is, the tool had 90% recall for this oracle. Encouragingly,

CodeShovel could still be useful for the 10 methods for

which it failed to uncover the complete history. For one

method, CodeShovel found the complete history including

the introducing commit, but unfortunately continued tracking

another prior method due to its similarity. This is the only

false postive result (e.g, the returned history was not part

of the method’s history), resulting in 99% precision for this

oracle. CodeShovel was only able to return partial histories

for the other 9 missed methods. For example, for one of the

validation methods, CodeShovel successfully extracted the first

15 commits out of the 16 that actually occurred (15/16). The

100 methods in the validation set underwent 859 changes in

total, and CodeShovel correctly identified 830 (97%) of these.

When does CodeShovel fail? Figure 4 shows a diff

from one of the ten incomplete methods. From a developer’s

perspective, the method was modified to take an instance of

Invocation instead of creating it in the method body, which

can be seen by the changes to the parameters, the exception

signature, and the removal of the single line in the body. The

method was also renamed in the same commit. Collectively,

these changes caused CodeShovel to fail to report that the

second method represented a transformation of the first. It

remains an interesting challenge to us to solve these kind of

scenarios without significantly affecting CodeShovel’s runtime

performance.

Characteristics of the validation set. Two reasonable

questions are whether CodeShovel’s recall was high because

the validation set contained only methods with similar size

characteristics or methods that have short change histories. In

the validation set, 20% of the methods have SLOC ≥20, while

27% have SLOC ≤4. In terms of changes, 60% of the methods

were changed more than 5 times and 20% of the methods

were changed at least 10 times. With respect to change

complexity, most commits changed by fewer than 20 lines,

but there are some commits that changed by almost 100 lines.

Fig. 4. A diff showing a complex method transformation that CodeShovel
failed to recognize.

Ultimately, the difference in distributions (when compared in

pairs between all of the methods in the validation set and

the methods CodeShovel correctly identified from that set)

are statistically insignificant (nonparametric Wilcoxon-Mann-

Whitney test, P-value > 0.05). This suggests that the validation

set contained a diverse set of methods, and CodeShovel’s

high accuracy was not influenced by a particular group (e.g.,

methods with short change history).

Robustness across different transformation types. Many

kinds of source code transformations happen during devel-

opment ranging from simple body changes to a complex

refactorings such as a pulling-up, pushing-down, or extracting

methods. Our initial survey participants acknowledged the

difficulty of tracking methods that have undergone complex

refactorings. Existing approaches (Section II) have difficulty

constructing histories for methods that have undergone these

transformations making it important to evaluate CodeShovel’s

robustness across these complex transformations.

For a given method, our validation set contains all the

commits and change types in which the method changed.

To calculate the accuracy of each change type, we counted

instances where change type produced by CodeShovel did

not match the change type in the oracle. For example, the

validation set contained a total of 527 commits with the type

BodyChange. The change types of 4 of the commits produced

by CodeShovel were different resulting in a 99.2% accuracy

for BodyChange. Table III provides the accuracies of each

change type. The lowest accuracy of CodeShovel is 91.3%

caused by 2 failures for the Rename change type. We con-

clude that CodeShovel can robustly construct method histories

regardless of the types of changes a method undergoes.

TABLE III
CodeShovel’s accuracy across different types of source code
transformations. CodeShovel does not exhibit weaknesses on

any particular type of change.

Change Type Occurrence Accuracy (# failures)

BodyChange 527 ∼99.2% (4)
FileRename 167 100.0% (0)
Introduced 100 ∼98.0% (2)
ParameterChange 73 100.0% (0)
MoveFromFile 41 100.0% (0)
Rename 23 ∼91.3% (2)
ModifierChange 20 100.0% (0)
ReturnTypeChange 17 100.0% (0)
ParameterMetaChange 14 100.0% (0)
ExceptionsChange 8 100.0% (0)
MultiChange 99 ∼97.9% (2)

2) CodeShovel accuracy relative to prior work

Among all the tools discussed in Section II, only four work

for Java methods: IntelliJ’s git history feature, git log -L,

Historage, and FinerGit. FinerGit [20] is an improvement over

Historage and it is the state-of-the-art tool for Java method

history tracking, despite its problem with large projects that

we discuss later. IntelliJ and git log -L were frequently

mentioned in the developers’ answers and discussions from

our survey: IntelliJ was mentioned 26 times, and git log was



mentioned 24 times. We thus compare CodeShovel with Intel-

liJ, git log -L, and FinerGit. It was extremely laborious and

time consuming to manually run and check all the validation

methods against these tools to evaluate their accuracy; unlike

CodeShovel, there is no test suite that can automatically run

and evaluate them. This validation took one of the authors ≈30

hours to complete.

CodeShovel compared to git log -L / IntelliJ.

There are two modes for using git log -L: one works

with line range (git log -L start,end:filename), and

the other directly works with a given method name

(git log -L :funcname:filename)8, we evaluate each of

these modes. In contrast to the 90% recall of CodeShovel,

IntelliJ was able to identify the complete history for 68%

of the validation methods. git log -L identifies the com-

plete history for 63% of the complete histories using the

start,end:filename mode and 41% of complete histories

using the :funcname:filename mode.

To examine recall on particularly challenging tasks, we also

investigated 30 complex methods from our validation set to

compare the accuracy of these two tools with CodeShovel.

These methods have undergone different types of transforma-

tions throughout their lifetime. For selecting such complicated

methods, we counted the total number of unique transfor-

mation kinds for each method. For example, the count is

3 for a method that had 4 BodyChange, 2 Rename, and 1

Introduced commits in its history. We then ordered the meth-

ods based on those counts, and selected the top 30 of them. For

this set, CodeShovel identifies the complete method history

with 87% (26/30) accuracy. IntelliJ achieves 50% accuracy

(15/30). git log -L achieves 47% (14/30) accuracy using

the start,end:filename mode and 37% (11/30) accuracy

with the :funcname:filename mode. Combining the best

results from both git log and IntelliJ, the accuracy is 57%,

which is 30% lower than CodeShovel alone. This shows that

CodeShovel significantly outperforms the state-of-the-practice

tools used by practitioners today.

CodeShovel compared to FinerGit. When comparing

CodeShovel to FinerGit we encountered a problem as Fin-

erGit ran out of memory (with 16 GB of RAM for the

FinerGit process) or did not finish pre-processing within

15 minutes for the four largest projects in the vali-

dation data set (intellij-community, elasticsearch,

lucene-solr, hadoop). For the 60 methods in the validation

set from the smaller six projects, FinerGit identified the

complete history for 39 (65%) of the methods. In contrast,

CodeShovel identified the complete history for 54 (90%) of

these same 60 methods. This demonstrates that CodeShovel

has higher recall than the state-of-the art without the memory

and computation downside associated with pre-processing.

8*.java diff=java must be in the .gitattributes file.

RQ3 Summary

CodeShovel’s recall exceeds both related industrial and

research tools. For our 100 method oracle, it uncovered

the complete method history for 90% of methods; in

terms of changes to those methods, it found 830/859

(97%) of method changes.

3) RQ4: CodeShovel’s runtime performance

To evaluate CodeShovel’s runtime performance we recorded

the wall clock time for each of the methods from the 10 val-

idation repositories (total of 141,395 methods). We collected

the runtimes on a development computer (12-core processor

running at 3.30GHz with 32GB memory). CodeShovel has a

median runtime under 2 seconds; 90% of the methods returned

in less than 10 seconds while the worst-case runtime was < 20

seconds. We were also interested to see CodeShovel’s runtime

performance across different repositories. We calculated the

median (for graph readability) of all the methods’ runtimes

for each validation repository. Figure 5 shows the distribution

of the medians. The intellij-community repository is the

outlier with a median execution time of about 7 seconds, which

is due to a combination of large source files (which take longer

to parse) and a high frequency of change within these files.

Repository Median Runtime (seconds)

0 1 2 3 4 5 6 7

● ●
●

●●
●●

●●

Fig. 5. The median wall clock time it took CodeShovel to process all methods
in each validation repository (circle) listed in Table II.

We believe that CodeShovel’s latency is acceptable, with a

median runtime of ∼2 seconds per method. A previous study

by Kochhar et al. found that developers are very satisfied with

software analysis tools having feedback-latency less than one

minute [21].

RQ4 Summary

Although CodeShovel computes method histories on

demand, it is can uncover the entire history of most

methods in less than two seconds.

VI. Industrial Field Study

To ensure CodeShovel’s accuracy and the runtime per-

formance translates to industrial closed-source systems, we

performed an industrial field study. Industrial participants inde-

pendently verified the accuracy and completeness of generated

histories on methods they selected from their own projects.

We also captured CodeShovel’s runtimes for the participant-

selected methods. As a follow-up to the industrial survey

(Section III), we also asked participants how they would apply



CodeShovel in their industrial setting. For this purpose, we aim

to additionally answer one research question:

RQ5 In which scenarios are method-level histories useful

to industrial developers and why?

A. Study Participants

We conducted our field study with 16 industrial engineers.

The majority of the participants (12/16) did not participate in

the survey described in Section III. Participating developers

were required to have Java background and had to be able

to provide a set of Java methods whose histories they were

familiar with. They had a median of 10 years of programming

experience, 3.5 years working as professional software devel-

opers, and 8.5 years experience with version control. Each

participant was given a coffee gift card for their time.

B. Study Design

We conducted the field study as on-site interview sessions

lasting ∼45 minutes per participant. Each participant was

asked to choose 2-4 Java methods from their own repositories

that they were familiar with and that had been revised multiple

times. We executed CodeShovel using the participant selected

methods on their computer and recorded the results and

runtime. Each participant then evaluated the correctness of the

results for their selected methods. We asked participants three

questions:

1) Was the method history correct?

2) Which scenarios might CodeShovel be useful for?

3) Is the information produced by CodeShovel helpful?

C. Study Results

We summarize the results of the field study by the associated

research questions RQ3, RQ4, and RQ5.

1) RQ3: CodeShovel’s correctness

The industrial participants produced 45 method histories

during the field study. CodeShovel found the correct and

complete histories for 41 of the 45 methods (91%). For

the four methods for which CodeShovel failed, two had

commits containing multiple complicated changes causing the

overall similarity to be below the matching threshold. For one

method, CodeShovel stopped while parsing a file,9 and for one

we could not reproduce the problem. Otherwise, participants

confirmed that CodeShovel performed well and identified the

relevant commits without any false positives.

2) RQ4: CodeShovel’s runtime performance

The median wall clock runtime was less than 2 seconds

for the methods chosen by our industrial participants on their

projects, showing that CodeShovel’s on demand algorithm is

fast enough for interactive use on industrial codebases. There

was an outlier method, which had changed 44 times in an

extremely large file. CodeShovel took 8 seconds to find the

full history of that method.

ô
CodeShovel’s accuracy is similar for open source

(90%) and closed-source (91%) projects. Its runtime

performance is also similar on industrial codebases.

9This was related to the javaparser which we subsequently fixed.

3) Scenarios for method-level histories (RQ5)

Participants described several scenarios in which

CodeShovel would be useful. CodeShovel allows developers

to determine a method’s provenance because they “can see

easily who introduced a method” (P3). It can help answer

“[how] this code came to be” (P8). It can aid in traceability,

“especially [...] through refactorings [since] other tools like

IntelliJ and git-log don’t help us here” (P9). Developers

can “focus on moves and other refactoring operations that

would not be traceable with conventional Git history” (P5).

Participants thought that the “histories are very helpful for

onboarding [since] Git blame isn’t useful because formatting

commits destroy everything” (P14), or “if you’re new to a

codebase” (P10). Participants also thought it would be useful

for code understanding because “one can learn more about

the codebase in an easy way” (P7), “for code you’re not

used to” (P10). CodeShovel automates history-related tasks

because developers “already do what this tool is doing, we

just do it manually” (P8). Overall, 13/16 (81%) participants

rated the method histories as very helpful or somewhat

helpful while the remaining 3 were neutral.

RQ5 Summary

Industrial engineers appreciated being able to use

CodeShovel to quickly check method provenance to

aid traceability, understanding, and onboarding despite

the refactorings these methods often undergo.

VII. Discussion
Here we discuss future CodeShovel improvements and

present some research questions that should be investigated.

A. Improving CodeShovel

CodeShovel leverages manually constructed histories to tune

its thresholds for deciding if two methods are similar. Machine

learning is an alternative for such a data-driven approach.

However, the difficulty in building the oracle limited the

size of our training and validation sets. With this relatively

small oracle, there is evidence that a heuristic approach could

be more accurate than a machine learning approach [61],

[62]. Our heuristic approach also explains why it considers

two methods similar or different, which is often not easy

with machine learning and is important for software tools

as practitioners are less confident in predictions based on

unexplainable models [63]. One aveneue to investigate would

be to examine the few situations where where other tools (e.g.,

FinerGit) generated correct method histories, but CodeShovel

failed to do so, to try to discover if there is a weakness in the

algorithm that could be improved.

CodeShovel currently uses the Jaro-Winkler distance algo-

rithm for string similarity ratings [60] although for source

code, n-gram string matching [64] may be a better alterna-

tive [53]. Presently, CodeShovel can be run from a web service

and from the command line interface; integration with an IDE

(e.g., IntelliJ) would be useful. We are currently extending

CodeShovel with support for Python and TypeScript.



B. Impact on the MSR research community

We believe that CodeShovel can help extend MSR research.

For example, for the entire corpus of methods in Table II,

while 33% of methods were never changed after they were

inntroduced, 50% were changed three times or more, and

5% were changed ten times or more. Why do some methods

change so frequently, and what impact do they have on

software maintenance? Can we discover information from

these methods for writing more stable code? Can CodeShovel

build accurate history of test methods as well, so we can

study the evolution of test methods alongside source methods?

CodeShovel is currently being used for three different software

evolution studies by two different research groups.

C. Threats to Validity

Internal Validity. The primary threat to the internal validity

is related to the construction of our oracle. This threat was

mitigated by two experienced developers who validated the

oracle independently. Another threat is related to our sampling

method: the methods selected to be used in our oracle were

randomly chosen from all methods having more than three

commits. This was meant to focus the evaluation on more

interesting and challenging histories but we may have missed

certain classes of histories by using random sampling. In both

the survey and the field study there may be moderator bias,

since participants were selected from the authors’ personal

networks. An additional placebo could have been used, but we

were concerned this would reduce the participant pool [65].

External Validity. Although we evaluated CodeShovel on

both open-source and closed-source industrial codebases, the

number of methods was small, so our findings may not gener-

alize. In our survey and field study, our recruited participants

may not be representative of all developers.

VIII. Conclusion

In this paper, we described a formative survey with de-

velopers from both industry and academia to learn how they

use source code history and what challenges they face when

doing so. We learned that existing tools do not effectively

surface the results developers need to answer their source

code history questions. To address this, we built CodeShovel,

a tool that is robust to common source code transformations

and can generate accurate method-level source code histories

on demand. Empirical analysis with open-source and closed-

source projects shows that CodeShovel can return complete

and accurate histories for ∼90% of methods, and 97% of all

method changes. This outperforms FinerGit, the current state-

of-the-art, and both IntelliJ and git log, the current state-of-

the-practice. An industrial field study further confirmed that

CodeShovel would be useful for a wide range of industrial

development tasks such as traceability and program under-

standing.

Having access to robust source code histories is also useful

for extending research in mining software repositories and

software evolution, for example enabling studying the struc-

tural properties of methods that make a method more (or less)

prone to future changes. It is our hope that both developers

and the research community will find CodeShovel useful for

providing a richer understanding of how their systems have

evolved in the face of the kinds of source code transformations

that frequently occur in practice.

IX. Acknowledgements

Shaiful Chowdhury and Nick C. Bradley are supported

by the Natural Sciences and Engineering Research Council

of Canada (PDF-533056-2019, and PGSD3–519053–2018 re-

spectively).

References

[1] K. Maruyama, E. Kitsu, T. Omori, and S. Hayashi, “Slicing and
replaying code change history,” in Proceedings of the International

Conference on Automated Software Engineering (ASE), 2012, pp. 246–
249.

[2] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality:
How developers see it,” in Proceedings of the International Conference

on Software Engineering (ICSE), 2016, pp. 1028–1038.

[3] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the International Con-

ference on Software Engineering (ICSE), 2007, pp. 344–353.

[4] A. Mockus and J. D. Herbsleb, “Expertise browser: A quantitative
approach to identifying expertise,” in Proceedings of the International

Conference on Software Engineering (ICSE), 2002, pp. 503–512.

[5] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proceedings of the International

Conference on Software Engineering (ICSE), 2006, pp. 492–501.

[6] S. D. Thomas Zimmermann, Peter Weisgerber and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of the

International Conference on Software Engineering (ICSE), 2004, pp.
563–572.

[7] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in Proceedings of the International Conference

on Software Engineering (ICSE), 2005, pp. 284–292.

[8] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig, “Is
it dangerous to use version control histories to study source code
evolution?” in Proceedings of the European Conference on Object-

Oriented Programming (ECOOP), 2012, pp. 79–103.

[9] D. Steidl, B. Hummel, and E. Juergens, “Incremental origin analysis
of source code files,” in Proceedings Working Conference on Mining

Software Repositories (MSR), 2014, pp. 42—-51.

[10] R. Funaki, S. Hayashi, and M. Saeki, “The impact of systematic edits
in history slicing,” in Proceedings of the International Conference on

Mining Software Repositories (MSR), 2019, pp. 555–559.

[11] Y. Li, C. Zhu, J. Rubin, and M. Chechik, “Semantic slicing of software
version histories,” Transactions on Software Engineering (TSE), vol. 44,
no. 2, pp. 182–201, 2018.

[12] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history
under the lens: A study on why and how developers examine it,” in
Proceedings of the International Conference on Software Maintenance

and Evolution (ICSME), 2015, pp. 1–10.

[13] A. E. Hassan and R. C. Holt, “C-REX: An evolutionary code extractor
for C,” 2004.

[14] H. Hata, O. Mizuno, and T. Kikuno, “Historage: Fine-grained version
control system for Java,” in Proceedings of the International Workshop

on Principles of Software Evolution and ERCIM Workshop on Software

Evolution (IWPSE-EVOL), 2011, pp. 96–100.

[15] S. Kim, K. Pan, and E. J. Whitehead, “When functions change their
names: automatic detection of origin relationships,” in Proceedings

Working Conference on Reverse Engineering (WCRE), 2005, pp. 143–
152.

[16] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predict-
ing source code changes by mining change history,” Transactions on

Software Engineering (TSE), vol. 30, no. 9, pp. 574–586, 2004.

[17] G. Canfora, L. Cerulo, and M. Di Penta, “Identifying changed source
code lines from version repositories,” in Proceedings of the Workshop

on Mining Software Repositories (MSR), 2007, pp. 14–21.



[18] A. Chen, E. Chou, J. Wong, A. Y. Yao, Qing Zhang, Shao Zhang, and
A. Michail, “CVSSearch: Searching through source code using CVS
comments,” in Proceedings of the International Conference on Software

Maintenance (ICSM), 2001, pp. 364–373.
[19] F. Servant and J. A. Jones, “Fuzzy fine-grained code-history analysis,”

in Proceedings of the International Conference on Software Engineering

(ICSE), 2017, pp. 746–757.
[20] Y. Higo, S. Hayashi, and S. Kusumoto, “On tracking Java methods with

Git mechanisms,” Journal of Systems and Software, vol. 165, p. 110571,
2020.

[21] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations
on automated fault localization,” in Proceedings of the International

Symposium on Software Testing and Analysis (ISSTA), 2016, pp. 165–
176.

[22] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics,” in Proceedings Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), 2000, pp.
166–177.

[23] M. W. Godfrey and L. Zou, “Using origin analysis to detect merging and
splitting of source code entities,” Transactions on Software Engineering

(TSE), vol. 31, no. 2, pp. 166–181, 2005.
[24] F. V. Rysselberghe, M. Rieger, and S. Demeyer, “Detecting move

operations in versioning information,” in Proceedings of the Conference

on Software Maintenance and Reengineering (CSMR), 2006, pp. 271–
278.

[25] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proceedings of the International

Conference on Software Engineering (ICSE), 2006, pp. 492–501.
[26] H. Kagdi, M. Hammad, and J. I. Maletic, “Who can help me with this

source code change?” in Proceedings of the International Conference

on Software Maintenance (ICSM), 2008, pp. 157–166.
[27] V. U. Gómez, S. Ducasse, and T. D’Hondt, “Visually supporting source

code changes integration: The torch dashboard,” in Proceedings of the

Working Conference on Reverse Engineering (WCRE), 2010, pp. 55–64.
[28] V. U. Gómez, Verónica, S. Ducasse, and T. D’Hondt, “Meta-models

and infrastructure for smalltalk omnipresent history,” in Proceedings of

Smalltalks’2010, 2010.
[29] T. Fritz and G. C. Murphy, “Using information fragments to answer

the questions developers ask,” in Proceedings of the International

Conference on Software Engineering (ICSE), 2010, pp. 175–184.
[30] A. W. Bradley and G. C. Murphy, “Supporting software history explo-

ration,” in Proceedings of the Working Conference on Mining Software

Repositories (MSR), 2011, pp. 193–202.
[31] V. Uquillas Gómez, S. Ducasse, and T. D’Hondt, “Ring: A unifying

meta-model and infrastructure for smalltalk source code analysis tools,”
Comput. Lang. Syst. Struct., vol. 38, no. 1, pp. 44––60, 2012.

[32] F. Servant and J. A. Jones, “History slicing: Assisting code-evolution
tasks,” in Proceedings of the International Symposium on the Founda-

tions of Software Engineering (FSE), 2012, pp. 1–11.
[33] Q. Tu and M. W. Godfrey, “An integrated approach for studying

architectural evolution,” in Proceedings of the International Workshop

on Program Comprehension (IWPC), 2002, pp. 127–136.
[34] T. Zimmermann, “Fine-grained processing of CVS archives with

APFEL,” in Proceedings OOPSLA Workshop on Eclipse Technology

eXchange (eTX), 2006, pp. 16–20.
[35] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial study

on the risk of software changes,” in Proceedings of the International

Symposium on the Foundations of Software Engineering (FSE), 2012,
pp. 1–11.

[36] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level bug
prediction,” in Proceedings of the International Symposium on Empirical

Software Engineering and Measurement (ESEM), 2012, pp. 171–180.
[37] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-

grained module histories,” in Proceedings of the International Confer-

ence on Software Engineering (ICSE), 2012, pp. 200–210.
[38] L. Pascarella, F. Palomba, and A. Bacchelli, “On the performance of

method-level bug prediction: A negative result,” Journal of Systems and

Software (JSS), vol. 161, Mar. 2020.
[39] R. Pereira, “Locating energy hotspots in source code,” in Proceedings

of the International Conference on Software Engineering Companion

(ICSE), 2017, pp. 88–90.
[40] M. U. Farooq, S. U. Rehman Khan, and M. O. Beg, “Melta: A

method level energy estimation technique for android development,” in
Proceedings of the International Conference on Innovative Computing

(ICIC), 2019, pp. 1–10.

[41] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao,
“ClDiff: Generating concise linked code differences,” in Proceedings of

the International Conference on Automated Software Engineering (ASE),
2018, pp. 679—-690.

[42] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of

the International Conference on Automated Software Engineering (ASE),
2014, pp. 313–324.

[43] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc., 1999.

[44] D. Dig and R. Johnson, “The role of refactorings in API evolution,” in
Proceedings of the International Conference on Software Maintenance

(ICSM), 2005, pp. 389–398.
[45] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen, “Refactoring-aware

configuration management for object-oriented programs,” in Proceedings

of the International Conference on Software Engineering (ICSE), 2007,
pp. 427–436.

[46] W. Wu, Y. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: A hybrid
approach to identify framework evolution,” in Proceedings of the Inter-

national Conference on Software Engineering (ICSE), 2010, pp. 325–
334.

[47] D. Silva and M. T. Valente, “Refdiff: Detecting refactorings in version
histories,” in Proceedings of the International Conference on Mining

Software Repositories (MSR), 2017, pp. 269–279.
[48] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,

“Accurate and efficient refactoring detection in commit history,” in
Proceedings of the International Conference on Software Engineering

(ICSE), 2018, pp. 483–494.
[49] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone

detection using abstract syntax trees,” in Proceedings of the International

Conference on Software Maintenance (ICSM), 1998, pp. 368–377.
[50] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change Distilling: Tree

differencing for fine-grained source code change extraction,” Transac-

tions on Software Engineering (TSE), vol. 33, no. 11, pp. 725–743, 2007.
[51] M. Hashimoto and A. Mori, “Diff/ts: A tool for fine-grained structural

change analysis,” in Proceedings Working Conference on Reverse Engi-

neering (WCRE), 2008, pp. 279–288.
[52] M. Pawlik and N. Augsten, “RTED: A robust algorithm for the tree edit

distance,” Proceedings of VLDB, vol. 5, no. 4, pp. 334–345, 2011.
[53] Johnson, “Substring matching for clone detection and change tracking,”

in Proceedings of the International Conference on Software Maintenance

(ICSM), 1994, pp. 120–126.
[54] Mayrand, Leblanc, and Merlo, “Experiment on the automatic detection

of function clones in a software system using metrics,” in Proceedings

of the International Conference on Software Maintenance (ICSM), 1996,
pp. 244–253.

[55] F. V. Rysselberghe and S. Demeyer, “Evaluating clone detection tech-
niques from a refactoring perspective,” in Proceedings of the Interna-

tional Conference on Automated Software Engineering (ASE), 2004, pp.
336–339.

[56] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effectiveness of clone
detection by string matching,” Journal Software Evolution and Process,
vol. 18, no. 1, pp. 37–58, 2006.

[57] E. Kodhai, A. Perumal, and S. Kanmani, “Clone detection using textual
and metric analysis to figure out all types of clones,” International

Journal of Computer Communication and Information System, vol. 2,
no. 1, 2010.

[58] M. Sudhamani and L. Rangarajan, “Structural similarity detection using
structure of control statements,” Procedia Computer Science, vol. 46,
pp. 892–899, 2015.

[59] C. K. Roy and J. R. Cordy, “Scenario-based comparison of clone
detection techniques,” in Proceedings of the International Conference

on Program Comprehension (ICPC), 2008, p. 153–162.
[60] W. Winkler, “String comparator metrics and enhanced decision rules in

the fellegi-sunter model of record linkage,” 1990.
[61] A. Amini, K. Banitsas, and J. Cosmas, “A comparison between heuristic

and machine learning techniques in fall detection using Kinect v2,” in
Proceedings of the International Symposium on Medical Measurements

and Applications (MeMeA), 2016, pp. 1–6.
[62] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, “Comparing

heuristic and machine learning approaches for metric-based code smell
detection,” in Proceedings of the International Conference on Program

Comprehension (ICPC), 2019, pp. 93–104.



[63] H. K. Dam, T. Tran, and A. Ghose, “Explainable software analytics,” in
Proceedings of the International Conference on Software Engineering:

New Ideas and Emerging Results (ICSE-NIER), 2018, pp. 53–56.
[64] G. W. Adamson and J. Boreham, “The use of an association measure

based on character structure to identify semantically related words and
document titles,” Information Storage and Retrieval, vol. 10, no. 7–8,

pp. 253–260, 1974.
[65] S. Sahlqvist, Y. Song, F. Bull, E. Adams, J. Preston, and D. Ogilvie,

“Effect of questionnaire length, personalisation and reminder type on
response rate to a complex postal survey: Randomised controlled trial,”
BMC Medical Research Methodology, vol. 11, May 2011.


