
Identifying Opaque Behavioural Changes

Reid Holmes
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1 CANADA
rtholmes@cs.uwaterloo.ca

David Notkin
Computer Science & Engineering

University of Washington
Seattle, WA 98195-2350 USA

notkin@cs.washington.edu

ABSTRACT
Developers modify their systems by changing source code,
updating test suites, and altering their system’s execution
context. When they make these modifications, they have
an understanding of the behavioural changes they expect
to happen when the system is executed; when the system
does not conform to their expectations, developers try to
ensure their modification did not introduce some unexpected
or undesirable behavioural change. We present an approach
that integrates with existing continuous integration systems
to help developers identify situations whereby their changes
may have introduced unexpected behavioural consequences.
In this research demonstration, we show how our approach
can help developers identify and investigate unanticipated
behavioural changes.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

General Terms
Measurement

Keywords
Static analysis, dynamic analysis, impact analysis, unex-
pected behavioural change, research demonstration

1. INTRODUCTION
In his 1968 letter, Dijkstra noted that the programmer ma-

nipulates source code as a way to achieve a desired change in
the program’s behaviour; that is, the executions of the pro-
gram are what is germane, and the source code is an indirect
vehicle for achieving those behaviours. He also observed that
“our intellectual powers are rather geared to master static re-
lations and that our powers to visualize processes evolving
in time are relatively poorly developed” [2, p. 147]. This
reasoning led Dijkstra and others to advocate the notions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

of structured programming [1], in particular the notion of
one-in-one-out control structures that allow programmers to
more easily reason about classes of behaviours consistently
through a single static structure, as well as to compose those
classes of behaviours more easily.

Dijkstra’s plea to simplify the source-behaviour relation-
ship has, however, been pushed aside over the past four
decades, yielding to a number of powerful and useful pro-
gramming mechanisms that provide developers with a great
amount of flexibility but make this relationship more opaque.
Examples of such mechanisms abound, for example: event-
based programming [6], implicit invocation [5], exception
handling [7, 9], and dependency injection [4, 3]. Inasmuch
as our “intellectual powers” have not increased significantly
and that the source-behaviour relationship has become more
opaque rather than less so, programmers are left with rela-
tively little help in identifying unintended behaviours.

In this paper we succinctly describe our approach and how
it is implemented (Section 2). We then describe how this
approach can be applied to three development scenarios to
show how unexpected behavioural changes can be identified
(Section 3). A video demonstration can be found online:
http://cs.uwaterloo.ca/~rtholmes/go/icse11demo.

2. APPROACH
To identify opaque (or inconsistent) changes we contrast

the static modifications made by the developer with the dy-
namic effects of those changes. We consider two program
versions: one before the change (the baseline) and one after
the change. For each version, we extract a static call graph
of the system as well as the dynamic call graph collected
by running the system’s test suite for each of the versions.
The developer can select any pair of versions they wish (e.g.,
they can compare their current state to the state last night
or they can compare any two milestone versions).

Combining two analyses over two versions of the system
enables us to create fifteen partitions (plus the empty set).
Figure 1 provides a high-level overview of our approach. Par-
titions are labelled according to the elements they contain.
A partition containing elements identified by the static anal-
ysis are denoted with s whereas those identified by the dy-
namic analysis are denoted by d. Elements that were newly
detected (as a consequence of a change) are denoted with a
+ whereas those that were removed are denoted with a −.
For instance, a newly added method call that is executed by
the test suite would be identified as s+d+; if the method call
was not executed it would be classified as s+.

We further group the fifteen partitions into four cate-

http://cs.uwaterloo.ca/~rtholmes/go/icse11demo

Static
AnalysisVersion

2

Version
1 Dynamic

Analysis

Classification
Analysis

}

}

Classified
Changes

PARTITIONS

d-d-d-d-d-

d-

d+

s+

s+d+

s-d+ s-d

sdsd+

s

d

s- s-d-

sd- s+d-

s+d

s
s+

s-

statically unchanged
statically added
statically removed

LEGEND

d
d+

d-

dynamically unchanged
dynamically added
dynamically removed

47

V2D

V1D

V1SV2S

Unchanged

Consistent

Inconsistent

Not Executed

Figure 1: Analysis partitions with descriptive labels and coloured by their categorization.

gories (Figure 1) based on two assumptions: First, develop-
ers have a strong understanding of their static changes; sec-
ond, that developers are only interested in the behavioural
consequences of a specific change (or range of changes). We
feel the first assumption is valid as developers typically mod-
ify their systems statically (e.g., by modifying the source
code or its dependencies). The second assumption is simply
one of filtering: in asking “have I broken anything by making
this change?” the developer is asking about the behavioural
differences of a particular change, not the accumulated be-
havioural differences of all past changes.

These assumptions lead us to believe that developers will
be most interested in opaque or inconsistent changes, as
these dynamic changes do not directly map to the well-
understood static modifications they made to their system.
Inconsistencies between partitions can also be interesting
(for instance when there are many consistently executing
new elements (s+d+) but only one that isn’t executing (s+).
A more complete description of the approach and the parti-
tions is reported elsewhere [8].

As a consequence of an industrial study [8], we have mod-
ified the tool to be integrated with nightly build and con-
tinuous integration systems. This mechanism allows both
developers and managers view the results to check for unex-
pected behavioural changes and makes it easier to query be-
tween arbitrary program versions. Our approach integrates
with ant, the most common build system used by large Java-
based projects, by adding two new targets to any existing
automated build process. The static call graph is built with
an extension of depfinder1. The dynamic call graph is gen-
erated by weaving the project’s code with a custom-build
AspectJ aspect that is also applied through an ant target.
The results of the static and dynamic analyses are written
to XML files that constitute the inputs to our approach.

3. SCENARIOS
We provide three scenarios demonstrating the kinds of

changes our approach highlights for developers.

1http://depfind.sf.net/

3.1 Code Change
We expand on the illustrative scenario provided in our

previous paper [8] to show how an inconsistent change can
arise. Figure 2(c) provides the partitions we generate after
modifying the code in Figure 2(a) to the code in Figure 2(b).
In this change, the developer has added a simple cache to
their system. The sd and s+d+ partitions both contain ex-
actly the elements the developer would expect having made
their change; however, the d+ partition shows something
that they may not have expected. When they executed the
code and added a (previously cached) value to the cache, a
key collision occurred causing the HashSet.add(..) to check
the equality of the new LocalType object to the previously-
cached one. In this case, the developer may not have been
expecting this callback and might check to ensure his equals
method is correct.

3.2 Test Change
Sometimes the volume of changes being made can make it

difficult for a developer to be sure their change is complete.
For example, JodaTime currently has more than 3,500 unit
tests in its test suite, each of which is identified by an @Test

annotation. If the developer adds ten new tests to their
system and executes their suite these will all appear in the
s+d+ partition, as expected. But if the developer forgets
to add an @Test annotation to one of the new tests, nine
of them will appear in s+d+ and one will appear in s+; in
this case the inconsistency between these two partitions is
interesting. This kind of error is easy to make in practice
unless the developer expects a failure when they added the
test or were keeping explicit track of the number of tests
executing before their change and the number of tests that
executed after the change.

3.3 Environmental Change
Developers changing the execution context for their sys-

tem often want to know whether their system behaves con-
sistently for different environmental configurations. For ex-
ample, they might want to upgrade some version of a library
or framework they use, or they might want to upgrade the
version of the Java (JDK) their system executes with. In
these cases, the static structure of the system is held con-
stant (unless the upgrade caused some compilation errors

http://depfind.sf.net/

void genStore() {
int val = compute();
...

}

(a): Original code.

Collection _collection = new HashSet();
void genStore() {

int val = compute();
cache(val);
...

}

private void cache(int val) {
LocalType lt = new LocalType(val);
_collection.add(lt);

}

(b): Modified code.

s+d+

<clinit> → HashSet()
genStore() → cache(int)
cache(int) → LocalType(int)
cache(int) → Collections.add(int)

sd

genStore() → compute()
... → ...

d+

Collections.add(int) → LocalType.equals(Object)

(c): Partitions arising from change.

Figure 2: Inconsistent change example.

the developer needed to resolve) and only behavioural dif-
ferences are of interest.

As a concrete example, the developer of JodaTime wanted
to check to make sure his system behaved the same for JDK6
as it did for JDK5. Interestingly, upon applying our tool he
was presented with a single element in both the sd+ and
sd− partitions. The elements in each of these partitions
were statically unchanged but as a consequence of the JDK
upgrade one started executing and another stopped execut-
ing. Specifically, our approach highlighted the two method
calls listed in Figure 3(a). Figure 3(b) shows the code corre-
sponding to the difference; in JDK6 one method is called by
reflection whereas in JDK5 a different method is explicitly
called. While this difference may not be significant, it might
be useful for a developer to understand that the behaviour
of their system is not identical for both JDK5 and JDK6 if
they encounter future problems with this functionality with
users who are using alternate JDKs.

4. CONCLUSION
In this paper we described three concrete scenarios whereby

our approach can help developers understand the behavioural
consequences modifications to their systems. By highlighting
inconsistent changes for developers, we aim to complement
their static understanding of their systems by providing ad-
ditional focused insight into how the dynamic behaviour of
their system has changed. Our approach integrates into ex-
isting nightly build systems to enable teams to easily view
information about inconsistent changes without altering the
system being examined or installing any new tools on indi-
vidual developer’s machines.

sd−

org.joda.time.DateTimeUtils.getDateFormatSymbols(Locale) →
java.text.DateFormatSymbols(Locale)

sd+

org.joda.time.DateTimeUtils.getDateFormatSymbols(Locale) →
java.lang.reflect.Method.invoke(Object, Object[])

(a): Partitions arising from JDK upgrade.

DateFormatSymbols getDateFormatSymbols(Locale locale) {
try {

Method method = DateFormatSymbols.class.
getMethod("getInstance", new Class[] Locale.class);

return (DateFormatSymbols) method.
invoke(null, new Object[] locale);

} catch (Exception ex) {
return new DateFormatSymbols(locale);

}
}

(b): Code snippet causing JDK difference.

Figure 3: Environmental change code and partitions.

Acknowledgments
We wish to thank our industrial partner for providing ac-
cess to their source code and build environment and Rylan
Cottrell and Yuriy Brun for their insightful comments.

5. REFERENCES
[1] O.-J. Dahl, E. Dijkstra, and C. Hoare. Structured

Programming. Academic Press, 1972.

[2] E. W. Dijkstra. Letters to the editor: Go to statement
considered harmful. Communications of the ACM,
11(3):147–148, 1968.

[3] M. Fowler. Inversion of control containers and the
dependency injection pattern.
http://martinfowler.com/articles/injection.html. “Last
significant update: 23 Jan 04”.

[4] M. Fowler. Reducing coupling. IEEE Software,
18(4):102–104, Jul/Aug 2001.

[5] D. Garlan and C. Scott. Adding implicit invocation to
traditional programming languages. In Proceedings of
the International Conference on Software Engineering
(ICSE), pages 447–455, 1993.

[6] A. Goldberg and D. Robson. Smalltalk-80: The
language and its implementation. Addison-Wesley
Longman Publishing Co., Inc., 1983.

[7] J. B. Goodenough. Structured exception handling. In
Proceedings of the Symposium on Principles of
Programming Languages (POPL), pages 204–224, 1975.

[8] R. Holmes and D. Notkin. Identifying program, test,
and environmental changes that affect behaviour. In
Proceedings of the International Conference on Software
Engineering (ICSE), 10 pages, 2011.

[9] B. G. Ryder and M. L. Soffa. Influences on the design
of exception handling: ACM SIGSOFT project on the
impact of software engineering research on
programming language design. SIGPLAN Notices,
38(6):16–22, 2003.

	Introduction
	Approach
	Scenarios
	Code Change
	Test Change
	Environmental Change

	Conclusion
	References

