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Abstract
The software engineering (SE) research community has developed
numerous tools to search and extract actionable insights from soft-
ware artifacts, ranging from static analysis tools to testing frame-
works and continuous integration pipelines (hereafter just “search
tools”). Despite their potential, many of these search tools remain
underutilized during code review, a critical process for ensuring
software quality. Key challenges include the overwhelming volume
of information generated by automated tools, high false-positive
rates, and the need for manual configuration or interpretation,
which disrupts the flow of review. In this paper, we propose a vi-
sion for an LLM-powered conversational agent designed to assist
code reviewers by bridging the gap between human reviewers and
search tools. This agent would summarize relevant insights, tai-
lor them to the specific code change under review, and facilitate
context-aware interactions. By enhancing the human-in-the-loop
nature of code review, such a tool has the potential to amplify re-
viewer effectiveness, streamline the review process, and ultimately
improve software quality.
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1 Introduction
Over the past several decades, the software engineering (SE) re-
search community has made significant strides in developing tools
and techniques to extract useful information from software arti-
facts (e.g., [6]). These tools span a wide range of categories, from
static analysis tools that detect potential bugs, vulnerabilities, or
code smells, to testing frameworks and continuous integration (CI)
infrastructure that monitor the behavior of software during devel-
opment [2, 8, 14]. Together, these tools can be thought of as a broad
class of “search” tools, designed to mine and interpret various forms
of information hidden within software systems, in source code, the
history of changes to the repository, documentation, etc.

Unfortunately, many of these tools go underutilized [7], espe-
cially during code review [5], one commonly-used checkpoint for
ensuring that changes made to software systems do not degrade
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Figure 1: An LLM-based interactive assistant could sift
through the large volume of information produced by code
search tools, and create a customized code review experience.

its quality [3, 9]. Two main obstacles hinder the effective use of
search tools during code review. First, in contexts with a high de-
gree of automation, many such tools are already invoked as part
of CI pipelines [8, 14, 17]. The sheer volume of information gen-
erated by them, only a small fraction of which may be relevant
to the particular code change under review, can be overwhelming
for reviewers [19]. Moreover, many of these tools suffer from high
false positive rates, causing alert fatigue [16, 18]. Second, if one
needs to invoke tools on demand, the diversity of available tools
places a heavy burden on the reviewer, who both has to know that
they should invoke the search tool, along with the knowledge of
how to use the search tool to use it to gather information pertinent
to their current review task. Many search tools are not designed
with the specific needs of code reviewers in mind, requiring man-
ual configuration or interpretation that can disrupt the flow of the
review. These two challenges combine to impede the velocity of
code reviews, which are often constrained by tight timelines [4].
This has led modern code review practice to primarily focus on
careful manual examination of compact diff-style changes and en-
abling collaborative discussion, instead of incorporating deeper
consideration of more comprehensive tool-based analyses.

The emergence of AI-supported programming tools, such as
Microsoft’s Copilot, is poised to further increase the importance
of code review in the software development process. This is due to
both the increased cadence with which code can be produced using
AI [1], and the importance of having a quality gate to assess the
correctness of both AI-generated and human-written changes.

However, while these AI-based approaches, often using large
language models (LLMs), are inducing new pressure on the code
review process, they can also improve how engineers perform code
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reviews. Our vision is that instead of expecting reviewers to manu-
ally sift through logs, warnings, and tool output, an LLM-powered
conversational agent acts as a bridge between code reviewers and
the plethora of available search tools, summarizing relevant in-
sights, presenting them in a way that is tailored to the specific
context of the code change under review, and allowing back-and-
forth discussion (Figure 1). Central to this vision is the recognition
that code review is fundamentally a human-in-the-loop process
– our goal is not to replace human reviewers but to amplify their
effectiveness through improved tooling. This LLM-powered assis-
tance should enable reviewers to more completely, effectively, and
quickly assess a given change. Concurrently, these advances will
also enable developers to improve their changes before they are
submitted for review, enabling the code review process to be more
efficient and ultimately improving software quality.

Commercial LLM-based code review systems are starting to
emerge.1 We next outline the main opportunities and challenges
to building even more capable systems bridging code search and
code review with LLMs. Our work fits in the broader context of
conversational assistants for software engineering [11, 13].

2 Opportunity for AI-Enhanced Code Review
The current patch-centric approach to code review constrains re-
viewers to a narrow, change-focused view that often lacks broader
context and project-wide implications of a change. Patches further
focus reviewer effort on the exact change itself, without the ad-
ditional tool-managed metadata and analyses commonly present
during modern software development (e.g., code coverage infor-
mation, static analysis feedback, security analyses). This format is
not particularly amenable to rich human interaction or analyses
that extend beyond the immediate contents of the patch itself. Re-
viewers are frequently left to manually piece together the wider
impact of changes, cross-reference related parts of the code base,
and consider other broad cross-cutting questions such as security
and privacy. Each of these are time-consuming tasks that increase
cognitive load and reduce reviewer efficiency.

However, we argue that code review offers one of the most in-
teresting touch points where AI-based tools and humans could
collaborate on cognitively demanding, highly technical software
engineering tasks. Such collaboration can be both natural and po-
tentially highly effective. Natural in that code review is already
an interactive process, in which participants (historically, humans)
seek consensus on the quality of a patch and the fate of a merge
request through natural language dialogue. An LLM-based con-
versational agent would fit naturally in this process, providing a
natural analysis interface through which developers can ask ques-
tions about the code change, and interact with analysis tools using
their own domain understanding. One major downside of many
analysis tools is that developers must know that a tool exists, how
to get the data from it, and when to apply the tool. Being able to use
natural language can free developers to focus on their intention and
allow intelligent agents to manage the complexity of marshaling
these tools for them [15].

1https://github.blog/changelog/2025-04-04-copilot-code-review-now-generally-
available/

And potentially highly effective in that LLMs have shown re-
markable abilities at summarizing and synthesizing structured text,
in addition to customizing responses [20]. By summarizing and syn-
thesizing data from various analysis tools, the AI could intelligently
augment the patch with minimal sets of important information to
help the reviewer better understand the impact and context behind
a change. In addition, the customization capability could enable the
AI to personalize the information to the human actors involved in
a way that makes it more useful. Taken together, AI augmentation
could reduce the limitations of traditional patch-based code review
by providing a more holistic, context-rich environment that extends
far beyond the constraints of traditional patch-based workflows.

3 Realizing the Vision
There are an abundance of information sources that can help re-
viewers during the code review process. Furthermore, there are a
number of underlying actions that an LLM-based conversational
agent can perform on these information sources to provide mean-
ingful insights and answer specific questions that a reviewer might
have about the code change. Crucially, this is a reviewer-driven
search process that is only enabled by the LLM: all of these data are
not relevant for every patch (nor for every reviewer); providing a
lightweight and intuitive mechanism for surfacing this information
is the core idea underlying this work.

In the following, we expand on the sources of information and
types of actions. In addition, we list a number of concrete ideas
on how the LLM assistant could enhance the code review experi-
ence with information from search tools in Table 1. The list is not
intended to be exhaustive, although we cover the main goals of
the code review process reported in the literature [3], from finding
defects to knowledge transfer; we also include two tasks part of
the code review process, where we expect AI augmentation to be
fruitful — deciding how to present the change set to the reviewer
(prioritization) [12] and managing possible interpersonal conflicts
between the submitter and reviewers (mediation) [10]. Rather, we
seek to illustrate the potential for substantial advances in this area,
and inspire future research. Please see the supplementary mate-
rial DOIDOI 10.5281/zenodo.1526573610.5281/zenodo.15265736 for concrete examples of prompts and re-
sponses that demonstrate personalized support during the code
review process based on reviewer background.

3.1 Sources of Information
� Code Base. Often a code change alone may not provide enough
context for an effective review, and having access to other files in
the code base can be helpful, as the patch exists within this larger
context. This extra context must be added judiciously, though, to
prevent the context from overwhelming the change itself.
� Historical Information. Code bases are constantly evolving, and
all of these changes are recorded. These recordings, through version
control histories, issue trackers, continuous integration logs, etc.
provide access to historical information which can be used to sug-
gest changes or provide hints based on common observed patterns.
For example, these patterns could include previous code changes
made by the same author, previous comments from the same re-
viewer (providing hints on the reviewer’s commonly-held concerns),
previous code changes similar to the one being reviewed (providing
hints on concerns other reviewers have had for the changed code),
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Table 1: A number of ways in which an LLM-based conversational agent could enhance the code review experience with
(information from) search tools. Information sources: � Code Base,� Historical Information,� Existing Tests, � Documen-
tation,| Static Analysis,� Vulnerability Analysis,< Artifacts,� Users. Actions: ⋔ Describe PR, é Detect Inconsistencies,
s Summarize Logs, ü Retrieve Information,L Provide Suggestions.

Goals / Tasks Sources of
Information

Actions Proposed Ideas

Finding defects �� �|< ⋔ é sü The agent retrieves and learns from previous bug fixes to detect and suggest repairs for any defects in the code,
plus summarizes CI logs and build logs to identify breaking changes. It also learns from historical changes, to
identify files that are often changed together, and suggests changes to dependencies if they are not updated.

Software
testing

� ��| ⋔ é sL The agent detects inconsistencies between the code change and the corresponding tests, generates new tests
when needed, and suggests changes to the existing ones. It also summarizes findings from executing the tests, and
answers questions about them. The reviewer can ask the agent to generate a test that exercises specific lines of
code by highlighting the code. Based on reviewer background, the agent can also answer questions about the
testing framework and provide suggestions on the style/format of the test suite.

Code
improvements -
functional

� � �|� süL The agent calls static analysis tools to detect null pointer exceptions or changes to data flow/control flow graphs,
and vulnerability detection tools to detect security issues. It summarizes the findings from these tools. It retrieves
information about alternative APIs and frameworks that can be used by querying web search tools, links to
similar changes in the past, and suggests alternative implementations for the code change. Based on the
reviewer’s background (rather the lack thereof), the agent takes a more active role in identifying and alerting the
reviewer of various issues that may be present in the code.

Code
improvements -
non-functional

� �| < ⋔üL The agent reads the code and documentation to learn the general style of the project, and applies these rules to
the code change to ensure consistency. It also suggests comments and documentation updates given a patch.
Moreover, the agent invokes program analysis tools to detect dead code, and removes it.

Updating other
software
artifacts

�� < ⋔ éüL The agent detects inconsistencies between the code and other artifacts using historical repository information.
Similarly, it retrieves relevant company policies to ensure none of them are being violated by the patch. The agent
then alerts the reviewer if any inconsistencies are detected and suggests changes to address them.

Knowledge
transfer

� � � <� ⋔ sü The agent retrieves and summarizes relevant API documentations for APIs present in the patch, personalized to
the reviewer’s background and expertise. It also has information about previous related change sets and other
relevant parts of the code base, such that the reviewer has more context when reviewing the code change. It can
help junior engineers to better understand the code base when reviewing the code change.

Prioritization �� � L The agent identifies groups of similar changes (e.g., refactorings) and related changes (e.g., function definition and
call sites), and presents the groups to the reviewer in a personalized way, ordered by familiarity with the change.

Mediation � <� L The agent monitors the communication between the reviewer and the author, and suggests edits to language that
can be perceived as toxic, pushback, etc.

and common code files that are often edited together (providing
hints on whether a change is incomplete).
� Existing Tests. The existing test suite can help ensure that changes
made to the code do not break existing functionality. Test execution
traces can also help guide the patch reviewer and patch writer to-
wards new test cases that need to be added, or existing test cases that
need to be updated. Exposing the dynamic outcome of these tests,
specifically showing the tests relevant to a change and whether they
continue to pass after the change, can further help the reviewer
understand the risk associated with a code change.
� Documentation. Documentation related to APIs being used in the
code change can be useful if the reviewer is unfamiliar with them.
Inspecting API documentation can also help validate whether they
are being used appropriately.
| Static Analysis. Warnings from static analysis tools can provide
useful information and help identify issues with the code, such as
null pointer exceptions, unexpected changes to data and control
flow, and changes in project-relevant code quality metrics.

� Vulnerability Analysis. Access to vulnerability datasets can be
a useful for evaluating a change for commonalities with known
vulnerabilities. Changes can also be evaluated against known vul-
nerability solutions to further reinforce reviewer feedback.
< Other Artifacts. Software often has other supporting artifacts
beyond code, including natural language specification documents,
design documents, diagrams for various use cases, requirements
documents, and policy documents related to privacy, the company
goals, and other concerns. Source code often is intended to conform
to these requirements, but the informal / unstructured nature of
many of these kinds of documentation makes ensuring both ad-
herence and consistency challenging. Having a system evaluate
areas of support and contravention between a change and these
documentation can help ensure the overall coherence of the change.
� Patch Reviewer & Patch Writer. The patch reviewer’s and patch
writer’s experience and preferences can be learned from the past
interactions. This information can be useful for fetching relevant
information that suits the needs of both stakeholders before and
during code review. For example, a reviewer looking at code changes
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on a file that they have never interacted with requires more support
than a reviewer who has authored or contributed to the code file.
Correspondingly, recommendations can also be made to the patch
writer in advance of the reviewer actually looking at the change,
giving them a chance to preemptively improve their submission.

3.2 Actions
⋔ Describe PR. A pull request (PR) often contains many different
snippets of information, including code changes, the corresponding
changes to the tests and documentation, commit messages, etc.
Having the agent consume all this information to briefly summarize
the changes in the PR provides a starting point for the reviewer.
é Detect Inconsistencies. Code is rarely treated as an independent
entity and often has dependencies to other code files, test files, doc-
umentation, specifications, etc. These dependencies can be learned
from historical information. The agent should then be able to con-
sume this information to determine if there are inconsistencies
between a given code change and a commit message, a code change
and the code comments, other documentation, and other artifacts.
s Summarize Logs. Many tools can be used to perform various
checks for code, such as static analysis or program analysis tools,
logs from CI, security checks, performance measures, test metrics,
and so on. The agent should consume these and extract the most
relevant parts. For example, identifying new tests that do not add
any new coverage, or alerting the reviewer of a security threat.
ü Retrieve Relevant Information. The supporting artifacts for a
code change can be lengthy and difficult to consume in their raw
format. For example, if the reviewer is not familiar with the library
being used, going through the entire documentation can be tedious.
However, having the agent summarize the most relevant parts of
the documentation based on the reviewer’s background can save
time and effort. Additionally, having the agent summarizing other
artifacts such as the design or requirements documents, company
policies or relevant code and tests can help provide relevant context
without overwhelming the reviewer.
L Provide Suggestions. Having a checklist of things to look for
during code review is beneficial; one might even automatically
infer this checklist based on historical information (for example,
style guidelines, or updating test suite), and other guidelines specific
to the project. The agent can then provide suggestions based on the
derived checklist to both the patch writer (to ensure that the PR is
complete) and the reviewer (to ensure they do not miss anything).

4 The Road Ahead
In this paper, we have proposed a future vision for how the code
review process can be positively supplemented by LLM-based ap-
proaches. While Section 2 may make it seem like we are propos-
ing an overwhelmingly disparate set of information sources to be
brought to bear on this problem, there are important commonalities
across all of these information sources that enables progress to be
made in a stepwise fashion. Several primary challenges face this
work, although each can be tackled independently.
Natural Interaction. Each of the disparate search tools we propose
to augment code review with have their unique interaction mecha-
nisms. One research avenue for this work is to investigate whether
a consistent and natural interaction layer can be applied on top of

these search tools to reduce developer friction for invoking and in-
teracting with these tools. Fortunately, the output from most search
tools is itself text, upon which LLMs have demonstrated strengths.
This is augmented by the context of the change, the patch, also
being fully text-based, further easing input to the LLM.
Summarization and Distillation. Each of the search tools will return
results in their own formats that must be filtered and tailored to
both the specific patch under review, as well as the individual
needs of the patch reviewer. Once again, the importance of this
task further leans on the strength of LLMs to perform these kinds
of tasks on structured text. The key challenge in this space is not in
the summarization itself, but in finding useful facts that can help
augment code review without overwhelming the reviewer with
facts that do not improve the quality or speed of their review.
Trust & Explainability. A fundamental challenge facing this ap-
proach is one of trust. This can be thought most simply in terms of
precision and recall. In terms of precision, the wealth of informa-
tion search tools can surface about a change can easily overwhelm
the developer. This suggests that considerable effort will be made
to elide data that are not useful (e.g., the results should have high
precision with few false positives). But this puts the approach in
tension with recall. If augmenting code reviews with external in-
formation proves useful, developers will want to be able to trust
that the tool will not hide information that could have improved
their code review (e.g., the results should have high recall with
few false negatives). Managing the trust of the patch-writer and
patch-reviewer is likely to be more challenging than the technical
aspects of interacting with and summarizing the search tool results.
Summary. Code review plays a longstanding multi-faceted role in
modern software development. By its very nature, code review is
a time-intensive human process that takes place in a complicated
technical domain. In this work we have proposed deploying LLMs
to augment the code review process without specific developer-
provided training and tuning in a way that can surface this addi-
tional information, enabling reviewer time to be more effectively
spent. Naturally, many challenges remain for this vision: can exist-
ing public models effectively fulfill this role, or do teams need to
train their own? Can locally-hosted models be directly augmented
with the necessary context, or will software development stacks
gain yet another expensive service they need to pay for? How will
the continually-evolving software development ecosystem hinder
the kinds of feedback LLMs will propose within the code review?
All of these important questions remain to be answered, but the
promise itself is clear: enabling better code review decisions by
extending discussions far beyond the patch itself.
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