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ABSTRACT
Software defects cost time and money to diagnose and fix. Conse-
quently, developers use a variety of techniques to avoid introduc-
ing defects into their systems. These techniques have their own
costs: the benefit of using a technique must outweigh the cost of
using it.

In this paper we investigate the costs and benefits of automated
regression testing in practice. Specifically, we studied 61 projects
that use Travis CI, a cloud-based continuous integration tool, in
order to examine real test failures that were encountered by the de-
velopers of those projects.We determined howdevelopers resolved
the failures they encountered and used this to classify the failures
as being caused by a flaky test, by a bug in the system under test,
or by a broken or obsolete test. We consider test failures caused
by bugs represent a benefit of the suite, while failures caused by
broken or obsolete tests represent test suite maintenance costs.

We found that 18% of test suite executions fail and that 13% of
these failures are flaky. Of the non-flaky failures, only 74% were
caused by a bug in the system under test; the remaining 26% were
due to incorrect or obsolete tests. In addition, we found that, in the
failed builds, only 0.38% of the test case executions failed and 64%
of failed builds contained more than one failed test.

Our findings contribute to a wider understanding of the unfore-
seen costs that can impact the overall cost effectiveness of regres-
sion testing in practice. They can also inform research into test case
selection techniques, as we have provided an approximate empiri-
cal bound on the practical value that could be extracted from such
techniques. This appears to be large, as over 99% of the test case
executions could have been eliminated with a perfect oracle.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Software verification and validation; Software libraries
and repositories;
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1 INTRODUCTION
Software defects cost developers time and money. Among other
things, bugs can discourage new customers from adopting a prod-
uct and can drive away existing customers. Many techniques exist
for avoiding the introduction of bugs and for quickly identifying
bugs once they have been introduced. Unfortunately, these tech-
niques have their own costs, so developers must carefully assess
each technique’s cost effectiveness before deciding whether and
to what extent to adopt it.

Automated regression testing is one technique for fault detec-
tion that has seen wide adoption [2, 4]. This technique involves
regularly executing a suite of tests to determine if recent changes
to the software have negatively impacted existing functionality.
Regression testing can be costly: developers must write, maintain,
and regularly execute their test suite as the code evolves. Kasuri-
nen et al. conducted a survey of industrial developers that found
that the development expenses and maintenance costs associated
with automated testing were a major impediment to adoption [6].
One of their participants stated:

Developing that kind of test automation system is al-
most as huge an effort as building the actual project.

They also saw some organizations decreasing their regression test-
ing investments due to test suite maintenance costs.

The costs of automated regression testing are only worth incur-
ring if the use of this technique provides adequate compensatory
benefits. In particular, the suite must detect enough faults that the
developers feel their investment in the suite is justified. Previous
studies have considered the cost-effectiveness of automated regres-
sion testing, as we will discuss further in Section 2. However, these
studies share a common limitation: they were conducted by min-
ing software repositories. Repositorymining allows one to see how
the test suite changes over time, which gives some indication of the
development and maintenance cost of the suite. However, it does
not allow one to measure the benefits in terms of detected faults.

To better understand the cost-benefit tradeoff, we examined the
build history of 61 open source systems that use the TravisCI1

1https://travis-ci.org/
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continuous integration service. When a test suite failed, we at-
tempted to determine whether the failure was caused by a non-
deterministic test, by a fault in the system under test, or by an
obsolete or incorrect test. We consider that a detected fault repre-
sents a benefit of the suite while an obsolete or incorrect test rep-
resents a suite maintenance cost. Determining the number of suite
failures that belong to each group therefore provides some insight
into the costs and benefits of the test suite. Section 3 describes our
procedure in detail.

Specifically, we asked the following research questions:
RQ1 What proportion of test suite executions are non-determin-

istic, or flaky?
RQ2 Once these flaky test suite executions are accounted for,

what proportion of test suite failures represent a mainte-
nance cost and what proportion represent a benefit?

RQ3 Why do tests usually require maintenance, and can mainte-
nance costs be reduced?

RQ4 What proportion of test case executions detect a fault?

Our answers can be summarized as follows:
A1 18% of test suite executions failed; the remaining 82% passed.

13% of the failures were flaky.
A2 Defects in the test suite itself were the cause of 26% of non-

flaky failures. Defects in the system under test were the
cause of 74% of non-flaky failures.

A3 There were a number of reasons for test suite maintenance.
Some of the maintenance could have been avoided through
the use of better testing processes.

A4 An individual test case that was run as part of a build that
failed had only a 0.38% chance of failing. This establishes
a useful bound for test suite reduction: a perfect reduction
technique could reduce the number of test executions by
over 99% and still detect the same number of faults. 64% of
failed builds contained more than one failed test.

Our findings are described in depth in Section 4. Following the
presentation of results, Section 5 presents threats to validity and
describes our replication dataset. Finally, Section 6 concludes.

2 RELATEDWORK
Previous work has considered the cost-benefit tradeoff of auto-
mated regression testing. We first discuss studies that used repos-
itory mining to measure the cost of maintaining a regression test
suite. Next, we discuss studies that captured test outputs, but were
not able to use this information to measure the costs and bene-
fits of regression testing. Finally, we briefly discuss studies that
attempted to decrease the costs of regression testing by reducing
the amount of time required to execute the suites. These particu-
lar studies of test selection and prioritization relate to our fourth
research question.

2.1 Measuring Test Suite Maintenance
Seven previous studies have considered test suitemaintenance costs
by exploring how test suites evolve over time. Zaidman et al. [15]
examined how developers evolve their test suites along with the
test code and whether testing effort varied by the project schedule.
They found both close synchronous evolution as well as separate,

stepwise evolution but failed to find any increase in testing effort
before a major release.

Pinto et al. [11] studied test evolution and found that 30% of
the changes made to test suites were modifications, 15% were test
additions, and 56% were test deletions.

Marsavina et al. [9] studied the co-evolution of production and
test code. They found that test code changes made up between 6%
and 47% of all code changes for the projects they studied.

Beller and Zaidman [1] found that tests and production code
have some tendency to change together, but that tests were not
changed every time the system under test was changed and vice
versa.

Kasurinen et al. [6] conducted a survey of industrial developers
that, among other findings, identified development expenses and
maintenance costs as the main obstacles to adopting automated
testing. In fact, one company that experimented with automated
testing eventually removed the test suite due to the cost of main-
taining it. This indicates that maintenance is perceived as very ex-
pensive, and in at least one case, the cost was high enough that
developers could not justify using automated regression testing.

Grechanik et al. [3] estimated that the costs associated with
maintaining and evolving test scripts are $50 million to $120 mil-
lion per year. They also showed that even simple changes could
result in 30% to 70% of test scripts needing maintenance, a process
that could take hours or days and caused interruption to contin-
uous integration systems. While developers in the study saw the
benefits of the automated test suite, the maintenance burden often
caused them to throw away their tests and start from scratch, often
with faulty logic due to time pressures.

Herzig et al. [4] developed a test selection tool called THEO that
selects tests to be executed if the probable cost of executing the
test is lower than the probable cost of skipping the test. To cal-
culate these costs, THEO uses the past defect detection rate for
each test case (i.e., the true positive rate) and the past false alarm
rate of a test case (i.e., the false positive rate). These probabilities
can then be used along with data such as machine costs, number
of engineers, and inspection costs in order to estimate the cost of
skipping or executing a test. An evaluation of the system using
historical data from Microsoft projects allowed 35% to 50% of tests
to be skipped while only letting 0.2% to 13% of defects escape. In
Section 4 we show that, in our dataset, a perfect test selection tech-
nique would execute less than 0.38% of tests.

All seven of these studies share the same limitation: as theywere
performed retroactively by mining software repositories, the exe-
cution results of the suites are unknown. This means we cannot
measure the benefit provided by the test suites in terms of the num-
ber of faults detected. We also cannot know the impact of flaky
tests on these results, since these can only be validated by repeat-
edly executing the same test. Without this information, we do not
have a complete picture of the cost-benefit tradeoff.

2.2 Capturing Test Outputs
Three previous studies have managed to capture test outputs. An-
derson et al. [5] provided insight into Microsoft Dynamix AX R2,
a large industrial project. This project comprised over 5.5 million
lines of product source code and over 4.8 million lines of regression
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test code. The authors reported that running the regression suite
resulted in a 9% test case failure rate during each execution of the
test suite.

Memon and Soffa [10] found that 74% of all tests failed between
successive releases of a single industrial product, suggesting that
test failures are relatively common. Beller et al. [1] report that 65%
of IDE-based JUnit test runs fail.

Vasilescu et al. [14] explored the relationship between Travis CI
build results (success or failure) and the way the build was started
(i.e., direct commit from a developer with write access to the repos-
itory or a pull request). The authors found that builds started by
pull requests are more likely to fail than those started by direct
commits. They also found that, although 92% of the projects they
studied are configured to use Travis CI, only 42% actually do; we
observed the same behaviour, as we will describe in Section 3.

Unfortunately, while these studies captured test execution re-
sults, it is not clear what proportion of the observed failures oc-
curred because of faults and what proportion occurred because the
tests required maintenance. Additionally, developers in these stud-
ies may have been using test driven development methodologies
which would further influence the test failure rates. It is therefore
hard to draw conclusions about the amount of developer time de-
voted to test maintenance—and thus the cost-benefit ratio of re-
gression testing—from these studies.

2.3 Reducing Suite Execution Time
A number of studies have attempted to reduce the cost of regres-
sion testing by reducing the cost of executing the suite. The basic
assumption is that re-running all the tests every time is too expen-
sive, and someway of reducing this cost is required. As an example,
Rosenblum and Weyuker [12] proposed the use of test coverage
information to predict the cost-effectiveness of regression testing
strategies.

Elbaum et al. [2] used test suite2 selection at the pre-submit
stage and test suite prioritization at the post-submit stage to in-
crease the cost-effectiveness of testing. During the pre-submit phase—
i.e., before code was pushed to the central repository—suites that
failed during a pre-determined failure window were selected to be
executed, the basic intuition being that recent failures are likely to
predict future failures. New tests and tests that had been skipped
more than a set number of times were also selected during this
phase. During the post-submit testing phase, the authors attempted
to avoid skipping test suites and thus prioritized rather than se-
lected test suites using the same criteria used during the pre-submit
phase. This strategy ensured that all test suites were executed dur-
ing the post-submit phase while running the suites that were most
likely to fail first, thereby shortening the feedback loop.

Anderson et al. [5] developed two test prioritization techniques
that used test result history. The first technique,most common fail-
ures, is based on the intuition that tests that failed the most in the
past are the most likely to fail in the future. The second technique,
failures by association, attempts to use association rule mining to
improve on the first technique. The authors found that the tech-
niques had similar performance when predicting future failures

2Note that test suites, not test cases, are being selected and/or ordered in this study.

and that both worked better when a small window of recent exe-
cutions was used, rather than the entire historical dataset.

Most test suite reduction techniques use coverage to detect re-
dundant tests. This leads to a loss in fault detection ability because
fully overlapping coverage does not necessarily mean the tests will
always fail under the same circumstances [8]. To address this issue,
Koochakzadeh and Garousi [7] developed a test reduction tool that
brings a human tester into the loop. Their tool identifies potentially
redundant tests using coverage analysis, then lets testers inspect
these tests to identify the true positives that can be removed from
the suite. Using this technique they were able to remove eleven of
the 82 tests in their subject systemwithout affecting the suite’s mu-
tation score. In contrast, the coverage based approach identified 52
tests as redundant and reduced the mutation score by 31%.

Rothermel et al. [13] studied how the granularity of test suites
influenced the cost-effectiveness of regression testing. They con-
cluded that typical regression testing techniques usually do not
lose fault detection capability when operating on coarse-grained
test suites, but they do tend to save test execution time.

While the information produced by these studies sheds light on
the costs of regression testing, they are concerned only with the
cost of executing the test suite, while we focus on the cost ofmain-
taining the suite. In addition, like other studies that we have dis-
cussed, the ones above do not measure the benefits of regression
testing in terms of faults detected. However, these studies are rele-
vant to our final research question, which asks what proportion of
test case executions are truly necessary.

3 METHOD
We began our study by identifying a large set of mature Java-based
projects that use the Travis infrastructure to execute their tests in
the cloud. While cloud-based systems do not prevent developers
from running and fixing their tests locally, they encourage defer-
ring test execution to external services. This means that the ex-
ecution history of a test suite, which is lost when the suite is run
locally, is captured by the cloud-based system. This history enables
us to observe the test failures that developers actually encountered
as they worked on their systems.

We selected subject programs by querying the GitHub Archive3
for Java projects that received more than 1,000 push events be-
tween 2012 and 2014; this time frame was chosen based on Travis
support for Java, which began in February 2012. The query re-
turned 685 projects; of these, 421 projects had Travis accounts. We
were able to successfully clone 402 of these projects from GitHub.
As the focus of our analysis was on regression testing, we elimi-
nated early-stage projects that were less than three years old. This
resulted in 362 projects. Of these projects, only 101 actively used
Travis to execute their test suites; the other 261 projects had signed
up for the service but did not use it. Unfortunately, several of these
remaining projects did not configure Travis correctly or did not
examine the Travis output, resulting in long stretches of broken
builds. Other projects almost never experienced a failure, possibly
because the developers were testing their code locally before push-
ing to Travis. If this is the case, the test suite execution results have
been lost, meaning we cannot assess the costs and benefits of the

3https://www.githubarchive.org/
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Figure 1: Growth of production source code and test source code over the study period. At the start of the study period, test
code accounted for only 10.8% of all code, but by the end of the study period this had increased to 21.9% (2.9 MLOC). Writing
and maintaining this amount of test code represents a significant investment that must be carefully considered given finite
developer resources.

suite. To account for these two extremes, we removed the 20% of
the projects that had the most errors and failures and the 20% that
had the fewest errors and failures, resulting in a final set of 61
projects.

Table 1: Size and percentage increase (in terms of SLOC) of
the production and test code over the two year study period
for the 61 subject systems.

Code Test

# Lines of Code 10,479,380 2,942,473
% Increase 59.1 267.8

Having identified these 61 projects, we examined the total size
and churn in the test suites and production code of these systems
to determine how large the testing effort was. The aggregate re-
sults for the size of the production code and test code are shown in
Table 1. This table shows that although the proportion of product
code is greater than test code, the test code grew faster than pro-
duction code: the proportion of test code grew from 10.8% to 21.9%
(see Figure 1) during the study period. In total, the test code for our
systems totalled over 2.9 million SLOC4. While SLOC is an imper-
fect measure of development effort, the results still show that these
61 development teams spent considerable time and effort creating
and evolving their test suites.

Our next step was to gather information about the development
history of these projects. When using the Travis infrastructure,
each time a developer pushes a change or opens a pull request,
Travis downloads the change, builds the project, and executes its
test suite; this process is called a build. Travis stores the state of
every build, which can have one of the following five values:

4Calculated using non-comment source lines (NCSL) using cloc https://github.com/
AlDanial/cloc.

• Pass: The build was successfully compiled and all tests in
the test suite passed.

• Error: The build failed before test execution began, i.e., there
was a compilation or configuration error.

• Fail: The build was successfully compiled, but one or more
test assertions failed or encountered an unexpected run-
time exception.

• Cancel: A developer manually terminated the build while it
was running.

• Started: The build was started but has not yet finished.
Table 2 summarizes the number and proportion of builds with

each state in our dataset5. Note that the build frequently does not
pass: 33% of builds have a state other than ‘pass’. If these projects
made only one build per day (every day of the year), their prod-
ucts would spend more than 17 weeks in non-passing states. This
is problematic because resolving build failures takes time away
from other active development tasks and thus represents a cost
that must be factored into the effort required to build real software
systems.

Table 2: Aggregated build results for 61 open source Java
projects that use Travis and the state of 106,738 build exe-
cutions from those projects.

State Builds (#) Builds (%)

Pass 71,303 66.8
Fail 19,640 18.4
Error 15,437 14.5
Cancel 354 0.3
Started 4 0.0

Total 106,738 100.0

5Started and cancelled builds are byproducts of the way Travis stages builds and are
hereafter elided from our discussion.
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In this study, we were interested in whether resolving a build
failure required fixing a fault in the system under test or main-
taining the test suite itself. In other words, we were interested in
cases where the build transitions from ‘fail’ to ‘pass’. However, we
wanted to ensure the build failure was not the result of a flaky
test, as in this case the changes made by the developer are not
the reason the build returned to the ‘pass’ state. To determine how
non-flaky build failures were resolved, we performed the following
three steps:

(1) Determinedwhich commitswere associatedwith each build;
(2) For transitions from the fail to the pass state, determined

whether test code, system under test code, or both were
changed in the commit(s) that fixed the build; and

(3) Reran the failing builds to determine which ones were non-
deterministic and should be excluded from the analysis.

We discuss these three steps in turn.

3.1 Identifying Commits Associated with a
Build

In addition to storing build state, Travis stores the branch and
SHA of the head commit associated with each build. Travis builds
a project and executes its tests every time a developer pushes a
change or opens a GitHub pull request. This means that a Travis
build consists of a set of one or more commits; for example, a pull
request can be composed of three commits that comprise a single
build. We examined the git repository for each build to determine
which commits were part of the Travis build. Unfortunately, not
all commits associated with each build could be recovered from
the project repository. There are two reasons for this:

(1) The build was associated with a pull request. Travis cre-
ates a new build every time a pull request is created or up-
dated. The commits associated with these builds, however,
are never present in the repository, even if the pull request
is merged, as the builds are run against the merge commit
between the pull request and the up-stream branch, which
does not exist in the master repository.

(2) History rewrites. If a developer rewrites history, the build(s)
that were triggered by the rewritten commits will no longer
be traceable to a commit in the repository.

Ultimately, 70,447 of the 106,738 builds executed by Travis (66%)
had associated commits in the project version control repositories.
The remainder of our analyses are on these 70,447 builds.

3.2 Categorizing Failure-Resolving Changes
Figure 2 shows how the builds we analyzed transitioned between
their various states. The data show that the build continues to pass
only 58% of the time and systems stay in the Pass state for an aver-
age of 5.6 builds before transitioning to a Fail or Error state. Error
states are fixedmore quickly, persisting for an average of 2.6 builds,
while Fail states persist for an average of 2.9 builds.

Note that, as it does not make sense to compare arbitrary com-
mits to each other in a distributed version control system, we had
to carefully consider the flow of changes between branches. For
instance, if a project has been split into three concurrent branches
A, B, and C, it only makes sense to compare adjacent changes in A

to each other and adjacent changes in B to each other. Also, if only
one commit is ever made to C, there is no other change to com-
pare it to. Consequently, the number of transitions between builds
differs from the number of builds throughout the paper.

We next discuss transitions grouped by their start state.

Error

Pass

Fail

58%

6%

5%4%

4%

1%

1%9%
12%

Figure 2: Summary of the transitions between build states
in our dataset. Each transition is caused by one or more
commits. Pass→Pass persisted for an average of 5.6 builds,
Error→Error persisted for 2.6 builds, while Fail→Fail per-
sisted for 2.9 builds.

Pass → ⋆. The largest proportion of changes in this category
were changes where the test suite passed before and after a change.
This occurred as a result of changes to non-code resources (e.g.,
documentation) or changes to code resources (production and/or
test) that did not introduce failures or errors. Builds transitioned
into error states when changes were made to either the build in-
frastructure itself, for instance by changing a configuration file, or
when the system could no longer be compiled, which was often
caused by missing dependencies. While we expected newly intro-
duced failures to be caused by failure-inducing changes to code re-
sources, we also saw a large proportion of commits that seemed to
be failing for no reason at all; further examination of these changes
showed that these failure transitions were being caused by flaky
tests (see Section 3.3).

Fail→⋆. The largest proportion of changes to failing builds did
not resolve the failure; once a build failed this state persisted for
an average of 2.9 builds. Most systems persisting in failing states
seemed to continue to fail because developers were making multi-
ple unrelated changes to the system.While in some cases it seemed
that they were aware that these changes were larger and that the
build would continue to fail, in other cases they seemed to be dis-
parate changes that happened by chance while the build was al-
ready failing. While failing builds sometimes transitioned into er-
ror states, primarily through adding new unresolved dependencies,
the failures were usually resolved to a passing state by fixing the
test failures.
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Error→⋆. Builds stayed in error states for the shortest period of
time: 2.6 builds on average.While error states often took a few tries
to resolve, mainly by committing changes to configuration files,
build scripts, and code dependencies, once these were resolved the
build was able to transition back to a passing state. Transitions
from the error state to fail state usually corresponded to added
dependencies that allowed the code to be compiled so the test suite
could run (and fail).

Key Build Transitions. We noted above that once a build fails
it remains in the failing state for an average of 2.9 builds. When
a build fails for a prolonged period of time, it could be because
the developers are not heeding the failures, for instance if they are
landing a diverse set of changes.We therefore chose to focus our in-
vestigation on failures that lasted for exactly one build (i.e., Pass
→ Fail → Pass). Our analysis does not consider all Fail →
Pass transitions due to the difficulty in reasoning about the diver-
sity of changes made to a system that remained in Fail or Error
states for prolonged periods of time. This also reduced the number
of builds that needed to be re-executed to identify flaky tests (see
Section 3.3), making the study more tractable. We identified a total
of 1,381 such build tuples. Each Pass → Fail → Pass instance
comprised three builds by definition and each build contained an
average of 5.2 commits (15.6 commits per tuple). Figure 3 shows a
triple matching this pattern that consists of three builds and eight
commits.

3.3 Eliminating Flaky Builds
Having identified these 1,381 build tuples, we used the Travis API
to rerun the failed build for each of the Pass → Fail → Pass
tuples three times. We created three GitHub repositories for each
project, each on a separate account, and connected each of these
accounts to Travis CI. We then created a branch at the commit as-
sociated with each of the failed builds. The branches were then
pushed to each of the GitHub repositories, triggering three identi-
cal builds for each branch onTravis CI. To ensure that a build is trig-
gered when a branch is pushed, we removed the branch whitelist
and blacklist sections from the Travis configuration file. We also
removed the deploy and notification hooks from the configuration
file to avoid disturbing the original developers.

Unfortunately, in many cases all three re-executions resulted in
error builds. We found that this usually happened when dependen-
cies were no longer available or when builds required features no
longer supported by Travis CI; these builds amounted to 32% of
the re-executions we tried and were discarded. This decreased our
1,381 transitions to a final dataset of 935 build tuples that could
be re-executed and reliably analyzed.

4 RESULTS
In this section, we answer the research questions defined in Sec-
tion 1.

4.1 RQ1: What Proportion of Tests are Flaky?
If all three re-executions of a build failed (see Section 3.3), we con-
sidered the build to be a non-flaky (deterministic) failure. We also
considered three passes to be non-flaky, despite a pass being differ-
ent from the original failure. Only re-executions that included at

least two different results were classified as flaky (e.g., fail, fail,
pass, or pass, pass, fail). 120 of the 935 failures were not con-
sistent according to this categorization and were removed from
subsequent analyses. Note that executing builds three times estab-
lishes only a lower bound on flakiness; executing the builds more
timesmay have led other builds to be classified as non-deterministic.
However, as we were using the Travis infrastructure, running the
builds many more times would have exceeded rate limits and plac-
ing this burden on their infrastructure could have raised ethical
concerns.

Answer to Research Question 1. 12.8% of the failing builds
in the dataset (120 of 935) failed non-deterministically.

4.2 RQ2: How Often are Test Failures
Beneficial?

Having identified 815 deterministic build failures, we addressed
our second research question: which of these failures represent a
cost of regression testing, and which represent a benefit? For ex-
ample, in Figure 3, a developer made three consecutive code-only
commits to their passing system. In doing so, they introduced a
fault that caused a test failure, i.e., a transition to the Fail state.
To determine the cause of the failure, we diff the last commit of
the Pass build against the last commit of the Fail build. In this
case, only source code files were changed, meaning that the cause
of the test failure was a source code change. The developer then
performed three commits that were executed together to return the
build to the Pass state; since we cannot determine which commit
fixed the fault, we label this as a code+test fix.

Table 3 describes all of the possible transitions between three
builds that Pass → Fail → Pass. The builds have been grouped
by the kind of resource changes that resolved the test failure. From
this table we can see that 58.7% of non-flaky Fail builds are re-
solved with source code changes alone, 19.3% are resolved by fix-
ing tests alone, and 22.0% are fixed by a combination of source and
test changes.

We consider the three categories of failing builds that were re-
solved by code fixes alone (58.7%) as a positive indication that the
test failure identified a source code defect. We make this determi-
nation because the developer resolved the failure by only changing
the source code; that is, the failing test was correct, and the fix was
to modify the code to make the test pass in future builds.

In contrast, the three categories of failing builds resolved by test
fixes alone (19.3%) represent a cost for the developer: the fault was
resolved by maintaining the suite itself. These changes acknowl-
edge that the test itself was faulty or obsolete; typical remediation
of these failures requires either modifying the test or removing it
altogether. We do not claim that fixing these failing tests could not
provide a benefit in the future by detecting faults; however, the
maintenance cost for these tests must be considered when mod-
elling the overall cost of the testing strategy.

To gain insight into the 22.0% of builds that were resolved with
both source and test code changes, we examined the proportion of
each change that was made to the source code and the test code
to fix the build. For these 263 builds, we observed that on aver-
age 30% of lines changed were in test files, while the remainder
were in source code files. As we considered fixing failing builds by
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Table 3: Categorization of how non-flaky builds transition
between Pass → Fail → Pass. The left-hand-side of →
denotes the resources that changed to cause the test failure.
The right-hand-side of → denotes the resources that were
changed to resolve the test failure.

Fix Type Resources Changed %

Code fixes

Code→ Code 43.8
Test→ Code 2.9

Code+Test→ Code 12.0
∗→ Code 58.7

Test fixes

Code→ Test 6.0
Test→ Test 3.8

Code+Test→ Test 9.5
∗→ Test 19.3

Mixed fixes

Code→ Code+Test 8.4
Test→ Code+Test 1.6

Code+Test→ Code+Test 12.0
∗→ Code+Test 22.0

C CT C C C C CCT

Code Changes Only Code + Test Changes

Pass Fail

Failing Diff Fixing Diff

Pass

Figure 3: As developerswork on their systems their commits
often change the state of the build. Each box represents a
commit; builds are often not run on every commit but in-
stead on blocks of commits. A C label on a commit means
the code under test was changed; a T label means the test
code was changed. The figure shows a failure caused by a
code change that was resolved by changing both code and
test files.

changing the source code beneficial, we classify 70% (15.4% of all
changes) of the mixed builds as fixing defects and the remainder
(6.6% of all changes) as test maintenance. While splitting test and
code changes in this way is not optimal, it consistently captures
the proportion of changes made to both kinds of files.

Figure 4 summarizes the proportion of failing builds that are
resolved by fixing faults and by maintaining tests.

Answer to Research Question 2. In the systems under study,
25.9% of deterministic test suite failures represented a cost of regres-
sion testing: the test suite had to be maintained to return it to a Pass
state. 74.1% of deterministic failures detected real faults and therefore
represented a benefit of regression testing.

4.3 RQ3: What Leads to Test Maintenance?
Given the answer to the previous research question, it is natural to
wonder what kinds of test maintenance were done. To answer this
question, we identified tests that required maintenance dispropor-
tionately often. Our first step was to identify pass/fail behaviour

Executable 
Failing 
Builds 
(100%)

Deterministic 
Failures 
(87.2%)

Code 
Defect 

(74.1%)

Test Defect 
(25.9%)

Flaky Failure (12.8%)

Figure 4: The categorization of test failures in practice for
our 935 executable failing builds. Ultimately, one quarter of
non-flaky failures did not find defects in the code under test
and represent failures that required developer effort to in-
vestigate and resolve without improving the overall quality
of the code under test.

of individual test cases. To do this, we parsed the test logs of our
Pass → Fail → Pass tuples. Unfortunately, parsing test logs
is a difficult process prone to project-specific noise and one-time
errors; due to this we were only able to parse the logs for 40 of the
61 projects.

Given the list of individual test cases that passed and failed in
each build, we assigned each individual test case a score: the num-
ber of times it failed and caused a code-only fix minus the number
of times it failed and caused a test-only fix. A positive number in-
dicates that the test found bugs in the code under test on more
occasions than it required maintenance. A negative number is the
opposite: the test required maintenance more often than it found
bugs.

Figure 5 shows the average scores obtained for the tests of 28
projects. The projects apache/pdfbox and apache/jackrabbit-oak
are elided for clarity, the first as it has a score of 39.25, and the sec-
ond because its tests experienced 2,416 code and test fixes. Ten
projects where the sum of test-only and code-only fixes is smaller
than fivewere removed to reduce clutter. The size of the bubbles in-
dicates the portion of test failures that were resolved by a mixture
of code and test changes. This can be seen as the portion of test
fixes where there is some doubt as to whether the fix is a return on
investment or a maintenance cost. On the x-axis, we plot the sum
of all test failures that were resolved by code or test changes alone
on a logarithmic scale; this indicates the number of data points we
have for each project.

From the figure we can see that, on average, the tests of nine
projects require maintenance more often than they find bugs. It is
therefore possible that these test suites add very little value or even
represent a loss for the projects. We also notice that the difference
between code-only fixes and test-only fixes for most projects is
small, ranging from -0.87 (graylog2-server) to 1.16 (cloudify).
This is due in part to the fact that 85% of tests that fail only fail
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once and 97% fail two times or fewer. There are, however, tests
that seem to provide a large return on investment: 24 tests have
a score of 5 or higher. Some tests are costly to maintain: 609 tests
have a score of -1 and 4 tests a score of -2.

Table 4: Manually inspected tests as well as an example of a
broken build and the change that fixed the test. The Break
and Fix entries are hyperlinks to the original Travis-CI test
suite execution output.

Test 1: ProvisioningTests.canCreateUser...
Break: cloudfoundry/../40103431 Fix: 40114195

Test 2: PackageAPITest.delete
Break: BaseXdb/../1093013 Fix: 1093360

Test 3: SchedulerServiceTest.saveTask...
Break: openmrs/../31049916 Fix: 31125642

Test 4: FTIndexQueryTest.testFTTest
Break: BaseXdb/../1787079 Fix: 1792995

Test 5: FNClientTest.clientClose
Break: BaseXdb/../1434048 Fix: 1434164

Test 6: JavaFuncTest.staticMethod
Break: BaseXdb/../848008 Fix: 850290

Test 7: CommandTest
Break: BaseXdb/../759351 Fix: 759996

●

●
●

●

●

●

●

●

●

●●

openmrs−core

graylog2−server
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cloudify
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okhttp
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Figure 5: Average difference between the number of code
fixes and the number of test fixes. The radius of the bubbles
represents the relative size of code+test fixes compared to all
fixes. The sum of all code fixes and test fixes for a project is
plotted on the x-axis on a logarithmic scale.

To understand the causes of maintenance, we qualitatively stud-
ied the failures associated with seven of the ‘least valuable’ tests.
These tests are listed in Table 4. One of the tests experienced a test-
only fix twice, the remaining six experienced only one test-only fix,
and none of the tests experienced mixed or code-only fixes.

Two of the tests failed due to unintended interaction between
tests. The first test (Test 1) depended on an @after method that
did not function correctly. The test deleted the user with email ad-
dress JO@FOO.COM from the database, but failed because the users’s
email address was in lower case in the database. This test used to
work since MySQL, by default, is not case sensitive, but stopped
working when the test was run on Postgres, which is case sensi-
tive by default. The second test (Test 2) was fixed by re-initializing
the context between tests. The breaking change removed the re-
initialization code and the fix reverted the change.

The developers for one of the tests (Test 3) were aware that their
test was non-deterministic. After the second failure of this test the
developers disabled it.

One test (Test 4) was too difficult to analyze and we could not
determine whether it was non-deterministic. Another test (Test 5)
as well as the four others that failed with it are an example of new
tests being added to the suite that failed on the first execution. They
were fixed by changing constants.

Of the last two tests, the first is an example of a functional
change resulting in test suite maintenance (Test 6) and the second
is an accident where changes were applied before they were ready
(Test 7).

From these tests, we can see that test failures that lead tomainte-
nance occur for a diverse set of reasons. These include tests that fail
because of interaction between tests, non-deterministic tests, new
tests failing immediately after creation, tests failing after a change
in functionality, and an accident where changes were merged be-
fore they were ready. This reveals that test code maintenance is
not necessarily tied to product code evolution. Ensuring that tests
do not depend on assumptions (e.g., Test 1) and do not depend on
other tests (e.g., Test 2) may reduce the frequency of test mainte-
nance. The prevalence of flaky tests and the developer discussions
around them stand out as major costs in automated testing and
hinder empirical studies of test results as it is hard to automatically
distinguish between deterministic and non-deterministic failures.

Answer to ResearchQuestion 3. Tests need to be maintained
for a variety of reasons. In some cases, such as when the tests depend
on invalid assumptions or other tests, the maintenance costs could be
avoided via the use of better development processes.

4.4 RQ4: How Often Do Individual Tests
Expose Faults?

The log parsing technique described in the previous section al-
lowed us to count the number of tests that passed and failed on
each build to establish the percentage of tests that failed in failing
builds. Figure 6 shows the proportion of test failures from the 40
projects and 586 Pass → Fail → Pass test suite executions for
which we could parse the results. From this set, the average test
failure rate was 0.38%. This is not the global test case failure rate,
but the test case failure rate within the builds that had at least one
test failure.
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Figure 6: Proportion of test cases that fail for the 40 projects
we were able to parse individual-test results for across the
failing build of 586 tuples. Three data points (16.9%, 8.7% and
4.1%) have been elided for clarity. The average project failure
rate was 0.38%.

This number is helpful for understanding the potential effective-
ness of test selection approaches because it establishes the absolute
minimum fraction of tests a selection approach could execute. That
is, if a test selection approach only executed tests from builds that
would fail, and then only executed the failing tests, the approach
would have to execute an average of 0.38% of the test suite.

In addition, we found that 64% of failed builds containmore than
one failed test. These failures usually have the same root cause
and therefore all the failed tests were not necessary to find the
fault. Test selection strategies typically use coverage overlap to de-
termine whether a test is redundant or not, but this alone can be
inaccurate [8]. By only considering a test case redundant if all past
failures occurred with other tests the false positive rate could be
reduced. On the other hand, if a test has failed alone it would indi-
cate that it is not redundant even if does have complete coverage
overlap with another test.

Answer to Research Question 4. In the failed builds under
study, only 0.38% of test case executions failed. 64% of failed builds
contained more than one failed test.

5 DISCUSSION
In this section we discuss threats to the validity of our empirical
study. We then describe the replication dataset.

5.1 Threats to Validity
The dataset developed for this study has several limitations, most
notably to external validity. While it presents a diverse set of 61
projects, they were all Java-based projects that used the Travis con-
tinuous integration platform. In the process of trying to find repre-
sentative projects, we also filtered out projects that we believed to
be unusual, but whose test-inducing behaviour may have been in-
teresting. That said, the set of projects was diverse and contained
test suites that were being actively maintained and executed. In
addition, although we believe removing projects with few test fail-
ures removed projects where tests are run locally, it is still possible
that some test suite executions were not captured in the Travis his-
tory.

Our goal was to measure how often a test suite failure indicated
that test suite maintenance was necessary. Though it seems rea-
sonable to assume that, if only the test code was changed to fix a
test failure, the developers were maintaining the test, it is possible
that we misclassified some of the test failures. However, examin-
ing each change manually would have been infeasible, and feel our
approach is an adequate approximation. We believe our approach
to be a reasonable lower bound on test maintenance. Additionally,
in the code fixes category, some of the Code+Test changes could
have involved test edits that were related to test maintenancemade
by the developer before the tests failed (for example, because they
knew their code changes would have caused failures once the tests
were executed). In terms of internal validity, these analyses may be
overly conservative as we could have excluded some test changes
that could have been classified as maintenance.

Our results for the flaky analysis were also limited: while we
found that 12.8% of the tuples we examined were flaky, we exam-
ined only builds that failed when the developer originally executed
them. It is possible for builds to pass by chance, and thus some of
the passing builds we did not re-execute could have been flaky as
well.

A threat to construct validity is our use of a proxy metric for
cost. The “cost” of test suite maintenance can be measured in time,
dollars, lines of code changed, or various other units, but we have
limited ourselves to counting the number of times the suite was
maintained. This suggests that all changes to the suite are equally
taxing, which is naturally not the case. However, the scope of our
study and the variety of projects studied makes it impossible to
objectively assign an exact cost to every test failure and mainte-
nance activity we observed. Likewise, the “cost” of a bug can be
represented by hours taken to fix the bug, money lost due to the
bug, number of lines changed, and so on; deriving the ‘true’ dollar
value for these costs was also impractical.

5.2 Replication Package
The data underlying this paper represent an oracle consisting of
code changes and test failures that arose in practice. This dataset
is valuable because it augments past studies on industrial code for
which the full data could not be released (e.g., [2, 4, 5]). It also
provides crucial information into the dynamic outcomes of test
executions that cannot be recovered from mining studies alone
(e.g., [1, 9, 11]).

The data includes a database image of the build results of 225,860
Travis builds run by 493 projects (some projects not studied in this
paper are included). Build results include the build state, times-
tamps, and, for builds whose logs we could parse, the test iden-
tifiers of failed tests.

These data represent the largest open collection of practical test
failures and will prove valuable for many future studies that want
to evaluate their approaches on real data by, for instance, measur-
ing how many actual failures would be missed by a test selection
approach, or how effective a test selection approach is relative to
a known ‘best case’. The full replication package for this study can
be found and contributed to online.6

6https://github.com/rtholmes/RealTestFailures/
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6 CONCLUSION
Regression testing is widely used and widely studied. Despite this,
it is not always clear that the benefits of having fewer faults in
the program are outweighed by the cost of writing, maintaining,
and executing regression tests. Previous studies that attempted to
quantify these tradeoffs were not able to measure the benefits of
fault detection due to their use of repository mining. To address
this limitation, we studied 61 Java-based projects that use Travis
CI. We found that 18% of test suite executions fail and that 13% of
these failures are flaky. Of the non-flaky failures, only 74% were
caused by a bug in the system under test; the remaining 26% were
due to incorrect or obsolete tests. In addition, we found that, in
the failed builds, only 0.38% of the test case executions failed and
64% of failed builds contained more than one failed test. Our find-
ings contribute to a wider understanding of the unforeseen costs
that can impact the overall cost effectiveness of regression test-
ing in practice. They can also inform research into test case se-
lection techniques, as we have provided an approximate empirical
bound on the practical value that could be extracted from such
techniques.
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