
Using Fault History to Improve Mutation Reduction

Laura Inozemtseva
University of Waterloo
Waterloo, ON, Canada

lminozem@uwaterloo.ca

Hadi Hemmati
University of Manitoba
Winnipeg, MB, Canada

hemmati@cs.umanitoba.ca

Reid Holmes
University of Waterloo
Waterloo, ON, Canada

rtholmes@uwaterloo.ca

ABSTRACT

Mutation testing can be used to measure test suite quality in
two ways: by treating the kill score as a quality metric, or by
treating each surviving, non-equivalent mutant as an indi-
cator of an inadequacy in the test suite. The first technique
relies on the assumption that the mutation score is highly
correlated with the suite’s real fault detection rate, which is
not well supported by the literature. The second technique
relies only on the weaker assumption that the “interesting”
mutants (i.e., the ones that indicate an inadequacy in the
suite) are in the set of surviving mutants. Using the second
technique also makes improving the suite straightforward.

Unfortunately, mutation testing has a performance prob-
lem. At least part of the test suite must be run on every
mutant, meaning mutation testing can be too slow for prac-
tical use. Previous work has addressed this by reducing the
number of mutants to evaluate in various ways, including se-
lecting a random subset of them. However, reducing the set
of mutants by random reduction is suboptimal for developers
using the second technique described above, since random
reduction will eliminate many of the interesting mutants.

We propose a new reduction method that supports the use
of the second technique by reducing the set of mutants to
those generated by altering files that have contained many
faults in the past. We performed a pilot study that suggests
that this reduction method preferentially chooses mutants
that will survive mutation testing; that is, it preserves a
greater number of interesting mutants than random reduc-
tion does.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Experimentation, Measurement, Performance

Keywords

Mutation testing, mutant reduction, fault history, test suite
quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

1. INTRODUCTION
Mutation testing offers software developers a way to eval-

uate the quality of their test suite. In mutation testing,
mutants are created by making small syntactic changes to
a program, which we will refer to as the system under test
(SUT). For example, a mutant could be created by modify-
ing a constant, negating a branch condition, or removing a
method call. The resulting mutant may produce the same
output as the original SUT, in which case it is called an
equivalent mutant. As or after the mutants are generated,
the program’s test suite is run on each one. If the suite fails,
it is said to have killed the mutant. The number of mutants
the suite kills, divided by the total number of non-equivalent
mutants, is the suite’s kill score. Equivalent mutants are ex-
cluded because they cannot, by definition, be detected by
an automated test.

There are two ways a developer can use the output of
mutation testing:

Technique 1. The developer treats the kill score as a
quality metric, where higher is better. This technique as-
sumes that the mutant kill score is correlated with the suite’s
actual fault detection ability.

Technique 2. The developer ignores the kill score and
focuses on the set of surviving mutants. Each non-equivalent
surviving mutant indicates an inadequacy in the test suite
that the developer may want to address.

The downside of Technique 1 is the built-in assumption
that the mutation score is highly correlated with the suite’s
real fault detection rate. This assumption has only been
tested in two studies [1, 4], both of which used a single small
subject program. It is therefore not clear that it holds in
general. This technique also does not help the developer
write new tests: there is no obvious way to use the mutation
score to guide improvements to the suite.

Technique 2, by contrast, is less reliant on the assump-
tion that the mutation score is highly correlated with the
suite’s real fault detection rate. Treating a surviving, non-
equivalent mutant as an indicator of an inadequacy in the
test suite does assume that the mutant is at least some-
what representative of a real fault. However, it does not
require making any assumptions about the killed mutants;
we merely assume that the interesting mutants will be found
in the set of surviving mutants. Trivial mutants, which are
one of the worries of mutation testing, will be killed easily
and the developer will not need to consider them. More-
over, the extra context the developer gets from manually
investigating the mutants makes this technique much less
reliant on there being a strong correlation between the kill

score and the fault detection ability of the suite. This tech-
nique also makes improving the suite straightforward: the
developer simply writes tests that can kill the interesting
mutants. These advantages make Technique 2 the prefer-
able approach.

Unfortunately, mutation testing has a drawback that ap-
plies to both techniques. Since it requires generating tens of
thousands of mutants for a typical SUT, and at least part
of the test suite must be executed for each mutant to de-
termine if it can be killed, mutation testing can be too slow
for practical use. It is possible to speed up mutation test-
ing with techniques like changing the definition of “killing”
a mutant, evaluating mutants1 in parallel, or computing the
results incrementally as the program evolves. However, as
long as the same number of mutants are being evaluated,
there is a limit to how much speedup can be achieved. In
particular, even though mutation testing is embarrassingly
parallel, parallelization is insufficient on its own because of
the large number of mutants.

As we will describe in Section 2, previous studies have ex-
plored improving the performance of mutation testing thr-
ough mutant reduction methods. These studies either used
fewer mutation operators, and thus generated fewer mu-
tants, or selected a random subset of the generated mutants
to evaluate. While these approaches may be acceptable for
a developer using Technique 1, they are suboptimal for a
developer using Technique 2, because they will eliminate
many mutants that would survive if they were evaluated.
Each of these mutants indicates an inadequacy in the test
suite, so eliminating them prevents the developer from iden-
tifying those inadequacies. It would be preferable to reduce
the mutant set in a way that preserves as many interesting
mutants as possible.

We propose a novel reduction method that supports the
use of Technique 2. More precisely, we propose evaluating
only the faulty-file mutants, or mutants that are generated
by altering a file that has contained many faults in the past.
This reduction method has three desirable characteristics:

1. Improves Performance: Since previous work has
shown that a small number of classes in an object-
oriented program contain most of the faults [6], and
Java programs typically have one class per file, this
method will greatly reduce the number of mutants that
need to be evaluated, improving performance.2

2. Focuses Developer Effort: Since the number of
faults that have been found in a file in the past is
a good predictor of the number of faults that will be
found in the file in the future [2], focusing the devel-
oper’s effort on the faulty files and the interesting mu-
tants that are generated from them is likely to be a
good use of the developer’s time.

3. Supports the Use of Technique 2: Since faulty files
by definition are associated with many of the faults
that were found in the program, we hypothesized that
faulty-file mutants would be more likely to survive mu-
tation testing. This means that our reduction method
would eliminate fewer interesting mutants than ran-
dom reduction, supporting the use of Technique 2.

1We use the phrase “evaluate a mutant” to refer to running
the program’s test suite on the mutant version of the pro-
gram to determine if the suite can kill the mutant.
2Note that the reduction is done before the mutants are
evaluated: there would be no performance benefit otherwise.

We explored the validity of the third reason in a pilot
study that we will describe in Section 3. Our results suggest
that our reduction method supports the use of Technique 2
by preferentially choosing mutants that will survive muta-
tion testing. Section 4 describes the full study we plan to
perform to confirm and extend these results. Section 5 in-
dicates our desired feedback and Section 6 concludes the
paper.

2. RELATED WORK
Previous attempts to speed up mutation testing have used

the following four approaches:

1. Weakening the definition of “killing” a mutant [7, 15];

2. Accelerating the testing process by, for instance, eval-
uating mutants in parallel or adding compiler support
for mutation testing, e.g., [5, 11, 13];

3. Computing the mutation testing results incremental-
ly [17]; and

4. Selecting a subset of the mutants to evaluate [3, 9, 10,
14, 16].

Our approach is complementary to the first three. For ex-
ample, a developer could reduce the set of mutants using our
method and then evaluate the remaining mutants in paral-
lel. The fourth approach is the one we use, so we describe
these studies in more detail.

In 1995, Wong and Mathur [14] proposed reducing the
set of mutants by randomly selecting a subset of them to
evaluate. They found that the number of mutants could be
reduced significantly with little impact on the results. Later
work focused on selective mutation, or reducing the number
of mutants by reducing the number of mutation operators
used to generate the mutants. Specifically, in 1996, Offutt
et al. [10] reduced the set of 22 operators used by Mothra,
a mutation tool for Fortran programs, to 5 operators, and
showed that there was little change in the results. In 2001,
Barbosa et al. [3] developed guidelines for the determination
of a sufficient set of mutation operators. In 2008, Namin et
al. [9] used variable reduction to identify 28 key mutation
operators for the C language. Finally, in 2010, Zhang et
al. [16] compared random reduction and selective mutation.
They found that operator-based mutation selection is not
superior to random selection.

2.1 Novelty of the Idea
The single most related paper by the same authors is [8],

which uses mutation testing to explore the relationship be-
tween a test suite’s size, its coverage, and its fault detection
effectiveness. It does not study the practical aspects of mu-
tation testing, including efficiency, at all.

The single most related paper by other researchers is Wong
and Mathur’s work [14], since they also reduce the set of mu-
tants by selecting a subset to evaluate. Unlike them, we do
not select the subset randomly. While random selection is
simple, it is suboptimal for developers using Technique 2.

The other studies we described used operator-based re-
duction. While useful, this technique has limits: modern
mutation tools such as PIT3 use a small number of opera-
tors to begin with (10 in PIT’s case), so it is unlikely that the
operator sets can be reduced much further. Moreover, elim-
inating whole classes of mutants may eliminate the mutants
that would have survived mutation testing.
3http://pitest.org/

http://pitest.org/

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0 2 4 6 8 10 12 14 16 18 20 22

Number of bugs associated with a file

C
o

u
n

t
o

f
fi
le

s

Figure 1: A histogram of the number of bug IDs
associated with Java files from Apache POI. The x

axis gives the number of bug IDs, while the y axis
gives the number of files that are associated with a
specific number of bug IDs.

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●● ●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

● ●

● ●

●

●

●

● ●

●

●

●

●● ●
●●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

● ●

●

●
●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●
●●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●●
●●

●

●

●
● ●

●●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

74%

26%

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Percentage of random mutants surviving

P
e

rc
e

n
ta

g
e

 o
f

fa
u

lt
y
 m

u
ta

n
ts

 s
u

rv
iv

in
g

Suite size ●● ●● ●● ●● ●● ●●3 10 30 100 300 1000

Figure 2: The relationship between the fraction of
randomly selected mutants that survive, pr, and the
fraction of faulty mutants that survive, pf , for 6,000
test suites of various size.

To the best of our knowledge, this study is the first at-
tempt to reduce the number of mutants in a non-random
way without changing the mutation operators, making it a
novel approach to improving the performance of mutation
testing. We summarize the new idea as follows:

Not all mutants are equal. Evaluating only faulty-
file mutants will improve the performance of muta-
tion testing, as random mutant selection does, but
will preserve a greater proportion of interesting mu-
tants.

3. PILOT STUDY
The goal of the pilot study was to determine if the faulty-

file reduction method preferentially selects mutants that will
survive mutation testing.

We began by choosing a subject program: Apache POI4,

4https://poi.apache.org/

Table 1: The percentage of suites that preferentially
choose mutants that would survive (i.e., the percent-
age above the line pf = pr), grouped by suite size.

Size % of Points Above Line

3 76.9
10 68.6
30 60.2
100 59.3
300 79.7
1,000 97.2

All sizes 73.7

an open source API for Microsoft Office documents that
contains approximately 295,000 source lines of Java code.

Using standard techniques [12] we combined information
from POI’s version control repository and its bug tracker
to identify historically faulty files. As Figure 1 shows, the
majority of the Java files in the program (2,131 of 2,691)
are associated with zero or one bug IDs. Six files are asso-
ciated with more than 20 bug IDs; these are not shown in
the figure for space reasons. Two of the six files are part
of the regression test suite, so it is not surprising that they
are associated with a large number of past faults. We ig-
nored these two files, since test files are not mutated, and
considered only the remaining four faulty files.5

Once we had identified the faulty files, we used the mu-
tation tool PIT to perform standard mutation testing on
Apache POI. PIT generated 27,720 mutants for POI; of
these, 776 or 3% were made by mutating one of the four
faulty files that we identified. This verifies that our reduc-
tion technique greatly decreases the number of mutants that
need to be evaluated.

Next, we compared our reduction method to random re-
duction as follows. For s ∈ {3, 10, 30, 100, 300, 1000}, we
made 1,000 test suites of size s by randomly selecting test
methods without replacement from Apache POI’s full suite.
In other words, we created a total of 6,000 random test suites
of varying size. For each suite t, we ran the suite on the set of
faulty-file mutants to determine the percentage of mutants
that survived, pf . Note that we include equivalent mutants
in the set of surviving mutants. We then selected 776 mu-
tants randomly from the 27,720 that PIT generated and ran
t on the random mutants to determine the percentage of
mutants that survived, pr. Figure 2 shows the results. Each
point in the figure represents pf and pr for one test suite. If
our reduction method did not preferentially choose mutants
that would survive, we would expect the points to be equally
distributed above and below the line pf = pr. Instead, we
see that the points tend to lie above this line. Specifically,
4,419 of the 6,000 test suites, or 74%, have pf > pr. This
means that for 74% of the suites, more mutants survive when
we use the faulty-file reduction method than when we use
the random reduction method. We break down this result
by suite size in Table 1. As the table shows, the percentage
of suites above the pf = pr line initially drops as suite size
increases, but rises to 97% for the 1,000 method suites.

5The threshold of 20 bug IDs was set arbitrarily based on
manual inspection of the histogram; we will evaluate alterna-
tive, automated methods of choosing an appropriate thresh-
old in our full study.

https://poi.apache.org/

Finding: our current results suggest that our re-
duction method preferentially chooses mutants that
will survive mutation testing.

4. PLANNED FULL STUDY
Our full study will do the following:

• Confirm the findings of our pilot study by extending
it to more test subjects;

• Confirm the performance improvement by measuring
runtime for both standard and faulty file mutation
testing;

• Explore alternate methods of predicting which mu-
tants will survive, since fault data may not always be
available; and

• Explore other ways of choosing a threshold for faulty
files.

In addition to extending the pilot study, we are inter-
ested in exploring how this reduction method can be used in
higher order mutation testing, where the performance issue
becomes even more pressing.

5. DESIRED FEEDBACK
Though our pilot study found that pf was greater than pr

for 74% of suites, we had hoped for a more substantial dif-
ference, since we can expect approximately 50% of suites to
have pf > pr by chance. We are considering other reduction
methods that may produce a greater difference and welcome
any suggestions regarding alternate reduction strategies. We
also want to explore why the percentage varied with suite
size and invite discussion of this topic.

6. CONCLUSION
Mutation testing can be too slow for practical use. One

way to improve performance is to reduce the number of mu-
tants to be evaluated. We proposed a new non-random
mutant reduction method: evaluating only the faulty-file
mutants, or mutants generated by altering files that are
known to have contained many faults in the past. Our pi-
lot study suggests that this method preferentially chooses
mutants that will survive mutation testing. These mutants
are interesting to developers because they indicate possible
inadequacies in the test suite. The reduction technique also
greatly decreases the amount of time required to evaluate
the mutants, making mutation testing more practical. We
plan to do a full study that confirms and extends these re-
sults.

7. REFERENCES
[1] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.

Namin. Using Mutation Analysis for Assessing and
Comparing Testing Coverage Criteria. Trans. on
Software Engineering, 32(8):608–624, 2006.

[2] E. Arisholm and L. C. Briand. Predicting Fault-Prone
Components in a Java Legacy System. In Proceedings
of the International Symposium on Empirical Software
Engineering, pages 8–17. ACM, 2006.

[3] E. F. Barbosa, J. C. Maldonado, and A. M. R.
Vincenzi. Toward the Determination of Sufficient
Mutant Operators for C. Software Testing,
Verification and Reliability, 11(2):113–136, June 2001.

[4] M. Daran and P. Thévenod-Fosse. Software Error
Analysis: A Real Case Study Involving Real Faults
and Mutations. In Proceedings of the Int. Symp. on
Software Testing and Analysis, pages 158–171, 1996.

[5] R. A. DeMillo, E. W. Krauser, and A. P. Mather.
Compiler-Integrated Program Mutation. In
Proceedings of the International Computer Software
and Applications Conference, pages 351–356, 1991.

[6] N. E. Fenton and N. Ohlsson. Quantitative Analysis of
Faults and Failures in a Complex Software System.
Trans. on Software Engineering, 26(8):797–814, 2000.

[7] W. E. Howden. Weak Mutation Testing and
Completeness of Test Sets. Transactions on Software
Engineering, 8(4):371–379, 1982.

[8] L. Inozemtseva. Predicting Test Suite Effectiveness for
Java Programs. Master’s thesis, University of
Waterloo, 2012.

[9] A. S. Namin, J. H. Andrews, and D. J. Murdoch.
Sufficient Mutation Operators for Measuring Test
Effectiveness. In Proceedings of the Int. Conference on
Software Engineering, pages 351–360, 2008.

[10] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An Experimental Determination of Sufficient
Mutant Operators. Transactions on Software
Engineering and Methodology, 5(2):99–118, 1996.

[11] A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K.
Khambekar. Mutation Testing of Software Using a
MIMD Computer. In Proceedings of the Int. Conf. on
Parallel Processing, pages 257–266, 1992.

[12] J. Śliwerski, T. Zimmermann, and A. Zeller. When Do
Changes Induce Fixes? In ACM SIGSOFT Software
Engineering Notes, pages 1–5. ACM, 2005.

[13] R. H. Untch, A. J. Offutt, and M. J. Harrold.
Mutation Analysis Using Mutant Schemata. In
Proceedings of the International Symposium on
Software Testing and Analysis, pages 139–148, 1993.

[14] W. E. Wong and A. P. Mathur. Reducing the Cost of
Mutation Testing: An Empirical Study. Journal of
Systems and Software, 31(3):185–196, 1995.

[15] M. R. Woodward and K. Halewood. From Weak to
Strong, Dead or Alive? An Analysis of Some Mutation
Testing Issues. In Proc. of the Workshop on Soft.
Testing, Verif. and Analysis, pages 152–158, 1988.

[16] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is
Operator-Based Mutant Selection Superior to Random
Mutant Selection? In Proceedings of the Int. Conf. on
Software Engineering, pages 435–444, 2010.

[17] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid.
Regression Mutation Testing. In Proceedings of the
International Symposium on Software Testing and
Analysis, pages 331–341, 2012.

	1 Introduction
	2 Related Work
	2.1 Novelty of the Idea

	3 Pilot Study
	4 Planned Full Study
	5 Desired Feedback
	6 Conclusion
	7 References

