Informing Eclipse API Production and Consumption

Reid Holmes and Robert J. Walker
Laboratory for Software Modification Research
Department of Computer Science
University of Calgary
Calgary, Alberta, Canada
rtholmes,rwalker@cpsc.ucalgary.ca

ABSTRACT

Application programming interfaces (APIs) inform application de-
velopers as to the functionality provided by a library and how to
interact with it. APIs are a double-edged sword: if they do not per-
mit the needed functionality to be accessed and adapted as needed,
they are obstructing; if they permit all things to all people, they
are complex, leading application developers to have difficulty un-
derstanding how to use them correctly. Thus, the developers of
APIs have a delicate balance to strike between providing config-
urable functionality and simple interfaces. Inevitably, the wrong
balance is sometimes chosen, as the actual usage is different from
the expected usage; APIs need to evolve, or to be re-documented to
account for this disparity. In this paper we propose a simple tech-
nique for quantitatively determining how existing APIs are used,
and demonstrate its application to Eclipse. This technique would
enable application developers to more easily understand how oth-
ers have used the APIs and would allow API developers to more
easily understand how their APIs are being used.

1. INTRODUCTION

Application programming interfaces (APIs) inform application de-
velopers as to the functionality provided by a library/framework
and how to use or extend it [12]. APIs are a double-edged sword:
if they do not permit functionality to be accessed and adapted as
needed, they are obstructing [3]; if they support multiple, tailorable
modes of interaction, it is harder for application developers to un-
derstand how to use them correctly [1, 10]. Thus, API developers
have a delicate balance to strike between providing configurable
functionality and simple interfaces [6]. Inevitably, the wrong bal-
ance is sometimes chosen, as the actual usage is different from the
expected usage; APIs need to evolve or to be re-documented to rec-
tify this disparity [21, 2, 4]. Finding the right balance is difficult for
API producers because they cannot directly see how their APIs are
being used; API consumers can also benefit from seeing how other
developers have used the APIs they are interested in.

Even assuming that one has access to (other) developers’ source
code, the difficulty of these tasks can be compounded by infor-
mation overload: checking each project against each API of inter-

Copyright (©) 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’07 Eclipse Technology Exchange (eTX),

October 21, 2007, Montréal, Canada.

est manually is time-consuming and error-prone. API consumers
would like to know which APIs past developers have found most
useful; API producers would like to know which of their APIs have
been most useful to their clients. For example, a developer creating
an Eclipse plug-in to render a web page might want to know which
types in org.eclipse.swt.browser are most often used by ex-
isting plug-ins. At the same time, the owner of these APIs would
like to know which of their classes and methods are being most
used by their clients. Manually extracting this information from a
corpus of source code is impracticably laborious.

Existing approaches tend to do one of three things: reverse en-
gineer entire frameworks, find frequent patterns, or locate specific
examples. Reverse engineering approaches attempt to infer design-
and/or requirements-level information without reference to actual
usages of APIs (e.g., [16]) or without abstracting away the least im-
portant parts to the developer (e.g., [15]). Frequent pattern mining
has been used to determine common, simple patterns of usage [14,
22] but lacks the ability either to be tailored to the user’s specific
interests (results are pre-computed) or to locate unusual situations.
Example browsing based on lexical searches' can easily be con-
founded by apparent name collisions that are resolvable only when
a programming language’s semantics are considered. Our previous
work [8] considers how task-relevant examples can be found using
a developer’s simple code skeleton; this does not help to answer the
more general question of how others are using an API.

The frequency of API use (“popularity’’) can help API develop-
ers prioritize their bug-fixing efforts by repairing frequently-used
APIs over “less important” APIs. It can also help application de-
velopers to focus their investigative efforts on APIs that more de-
velopers have found useful in the past, rather than wade through
large API descriptions to find what they need.

To determine API popularity, we use static structure as the ba-
sis of our analysis. After extracting the structure from a variety
of projects that utilize the same framework, we construct a repos-
itory that can be queried to determine how these different projects
make use of the APIs provided by the framework. We aggregate
the results of these usages to see how heavily an API is used. API
consumers can use this popularity measure to focus their investiga-
tive efforts when trying to identify the “important” APIs within a
package or project. An API producer can use this information to
see which of their APIs are being most used. Both groups can
also view the specific API usage to either learn how to use the API
(consumer) or see how consumers have been using, or potentially
misusing, the API (producer). A web interface that allows users
to both query and browse the API popularity measures is provided,
enabling users to either make targeted queries or more broadly in-
vestigate modules of interest. Our approach allows the user to spec-

"For example, Krugle.com, Koders.com, or Google Code Search.

ify an API of interest; to generate a bar chart that rank-orders the
types, methods, and/or fields in that API based on their popular-
ity; and to refine this view through compound queries based on a
variety of properties that the user is interested in.

The Eclipse framework is a perfect candidate for this kind of
investigation as it provides a rich set of APIs that can be used for
a variety of tasks. As Eclipse has been widely adopted, it is easy
to find source code that leverages its APIs, including the Eclipse
implementation itself.

This paper outlines our approach and an initial implementation
of the tool. Section 2 outlines a motivational scenario in which our
approach could be applied. Section 3 describes the facts and mea-
sures used in this approach. Section 4 describes four different tasks
for which this approach would be suitable. Section 5 describes
other work similar to this project. Open issues and future work are
discussed in Section 6.

This paper contributes a lightweight approach to informing both
API developers and application developers of how others are using
an APL

2. MOTIVATIONAL SCENARIO

In this section, we provide a motivational scenario from the point
of view of two developers, one an API consumer and the other an
API producer.

The Eclipse plug-in developer (the API consumer) is interested
in adding a control to their plug-in that is capable of displaying web
pages. By looking at the JavaDoc for the Standard Widget Toolkit
(SWT), the API consumer quickly notices the org.eclipse.-
swt .browser package that sounds promising for the desired func-
tionality. As the package contains 7 interfaces and 9 classes with
a total of 100 methods, it is difficult for the developer to decide
how to best spend his time investigating the API. The primary ob-
stacle for the API consumer is abundance of information: between
documentation, newsgroups, and the framework source code itself,
it is difficult for him to prioritize his investigative efforts to avoid
“analysis paralysis”.

Conversely, the owner of the Eclipse org.eclipse.swt.-
browser API would like to know how her API is being used in
production plug-ins. Specifically, she would like to know if some
parts of the API are more used than others, and if some parts are not
used at all. She wants this usage information so she can prioritize
bug fixes that clients would most benefit from. Her only avenue for
getting this kind of information is to check the Eclipse Bugzilla and
newsgroups; if she is really interested, she can also post a message
to the SWT newsgroup and hope for a response. The primary ob-
stacle for the API producer is the lack of information. It is difficult
for her to get a clear indication of how her API is being used as
she simply created the API and shipped it; no formal feedback loop
exists to keep her informed as to how her API is being used in the
wild.

Our approach for generating this information for these develop-
ers is detailed in Section 3. We return to this scenario in Section 4
to see how this information can help in these cases.

3. THE POPCON TOOL

Our approach aims to provide developers with quantitative data
about various APIs’ frequency of use, which we refer to as the
APIs’ popularity. Our conjecture is that APIs that are used more
frequently are relatively more important (from the perspective of
writing code) than those that are used less frequently. Before com-
puting the popularity of an API, its structure must first be extracted
(Section 3.1). The measurement of popularity is described in Sec-

tion 3.2. The developer interacts with the tool by browsing for gen-
eral information or querying for specific information (Section 3.3).
The results of their investigations are presented as a series of charts
(Section 3.4).

3.1 Fact extraction

Structural relationships form the basis of all of the attributes con-
sidered in our computation of API popularity. These structural rela-
tionships are extracted statically from the source code; as such, dy-
namic information is not considered. We consider four primary re-
lationships: inheritance, including class extension and interface im-
plementation; overriding, including implementing a method from
an interface or overriding a method from a superclass; calling from
one method to another method; and referencing fields. During the
static analysis phase we extract these relationships from the source
code along with the identity of each project, its package structure
and the names of all its classes (and their declared methods and
fields). The data model we use is built upon that previously de-
veloped and extensively tested for the Strathcona tool [8]. The
structural data is extracted from source code using an Eclipse AST
Visitor. The Strathcona analyzer has been augmented to include
overrides-relationship information and to keep track of class and
method modifiers (public, private, protected, static, and abstract).

These relationships and project identities comprise the facts that
can be considered in measuring popularity. These facts are stored
in a database to enable them to be queried interactively. As the
database is frequently queried but infrequently changed, it is opti-
mized for read access through the heavy usage of indices. In addi-
tion to the structural facts, each source file is also stored in the file
system so it can be retrieved if required.

3.2 Computing API popularity

We calculate API popularity in a straightforward way. For each
structural element in the system, we count how many times it has
been the target of one of the structural relationships described in
Section 3.1. For each class we count how many times it has been
extended by a subclass; for each interface we count how many
times it has been implemented. For each method we count how
many times it has been called, as well as how many times it has
been overridden by a method in a subclass. For each field we count
how many times it has been referenced.

These popularity values are computed in an online manner;
this permits the user to restrict both which parts of the data set
they are interested in seeing (e.g., the most overridden method
in org.eclipse. jdt.core) and which pieces of data contribute
to the popularity count itself (e.g., ignore any method calls from
internal packages). Online computation of the popularity mea-
sure supports rich querying and browsing of the data (Section 3.3).

The popularity measure for a class or interface enumerates the
number of times it has been extended or implemented. The popu-
larity measure for a field enumerates the number of times that field
has been referenced. A method has two popularity measures: the
number of times it has been called and the number of times it has
been overridden by a subclass. Each relationship that contributed to
a popularity value can be recovered after the fact; this traceability
is important for displaying the results to the user (Section 3.4).

3.3 Querying and browsing

Our prototype tool, called PopCon, supports two main interaction
mechanisms: querying and browsing. These enable developers
to access information about specific APIs in both a top-down and
bottom-up manner [20]. The results are presented in a manner that
enables the developer to methodically traverse from one API ele-

ment to the next; this type of investigation was advocated by Ro-
billard et al. as a strategy shared by effective developers [17].

Developers initiate queries using a search form in which they can
enter the name of the API they are interested in. This mechanism
is useful for developers who know what they are looking for (e.g.,
is ASTVisitor frequently extended). After submitting their query,
PopCon returns a list of potential APIs for the developer to select
from; if there is only one potential match, PopCon jumps directly
to the results page. The results page is described in Section 3.4.

In contrast to querying, the browsing approach is directed at de-
velopers who are approaching the framework with less detailed
knowledge. When browsing, the developer simply starts with the
top-level package results view for the whole framework and drills
into it, through successively more-specific packages, until they are
satisfied.

3.4 Displaying results

Developers interact with PopCon using a web-based interface; this
was chosen to minimize the amount of time required to imple-
ment the proof-of-concept and to maximize the flexibility in mak-
ing changes to the tool while its requirements were in flux. Devel-
opers are also familiar with web interfaces; their usage encourages
lightweight investigation as the developers would not need to install
any new tools.

PopCon displays its results at four different layers of specificity.
The layer that is shown in the results view is tied to the specificity
of the API being considered (e.g., a package, a class, a field or
method, or an example usage). The first layer provides a package-
level overview. This overview can be used for any subset of pack-
ages (e.g., org.eclipse and all sub-packages or the leaf pack-
age org.eclipse.swt.browser). The second layer provides an
overview for any class or interface. In the third layer, the devel-
oper can look at the usage associated with any fact for a method or
field within a class or interface. Finally, the source encoding that
usage can be viewed. Each of these can be navigated using only the
mouse; the developer does not need to know specific entity names
in advance.

For each of the first three layers, the results are displayed using
a series of horizontal bar charts (e.g., see Figure 1). These charts
provide the name of the API and use a bar to represent its popularity
relative to the other APIs on the chart. These graphs provide a
simple, light-weight mechanism by which the developer can glance
at the results page and quickly get a feeling both for the magnitude
and variation of the values they display. By clicking on any of the
bars in the charts the developer can change the level of detail they
are seeing, either broadening their investigation or narrowing it.

4. TASKS

PopCon can be used both by API producers and API consumers.
While both of these groups can use the popularity measure in their
tasks, they use it in different ways. API producers are interested
in their own APIs and how they are being used while consumers
want to discover which APIs perform important functions within
the framework and, in turn, to figure out how to use them. In this
section we describe four tasks for which PopCon can be used to
help the developers described in our motivational scenario (Sec-
tion 2).

4.1 API Producer

API producers have an imperfect view of how their APIs are being
used. They create APIs and release them to their clients; consumers
can provide feedback on the APIs using email, newsgroups, or bug
reports. While these mechanisms are sufficient for reporting prob-

lems with the APIs, they do not provide the API producer with a
clear picture of how their APIs are being used. An absence of bug
reports can mean that an API is not being used, or is being used but
not in the way it was intended, or is being successfully used in the
way it was intended. From the API producer’s point of view, Pop-
Con serves to provide richer feedback from their APIs’ consumers.

4.1.1 How should I prioritize my efforts?

API developers operate in a time-limited environment; there are
always many bugs to fix and not enough time to fix them all. Pop-
Con can help these developers triage their bugs by prioritizing those
that correspond to APIs that are frequently used. Conversely, a de-
veloper may choose not to fix bugs on APIs that are infrequently
used. For example, consider the API producer who owns all the
APIs in the org.eclipse.swt.browser package and who wants
to know their frequency of use. Starting on the package overview
page, the developer queries PopCon using the package name she
is interested in; PopCon computes and returns the package-level
popularity report for that package. One of the returned graphs is
shown in Figure 1; using this, the developer sees that several meth-
ods in the Browser class are called the most often, as expected
since she designed the API this way. As she has some bugs to fix
in Browser, she navigates to its PopCon page; this page provides
complete graphs showing which of its methods have been overrid-
den, which methods have been called, and which fields have been
referenced. Here the developer notices something curious: 8 API
methods are never used by any clients. Six of these handle re-
moving listeners; because of this, she updates their corresponding
addListener documentation to remind developers to de-register
listeners when they are done with them.

Most called methods in org.eclipse.swt.browser (top 10 of 75)

Label Value Go
Browser.setUrl(String) 18 I
Browser<inic-(Composite.inf) 16 I
Browser.addl ocationl istenes ationl istener’ 8 I
Browser.setText(String) 8 I

WebSite. AddRef() 7

WebSite Release() 5 B

WebSite QueryInterface(int.int) 5 | E
Browser.isForwardEnabled() 4 [E=d
Browser.isBackEnabled() 4 [Ed
Browser.addOpenWindowListener(OpenWindowListener) 4 | B

Figure 1: Most called methods in swt .browser

4.1.2 How is my API being used?

In addition to knowing that their API is being used by other devel-
opers, the producer would like to know that it is being used for tasks
that it was intended to support. Furthermore, she would especially
like to know if it was being used in ways she did not anticipate or
did not intend. In these cases, she may wish to update the doc-
umentation to make it clear what the intended use of the API is,
or to create a new API to support developers who were using the
API incorrectly but for a purpose that the framework could support.
The API owner for the Browser class can see how any of its meth-
ods are being used by its clients, by selecting a method from the
Browser PopCon page. PopCon then returns the source code for
that usage for the developer’s perusal.

4.2 API Consumer

API consumers have a broader interest than the API producer did.
They are not experts in the framework as they did not create it
themselves. They also cannot directly manipulate the framework
to do what they want: either the functionality they want to access

is available to them in an API they can use, or they must create
the functionality themselves within their own system. For large
frameworks, such as Eclipse, the scope of the provided API can
be overwhelming (Eclipse Europa consists of 10,000+ public, non-
internal, classes and interfaces and 95,000+ methods).

4.2.1 What APIs should I investigate?

To help API consumers manage the complexity of a large number
of APIs, PopCon can direct them to those APIs that have been rel-
evant to the most other developers; at the broadest level this means
the most popular API in the whole system. From there they can
narrow their view to packages that seem most relevant to their task
(e.g., in our case, the browser package). Looking at the same
initial view of the package that the API producer looked at, the
developer notices that Browser is by far (16 to 1) the most instan-
tiated type in the package (Figure 2). After checking the JavaDoc,
the developer decides to continue investigating the Browser class.
Looking at the overview page in PopCon for Browser, the devel-
oper notices from one of the graphs (the frequency of method calls,
Figure 3) that two methods comprise 71% of the call targets on the
Browser class. This helps them to avoid investigating all 28 pub-
lic API methods and focus just on a select few. Going back to
the browser package overview, the developer also notices from
the most implemented interfaces graph that LocationListener
and ProgressListener are the most implemented interfaces in
the package, occurring far more often than the other 6 Listener
interfaces. In this scenario, PopCon has helped the developer to
discover those types and methods that are most frequently used in
the browser package, helping them to avoid manually investigat-
ing the entire framework.

Most instantiated types from org.eclipse.swt.browser (top 7 of 7)

Label Value %o

Browser <init-(Composite.int 16 I i
WindowEvent.<init>(Widget) 1 W=

ProgressBEvent.<init-(Widget 1 | Ea

LocationEvent.<init-(Widget 1 | Ez

TitleEvent <init-(Widget 1 W=
StamsTextEvent.<inic-(Widget 1 | Ez

WebSite <init=(Composite int String) 1 | Ez

Figure 2: Most instantiated types in swt .browser

Most called methods on org.eclipse swt.Browser (top 20 of 20)

Label Value Yo
Browser.setUrl(String) 18 I
Browser.(Composite, int) 16 I
Browser setText(String) 8 I
Browser.addLocationListene: ationListener’ 8 [EE
Browser.isForwardEnabled() 4 [EEd
Browser.isBackEnabled() 4 .
Browser.addStatusTextl istener(StatusTextlistener) 4 [Eed
Browser.stop() 4 [E&=d
Browser.addProgresslistener(ProgressListener) 4 [Eed
Browser.addOpenWindowListener{OpenWindowListener 4 [E&=d
Browser.addTiteListener(TiteL isiener) 3 . e
Browser.addCloseWindowListener(CloseWindowL istener) 3 . e
Browser.forward() 3 . e
Browser.addVisibilityWindowListener(VisibiliyWindowListener’ 3 . e
Browser.back() 3 [Rt
Browser.getUrl() 3 . e
Browser.execute(String) 2 | Bt
Browser.refresh() 2 [B
Browser.isFocusControl() 1 [L
Browser.removelocationListene: ationListener’ 1 [L3

Figure 3: Most called methods on Browser

4.2.2 How do I use this API?

Once the developer has located an API he is interested in, he can
then view examples of how other developers have employed that
API. As with the API producer, he can view either an abstraction of
the usage (class, method, and field names) as well as the concrete
usage in the source code. By looking at the source he can infer
pre- and post-conditions that other developers have learned about
while using that API, which may not be well documented. On the
PopCon page for the Browser class, the developer can select the
initializer for the class and be given the list of methods that call
that initializer. He can then click on any of the 16 callers to get the
source code showing how that method initialized and configured
the Browser object.

S. RELATED WORK

Several approaches exist as potential alternatives to API popularity.
Reverse engineering derives design-level information and/or re-
quirements from source code (e.g., [15]), sometimes focusing on
visual representations of that information (e.g. [13, 19]). Such ap-
proaches fail to alleviate the issue of information overload that API
consumers must face, and do not support querying by API produc-
ers of existing usages. Reflexion models [16] help with these prob-
lems, but require that the developer provide a high-level model and
a mapping specification from the source to the high-level model;
errors are simple to produce in this activity and difficult to detect.

Other work has focused on how best to inform API consumers
of the design intent of the API producers (e.g. [18]). This infor-
mation sometimes focuses on patterns of intended usage [11, 7]
or constraints on usage [10]. Unfortunately, this places a further
strain on limited development resources, as such information must
be manually constructed and the API producer must pre-conceive
all possible usage scenarios. This helps neither API consumers to
appreciate what is most important in the sea of available informa-
tion, nor API producers to understand how their APIs are actually
being used.

Usage pattern mining has been applied for such understand-
ing purposes. CodeWeb [14] infers association rules (“if ml is
called, m2 also tends to be called”) via frequent pattern mining
and supplies a strictly browse-based interface to locate examples.
MAPO [22] represents source in a highly abstract form before it
also applies frequent pattern mining; as a result, it is able to de-
tect common (simplified) sequences of calls that tend to be made.
Neither approach supports the need for locating unusual usages,
and neither allows its results to be tailored in a query-based mode
(violating the principle that search strategies should not be im-
posed [20]). In future, we intend to investigate a technique that
permits all examples to be hierarchically categorized.

A variety of approaches utilize program databases [5, 13, 9] but
generally seek to support as much as information as possible. In
contrast, our repository contains a smaller amount of information
tailored to the needs of quick searches for examples. This repos-
itory is essentially identical to that we have used in our previous
work [8], where it was used to find context-relevant examples rather
than understanding the usage popularity of APIs.

6. DISCUSSION

Our popularity measure simply enumerates the number of times
any particular API is used in in a specific way. We do not contend
that this is the only way to measure the popularity of an API; for
instance, there may be some way to combine each of the bar charts
to get one unified picture of an API's popularity. While we have
found that this straightforward approach can effectively highlight

important API it can also be obscured by mundane, but frequent
API usage. For a large API, such as Eclipse, API popularity at
the broadest level can be misleading. For instance, the most called
method in all of Eclipse is Control.setLayoutData (Object)
in the SWT package. While this method is useful if a developer
is creating the UI for a plug-in, knowing that it is often used is
not very helpful. However, at a more targeted level, the results
can be meaningful. For instance, for the org.eclipse. jdt.core
package, the most often called methods are IJavaElement .get—
JavaProject () followed by ASTNode.accept (ASTVisitor).
The first provides an often-used accessor while the second points
to two key types in the JDT, ASTNode and ASTVisitor.

Going forward, we are investigating techniques to make Pop-
Con’s presentations more useful. The current measure gives a strict
numerical indication of the number of times a program element is
used. By analyzing the usages themselves, we aim to categorize
the individual results into “buckets”. These buckets would group
common API usages together. For instance, while Control.set—
LayoutData (Object) is called thousands of time in Eclipse, it
may only be used in a handful of different ways (e.g., describing
the Ul in a dialog, a wizard, a form, and a preference page). Devel-
opers could then investigate these buckets, before looking at lists of
results. We will also evaluate our approach with both Eclipse API
producers and API consumers.

7. CONCLUSIONS

In this paper, we have presented PopCon, a prototype tool that can
help API producers understand how their APIs are being used as
well as help API consumers locate important API and get examples
of how it is used in practice. PopCon calculates a popularity mea-
sure for every API in a framework by analyzing its static structure.
‘We have presented four sample tasks describing how this measure
can be used by both API producers and API consumers. This kind
of approach is especially relevant to the Eclipse project as Eclipse
constitutes a broad set of APIs that are actively being maintained
and upgraded, and are being used by development teams around
the world. PopCon can help reduce the effort required of plug-in
developers to discover important API; it can also help Eclipse core
developers better understand how their APIs are being used in pro-
duction environments.

8. ACKNOWLEDGMENTS

This work was supported by a Collaborative Research and Devel-
opment Grant from the Natural Sciences and Engineering Research
Council of Canada and IBM Canada.

9. REFERENCES

[1] J. Bosch, P. Molin, M. Mattsson, and P. Bengtsson.
Object-oriented framework-based software development:
Problems and experiences. ACM Computing Surveys,
32(1es):3, 2000.

[2] D. Brugali, G. Menga, and A. Aarsten. The framework life
span. Communications of the ACM, 40(10):65-68, 1997.

[3] S. Demeyer, T. D. Meijler, O. Nierstrasz, and P. Steyaert.
Design guidelines for “tailorable” frameworks.
Communications of the ACM, 40(10):60-64, 1997.

[4] J. des Rivieres. Evolving Java-based APIs.
http://wiki.eclipse.org/index.php/
Evolving_Java-based_APIs, 14 February 2007.
Revision 1.1.

[5] P. Devanbu, R. Brachman, and P. G. Selfridge. LaSSIE: A
knowledge-based software information system.

[6

—_

[7

—

(8]

[9

—

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

Communications of the ACM, 34(5):34—49, 1991.

M. Fayad and D. C. Schmidt. Object-oriented application
frameworks. Communications of the ACM, 40(10):32-38,
1997.

G. Froehlich, H. J. Hoover, L. Liu, and P. Sorenson. Hooking
into object-oriented application frameworks. In Proceedings
of the International Conference on Software Engineering,
pages 491-501, 1997.

R. Holmes, R. J. Walker, and G. C. Murphy. Approximate
structural context matching: An approach to recommend
relevant examples. IEEE Transactions on Software
Engineering, 32(12):952-970, 2006.

D. Hou and H. J. Hoover. Source-level linkage: Adding
semantic information to C++ factbases. In Proceedings of the
International Conference on Software Maintenance, pages
447458, 2006.

D. Hou and H. J. Hoover. Using SCL to specify and check
design intent in source code. IEEE Transactions on Software
Engineering, 32(6):404-423, 2006.

R. Johnson. Documenting frameworks using patterns. In
Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
63-76, 1992.

R. E. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(5):22-35, 1988.
A. Mendelzon and J. Sametinger. Reverse engineering by
visualizing and querying. Software: Concepts and Tools,
16:170-182, 1995.

A. Michail. CodeWeb: Data mining library reuse patterns. In
Proceedings of the 23rd International Conference on
Software Engineering, pages 827-828, 2001.

H. A. Miiller and K. Klashinsky. Rigi: A system for
programming-in-the-large. In Proceedings of the 10th
International Conference on Software Engineering, pages
80-86, 1988.

G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
reflexion models: Bridging the gap between design and
implementation. /[EEE Transactions on Software
Engineering, 27(4):364-380, 2001.

M. P. Robillard, W. Coelho, and G. C. Murphy. How
effective developers investigate source code: An exploratory
study. IEEE Transactions on Software Engineering,
30(12):889-903, 2004.

C.-H. Shih and B. Anderson. A design/constraint model to
capture design intent. In Proceedings of the 4th ACM
Symposium on Solid Modeling and Applications, pages
255-264, 1997.

M.-A. D. Storey and H. A. Miiller. Manipulating and
documenting software structures using SHriMP views. In
Proceedings of the 11th International Conference on
Software Maintenance, page 275, 1995.

M.-A. D. Storey, K. Wong, and H. A. Miiller. How do
program understanding tools affect how programmers
understand programs? Science of Computer Programming,
36(2-3):183-207, 2000.

K. Wong, S. R. Tilley, H. A. Miiller, and M.-A. D. Storey.
Structural redocumentation: A case study. IEEE Software,
12(1):46-54, 1995.

T. Xie and J. Pei. MAPO: Mining API usages from open
source repositories. In Proc. of the International Workshop
on Mining Software Repositories, pages 54-57, 2006.

