
Empir Software Eng
DOI 10.1007/s10664-015-9366-8

Investigating technical and non-technical factors
influencing modern code review

Olga Baysal · Oleksii Kononenko · Reid Holmes ·
Michael W. Godfrey

© Springer Science+Business Media New York 2015

Abstract When submitting patches for code review, individual developers are primarily
interested in maximizing the chances of their patch being accepted in the least time pos-
sible. In principle, code review is a transparent process in which reviewers aim to assess
the qualities of the patch on its technical merits in a timely manner; however, in practice
the execution of this process can be affected by a variety of factors, some of which are
external to the technical content of the patch itself. In this paper, we describe empirical
studies of the code review processes for large, open source projects such as WebKit and
Google Blink. We first consider factors that have been examined in previous studies —
patch size, priority, and component — and then extend our enquiries to explore the effects of
organization (which company is involved) and developer profile (review load and activity,
patch writer experience) on code review response time and eventual outcome. Our approach
uses a reverse engineered model of the patch submission process, and extracts key infor-
mation from the issue-tracking and code review systems. Our findings suggest that these
non-technical factors can significantly impact code review outcomes.

Keywords Code review · collaboration · technical and non-technical factors · personal
and organizational aspects · WebKit · Blink

Communicated by: Romain Robbes, Massimiliano Di Penta and Rocco Oliveto

O. Baysal (�)
Department of Computer Science and Operations Research,
Université de Montréal, Montréal, QC, Canada
e-mail: olga.baysal@umontreal.ca

O. Kononenko · R. Holmes · M. W. Godfrey
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

O. Kononenko
e-mail: okononen@uwaterloo.ca

R. Holmes
e-mail: rtholmes@uwaterloo.ca

M. W. Godfrey
e-mail: migod@uwaterloo.ca

mailto:olga.baysal@umontreal.ca
mailto:okononen@uwaterloo.ca
mailto:rtholmes@uwaterloo.ca
mailto:migod@uwaterloo.ca


Empir Software Eng

1 Introduction

Many software development projects employ code review as an essential part of their
development process. Code review aims to improve the quality of source code changes
made by developers (as patches) before they are committed to the project’s version con-
trol repository. In principle, code review is a transparent process that aims to evaluate
the quality of patches objectively and in a timely manner; however, in practice the exe-
cution of this process can be affected by many different factors, both technical and
non-technical.

Existing research has found that organizational structure can influence software quality.
Nagappan et al. demonstrated that organizational metrics (number of developers working
on a component, organizational distance between developers, organizational code owner-
ship, etc.) are better predictors of defect-proneness than traditional metrics such as churn,
complexity, coverage, dependencies, and pre-release bug measures (Nagappan et al. 2008).
These findings provide support for Conway’s law (Conway 1968), which states that a
software system’s design will resemble the structure of the organization that develops it.

In this paper, we have performed empirical studies to gain insight into the differ-
ent factors that can influence how long a patch takes to get reviewed and a patch’s
likelihood of being accepted. The factors we analyzed include personal and organiza-
tional relationships, patch size, component, bug priority, reviewer/submitter experience, and
reviewer load. Since software developers are primarily interested in getting their patches
accepted as quickly as possible, we have designed our research questions to align with this
perspective:

RQ1: What factors can influence how long it takes for a patch to be reviewed?
Previous studies have found that smaller patches are more likely to receive faster

responses (Weissgerber et al. 2008; Rigby et al. 2008; Jiang et al. 2013). We replicate
these studies on our data, and extend the analysis to a number of other potential factors.

RQ2: What factors influence the outcome of the review process?
Most studies conclude that small patches are more successful in landing to the project’s

codebase (Weissgerber et al. 2008; Rigby et al. 2008). A recent study showed that devel-
oper experience, patch maturity and prior subsystem churn play a major role in patch
acceptance (Jiang et al. 2013). We further extend these results with additional data that
includes various non-technical factors.

In this work, we study the community contributions and industrial collaboration on
the WebKit and Google Blink open source projects. WebKit is a web browser engine
that powers the Apple’s Safari and iOS browsers, was the basis for Google’s Chrome
and Android browsers, and host of other third-party browsers. WebKit is a particu-
larly interesting project as many of the organizations that collaborate on the project
— including Apple, Google, Samsung, and Blackberry — also have competing busi-
ness interests. In April 2013 — and during the execution of our initial study — Google
announced that they had created and would subsequently maintain their own fork of
WebKit, called Blink. Therefore, when extending our previous work (Baysal et al. 2013),
we have decided to investigate the differences in the velocity of the code reviews
on the patches submitted to the Blink project and compare findings of the two case
studies.



Empir Software Eng

The rest of the paper is organized as follows. We first provide patch lifecycle analysis
by comparing the Mozilla Firefox, WebKit, and Blink lifecycle models (Section 2); this is
followed in Section 3 by a description of the methodology we used in the empirical stud-
ies. Section 4 presents the two case studies: WebKit (Section 4.1) and Blink (Section 4.2).
Section 5 interprets the results and addresses threats to validity, and Section 6 discusses
some related work. Finally, Section 7 summarizes our results and discusses possible future
work.

2 Lifecycle Analysis

WebKit is an HTML layout engine that renders web pages and executes embedded
JavaScript code. The WebKit project was started in 2001 as a fork of the open source
KHTML project. At the time of our study, developers from more than 30 companies
actively contributed to this project; Google and Apple were the two primary contributors,
submitting 50 % and 20 % of patches respectively. Individuals from Adobe, BlackBerry,
Digia, Igalia, Intel, Motorola, Nokia, Samsung, and other companies were also active
contributors.

The WebKit project employs an explicit code review process for evaluating sub-
mitted patches; in particular, a WebKit reviewer must approve a patch before it can
“land” in (i.e., be incorporated into) the project’s version control repository. The set
of official WebKit reviewers is maintained through a system of voting to ensure
that only highly-experienced candidates are eligible to review patches. A reviewer
will either accept a patch by marking it review+ or ask for further revisions from
the patch owner by annotating the patch with review-. The review process for a
particular submission may include multiple iterations between the reviewer and the
patch writer before the patch is ultimately accepted and lands in the version control
repository.

Since WebKit is an industrial project, we were particularly interested to compare its code
review process to that of other open source projects. To do so, we extracted the WebKit’s
patch lifecycle (Fig. 2) and compared it with the previously studied patch lifecycle of
Mozilla Firefox (Baysal et al. 2012) (Figs. 1 and 2).

The patch lifecycle captures the various states patches undergo during the review
process, and characterizes how the patches transition between these states. The patch
lifecycles enable large data sets to be aggregated in a way that is convenient for
analysis. For example, we were surprised to discover that a large proportion of
patches that have been marked as accepted are subsequently resubmitted by authors
for further revision. Also, we can see that rejected patches are usually resubmitted,
which might ease concerns that rejecting a borderline patch could cause it to be
abandoned.

While the set of states in our patch lifecycle models of both WebKit and Firefox are
the same, WebKit has fewer state transitions; this is because the WebKit project does not
employ a ‘super review’ policy (Mozilla ). Also, unlike in Mozilla, there are no self-edges on
the Accepted and Rejected states in WebKit; this is because Mozilla patches are often
reviewed by two people, while WebKit patches receive only individual reviews. Finally, the
WebKit model introduces a new edge between Submitted and Resubmitted; WebKit
developers frequently “obsolete” their own patches and submit updates before they receive
any reviews at all. One reason for this behaviour is that submitted patches can be auto-
matically validated by the external test system; developers can thus submit patches before



Empir Software Eng

Fig. 1 Mozilla Firefox’s patch lifecycle

they are to be reviewed to see if they fail any tests. All together, however, comparing the
two patch lifecycles suggests that the WebKit and Firefox code review processes are fairly
similar in practice.

Blink’s patch lifecycle is depicted in Fig. 3, which shows that 40 % of the submit-
ted patches receive positive reviews and only 0.3 % of the submitted patches are rejected.
Furthermore, a large portion of patches (40.4 %) are resubmitted. This is because Blink
developers often update their patches prior to receiving any reviews; as with WebKit,

Fig. 2 WebKit’s patch lifecycle



Empir Software Eng

Fig. 3 Blink’s patch lifecycle

this enables the patches to be automatically validated. At first glance, outright rejec-
tion does not seem to be part of the Blink code review practice; the Rejected state
seems to under-represent the number of patches that have been actually rejected. In
fact, reviewers often leave comments for patch improvements, before the patch can be
accepted.

The model also illustrates the iterative nature of the patch lifecycle, as patches are fre-
quently Resubmitted. The edge from Submitted to Landed represents patches that
have been merged into Blink’s source code repository, often after one or more rounds of
updates. Developers often fix “nits” (minor changes) after their patch has been approved,
and land the updated version of the patch without receiving additional explicit approval. The
lifecycle also shows that nearly 10 % of patches are being neglected by the reviewers (i.e.,
Timeout transition); Timeout patches in Blink can be considered as “informal” rejects.

Comparing the patch lifecycle models of WebKit and Blink, we noticed that Blink has
fewer state transitions. In particular, the edges from the Accepted and Rejected back
to Submitted are absent in Blink. Since Blink does not provide any indication of the
review request on patches, we had to reverse engineer this information for all patches by
considering the timestamps on each item (patch) in the series. We automated this process
by putting the Submitted label to the patch at the time the patch was filed to the issue
repository.

Blink also accepts a smaller portion of patches (about 40 % of all contributions compared
to the WebKit’s 55 % of submitted patches), yet officially rejects less than 1 %. While
timeouts are more frequent for Blink patches than WebKit ones, timeouts can be viewed as
“unofficial” rejects in the Blink project where disapprovals are uncommon.

Blink appears to exhibit a larger portion of patches being resubmitted (a 10 % increase
compared to the WebKit patches), including resubmissions after patches are successfully
accepted (16.7 %).

Finally, a new edge is introduced between Submitted and Landed, accounting for
those contributions that were committed to the code base without official approval from the



Empir Software Eng

0%

25%

50%

75%

100%

Patches Reviews
Contributions

P
er

ce
nt

ag
e 

of
 c

on
tr

ib
ut

io
ns

org

Apple

BlackBerry

Google

Igalia

Intel

Others

20%

36%

60%

57%

15%

2%

2%

3%

2%

1%

Fig. 4 Overview of the participation of top five organizations in WebKit

reviewers; these cases typically represent patch updates. Both WebKit and Blink developers
frequently “obsolete” their own patches and submit updates before they receive any reviews
at all.

Comparing the two patch lifecycle models suggests that the WebKit and Blink code
review processes are similar in practice; at the same time, it appears that Google’s review
policy may not be as strict as the one employed by Apple on the WebKit project. While no
code can be checked into trunk without having “LGTM” in code review, no formal approval
is required for trivial patch updates.

In this paper, we have considered the top five organizations that contribute patches to
the WebKit repository. Figure 4 provides an overview of the participation of these organi-
zations on the project with respect to the percentage of the total patches they submit and the
percentage of the patches they review. It is clear that two companies play a more active role
than others; Google dominates in terms of patches written (60 % of total project’s patches)
and patches reviewed (performing 57 % of all reviews) while Apple submits 20 % of the
patches and performs 36 % of the reviews.

3 Methodology

To investigate our research questions, we first extracted code review data from the Bugzilla
issue tracking system (for the WebKit project) and the Chromium code review repository
(for the Blink case study); we then pre-processed the data, identified factors that may affect
review delays and outcomes, and performed our analysis. To avoid repetition in explaining
two similar processes, we describe each step of our approach for the first case study only.



Empir Software Eng

For any deviations in the methodology of the Blink project (e.g., description of the extracted
dataset and data filtering), we refer readers to the beginning of the Section 4.2.

3.1 Data Extraction

Every patch contributed to the WebKit project is submitted as an attachment to the project’s
issue repository;1 we extracted this data by “scraping” Bugzilla for all public patches sub-
mitted between April 12, 2011 and December 12, 2012. We use the same time interval value
as in our previous study on Firefox (Baysal et al. 2012) to be able to compare code review
processes of two projects. The data we retrieved consists of 17,459 bugs, 34,749 patches,
763 email addresses, and 58,400 review-related flags. We tracked a variety of information
about issues such as name of the person who reported the issue, the date the issue was sub-
mitted, its priority and severity, as well as a list of patches submitted for the issue. For each
patch, we saved information regarding its owner, submission date, whether a patch is obso-
lete or not, all review-related flags along with the files affected by the patch. For each patch
we also recorded the number of lines added and removed along with the number of chunks
for each changed file. All details were stored in a relational database.

All fields in the database, except those related to affected files, were extracted directly
from the issue tracker. To create the list of affected files, we needed to download and parse
the individual patches. Each patch file contains one or more diff statements representing
changed files. In our analysis we ignored diff statements for binary content, e.g., images,
and focused on textual diffs only. From each statement we extracted the name of changed
file, number of lines marked added and removed, and number of code chunks. Here a code
chunk is a block of code that represents a local modification to a file as it defined by the
diff statement. We recorded total number of lines added and removed per file in total, and
not separately for each code chunk. We did not try to interpret the number of changed lines
from the information about added/removed lines.

Almost every patch in our database affects a file called ChangeLog. Each ChangeLog
file contains description of changes performed by the developer for a patch and is prepared
by the patch submitter. Although patch files contain diff statements for ChangeLog files
and we parsed them, we eliminated this information when we computed the size.

There are three possible flags that can be applied to patches related to code review:
review? for a review request, review+ for a review accept, and review- for a review
reject. For each flag change we also extracted date and time it was made as well as an email
address of the person who added the flag.

As the issue tracker uses email addresses to identify people, our initial data set contained
entries for many individuals without names or affiliations. Luckily, the WebKit team main-
tains a file called contributors.json2 that maps various developer email addresses to
individual people. We parsed this file and updated our data, reducing the number of people
in our database to 747.

We next determined developers’ organizational affiliations. First, we parsed the “WebKit
Team” wiki webpage3 and updated organizational information in our data. We then inferred
missing developers’ affiliations from the domain name of their email addresses, e.g., those
who have an email at “apple.com” were considered individuals affiliated with Apple. In

1https://bugs.WebKit.org/
2http://trac.WebKit.org/browser/trunk/Tools/Scripts/WebKitpy/common/config/contributors.json
3http://trac.WebKit.org/wiki/WebKit%20Team

https://bugs.WebKit.org/
http://trac.WebKit.org/browser/trunk/Tools/Scripts/WebKitpy/common/config/contributors.json
http://trac.WebKit.org/wiki/WebKit%20Team


Empir Software Eng

cases where there was no information about organization available, we performed a manual
search on the web.

For those individuals where we could not determine an affiliated company, we set
company field to “unknown”; this accounted for 18 % of all developers but only 6 % of
patches in our data.

3.2 Data Pre-Processing

In our analysis we wanted to focus as much as possible on the key code review issues within
the WebKit project. To that end we performed three pre-processing steps on the raw data:

1. We focused only on the patches that change files within the WebCore portion of the
version control repository. Since WebKit is cross-platform software, it contains a large
amount of platform-specific source code. The main parts of WebKit that all organi-
zations share are in WebCore; these include features to parse and render HTML and
CSS, manipulate the DOM, and parse JavaScript. While the platform-specific code is
actively developed, it is often developed and reviewed by a single organization (e.g., the
Chromium code is modified only by Google developers while the RIM code is modified
only by the Blackberry developers).

Therefore we looked only at the patches that change non-platform-specific files
within WebCore; this reduced the total number of patches considered from 34,749 to
17,170. We also eliminated those patches that had not been reviewed, i.e., patches that
had only review? flag. This filter further narrowed the input to 11,066 patches.

2. To account for patches that were “forgotten”, we removed slowest 5 % of WebCore
reviews. Some patches in WebCore are clear outliers in terms of review time; for exam-
ple, the slowest review took 333 days whereas the median review was only 76 minutes.
This filter excluded any patch that took more than 120 hours (≈5 days), removing 553
patches. 10,513 patches remained after this filter was applied.

3. To account for inactive reviewers, we removed the least productive reviewers. Some
reviewers performed a small number of reviews of WebCore patches. This might be
because the reviewer focused on reviewing non-WebCore patches or had become a
reviewer quite recently. In ordering the reviewers by the number of reviews they per-
formed, we excluded those developers performed only 5 % of the total reviews. This
resulted in 103 reviewers being excluded; the 51 reviewers that remained each reviewed
31 patches or more. This resulted in an additional 547 patches being removed from the
data.

The final dataset4 consists of 10,012 patches and was obtained by taking the intersection
of the three sets of patches described above.

3.3 Determining Independent Factors

Previous research has suggested a number of factors that can influence review response time
and outcome (Jiang et al. 2013; Rigby et al. 2008; Weissgerber et al. 2008). Table 1 describes
the factors (independent variables) that were considered in our study and tested to see if
they have an impact on the dependent variables such as time and outcome (positivity). We

4Extracted data is stored in a database and made available online: https://cs.uwaterloo.ca/∼obaysal/webkit
data.sqlite

https://cs.uwaterloo.ca/~obaysal/webkit_{d}ata.sqlite
https://cs.uwaterloo.ca/~obaysal/webkit_{d}ata.sqlite


Empir Software Eng

Table 1 Overview of the factors studied

Independent Factor Type Description

Patch Size technical number of LOC added and removed

Component technical top-level module in /WebKit/Source/WebCore/

Priority technical assigned urgency of resolving a bug

Organization non-technical organization submitting or reviewing a patch

Review Queue non-technical number of pending review requests

Reviewer Activity non-technical number of completed reviews

Patch Writer Experience non-technical number of submitted patches

grouped the factors into two categories: technical and non-technical. Our choice of selecting
independent factors is determined by the availability of the data stored in the projects’ issue
tracking systems.

Based on the advice of WebKit developers, we identified the WebKit component
the patch changes by examining the patches directly rather than using the issue tracker
component. This was because the issue tracker was frequently incorrect.

WebKit does not employ a formal patch assignment process; in order to determine
review queues of individual reviewers at any given time, we had to reverse engineer patch
assignment and answer the following questions:

– When did the review process start? We determined the date when a request for a
review was made (i.e., review? flag was added to the patch). This date was referred
as “review start date”. While there might be some delay from this to the time the
reviewer started working on the patch, we have no practical means of tracking when
the developer actually received the request or started to perform the review in earnest.

– Who performed code review of a patch? The reviewer of a patch is defined as the person
who marked the patch with either review+ or review-. Having this, we added the
assignee to each review request.

We computed a reviewer queue by considering the reviews a developer eventually com-
pleted. The review queue is defined as the number of patches that were ‘in flight’ for that
developer at the time a patch was submitted.

3.4 Data Analysis

Our empirical analysis used a statistical approach to evaluate the degree of the impact of the
independent factors on the dependent variables. First, we tested our data for normality by
applying Kolmogorov-Smirnov tests (Massey 1951). For all samples, the p < 0.05, showing
that the data is not normally distributed. We also graphically examined how well our data
fits the normal distribution using Q-Q plots. Since the data is not normally distributed, we
applied non-parametric statistical tests: Kruskal-Wallis analysis of variance (Kruskal and
Wallis 1952) for testing whether the samples come from the same distribution, followed by
a post-hoc non-parametric Mann-Whitney U (MWW) test (Lehmann and D’Abrera 2006)
for conducting pairwise comparisons.

All our reported results including Figures and Tables are statistically significant with the
level of significance defined as p < 0.05.



Empir Software Eng

Table 2 Effect of factors on
response time and positivity: � -
statistically significant; × - not
statistically significant

Factor WebKit Blink

Time Positivity Time Positivity

Patch Size � N/A � N/A

Priority � � N/A N/A

Component � × � ×
Organization � � � ×
Review Queue � � × ×
Reviewer Activity � × � ×
Patch Writer Experience � � � �

4 The Case Studies

Ultimately, we investigated the impact of seven distinct factors on the code review process
both in terms of response time and review outcome or positivity for the WebKit and Blink
projects; this is summarized in Table 2.

4.1 WebKit

To answer our research questions, we performed two empirical studies. We start with
demonstrating the results of our analysis of the WebKit dataset and highlighting its main
findings. The overview of the numerical factors is summarized in Table 3.

4.1.1 Patch Size

The size of the patch under review is perhaps the most natural starting point for any analysis,
as it is intuitive that larger patches would be more difficult to review, and hence require
more time; indeed, previous studies have found that smaller patches are more likely to be
accepted and accepted more quickly (Weissgerber et al. 2008). We examined whether the
same holds for the WebKit patches based on the sum of lines added and removed as a metric
of size taken from the patches.

To determine the relationship between patch size and the review time, we performed a
(non-parametric) Spearman correlation. The results showed that the review time was weakly
correlated to the patch size, r=0.09 for accepted patches and r=0.05 for rejected patches, sug-
gesting that patch size and response time are only weakly related, regardless of the review
outcome.

With a large dataset, outliers have the potential to skew the mean value of the data set;
therefore, we decided to apply two different outlier detection techniques: Pierce’s criterion
and Chauvenet’s criterion. However, we found that removal of the outliers did not improve
the results, and we ultimately rejected their use.

Next we split the patches according to their size into four equal groups: A, B, C, and D
where each group represents a quarter of the population being sampled. Group A refers to
the smallest patches (0–25 %) with the average size of 4 lines, group B denotes small-to-
medium size changes (25–50 %) on average having 17 lines of code, group C consists of the
medium-to-large changes (50–75 %) with the mean of 54 LOC, and group D represents the
largest patches (75–100 %) with the average size of 432 lines. A Kruskal-Wallis test revealed
a significant effect of the patch size group on acceptance time (χ2(3)=55.3, p < 0.01).



Empir Software Eng

Table 3 Overview of the
numerical factors in WebKit Factor Min Median Mean Max

Patch Size 1 31 131.7 25928

Number of Components 0 1 1.691 18

Review Queue 0 0 0.566 11

Reviewer Activity 1 281 401.7 1955

Patch Writer Experience 1 68 113.3 836

Acceptance time for group A (the median time is 39 minutes, the mean is 440 minutes) is
statistically different compared to the time for groups B (with the median of 46 minutes and
the mean of 531 minutes), C (the median of 48 minutes and the mean of 542 minutes) and
D (the median is 64 minutes, the mean time is 545 minutes).

In terms of review outcome, we calculated the positivity values for each
group A–D, where we define positivity as positivity =

∑
review+ /

(
∑
review-+

∑
review+). The median values of positivity for groups A–D are 0.84,

0.82, 0.79, 0.74 respectively. Positivity did decrease between the quartiles, matching the
intuition that reviewers found more faults with larger patches, although this result was not
significant.

However, review time for a single patch is only part of the story; we also wanted to
see whether smaller patches undergo fewer rounds of re-submission. That is, we wanted to
consider how many times a developer had to resubmit their patch for additional review. We
calculated the number of patch revisions for each bug, as well as the size of the largest patch.
Figure 5 illustrates the medians of the patch revisions for each size group, the median of

A B C D

5
10

15
20

25

N
um

be
r 

of
 p

at
ch

 r
ev

is
io

ns

Fig. 5 Number of revisions for each size group



Empir Software Eng

the revisions for group A and B is 1, for group C is 2, and for D is 3. The results show that
patch size has a statistically significant, strong impact on the rounds of revisions. Smaller
patches undergo fewer rounds of revisions, while larger changes have more re-work done
before they successfully land into the project’s version control repository.

4.1.2 Priority

A bug priority is assigned to each issue filed with the WebKit project. This field is created
to help developers define the order in which bugs should be fixed.5 The Webkit project
defines five priority levels, ranging from the most important (P1) to the least important
(P5). We were surprised when we computed the distribution of patches among priority
levels: P1 – 2.5 %, P2 – 96.3 %, P3 – 0.9 %, P4 and P5 – 0.1 % each. Looking at these
numbers one might speculate that the priority field is not used as intended. Previous work
of Herraiz et al. also found that developers use at most three levels of priority and the use
of priority/severity fields is inconsistent (Herraiz et al. 2008). The default value for priority
is P2, which might also explain why the vast majority of patches have this value assigned.
Also, in our discussion with WebKit developers we found that some organizations maintain
internal trackers that link to the main WebKit bug list; while the WebKit version has the
default priority value, the internal tracker maintains the organization’s view on the relative
priority. In our analysis we discarded priorities P4 and P5 because they did not have enough
patches.

A Kruskal-Wallis test demonstrated a significant effect of priority on time (χ2(2)=12.70,
p < 0.01). A post-hoc test using Mann-Whitney tests with Bonferroni correction showed
the significant differences between P1 and P3 with median time being 68 and 226 minutes
respectively, p < 0.05, and between P2 and P3 with median time being 62 and 226 minutes
respectively, p < 0.01. While patches with priority P2 receive faster response that the ones
with P1, the difference is not statistically significant.

To analyze positivity, we considered each review by a developer at a given priority and
computed their acceptance ratio. To reduce noise (e.g., the data from reviewers who only
reviewed one patch at a level and hence had a positivity of 0 or 1), we discarded those
reviewers who reviewed only four or fewer patches for a given priority.

We found a statistically significant correlation between priority levels and positivity
(χ2(2)=10.5, p < 0.01). The difference of the review outcome for patches of P1 (median
value is being 1.0) compared to the ones of P2 (median is 0.83) is statistically significant
(p < 0.01), indicating that patches of higher priority are more likely to land to the project’s
codebase. Although reviewers are more positive for patches of higher priority, we caution
about the interpretation of these results because the vast majority of patches are P2.

4.1.3 Component

WebCore represents the layout, rendering, and DOM library for HTML, CSS, and SVG.
WebCore consists of several primary components (bindings, bridge, css, dom,
editing, html, inspector, page, platform, and rendering).

While it is natural to assume that some components may be more complex than others,
we wanted to find out whether contributions to certain components are more successful
or are reviewed more quickly. To answer this, we selected the components that undergo

5https://bugs.webkit.org/page.cgi?id=fields.html

https://bugs.webkit.org/page.cgi?id=fields.html


Empir Software Eng

0

100

200

300

400

A-A G-A X-A A-G G-G X-G A-X G-X X-X

T
im

e 
(m

in
ut

es
)

0

250

500

750

A-A G-A X-A A-G G-G X-G A-X G-X X-X

T
im

e 
(m

in
ut

es
)

Fig. 6 Acceptance time (left), rejection time (right). Organization: A=Apple, G=Google, X=Rest

the most active development: inspector (1,813 patches), rendering (1,801 patches),
html (1,654 patches), dom (1,401 patches), page (1,356 patches), bindings (1,277
patches), and css (1,088 patches).

The difference in the response time between components was statistically significant
(χ2(6)=29.9, p < 0.01), in particular the rendering component takes longer to review
(the median time is 101 minutes) compared to bindings (72 minutes), inspector (58
minutes), and page (58 minutes). The difference in reviewing time of patches submitted to
the page and dom components was also significant with the medians being 58 minutes vs.
91 minutes respectively.

Although the positivity values vary among components and range between 0.73–0.84, we
found no relation between positivity and the component. From the developer’s perspective,
we can tell that it is more difficult for developers to land a patch to page (the value of
positivity is 0.73), while patches to inspector are more likely to be successful (the value
of positivity is 0.84).

4.1.4 Review Queue Length

Our previous qualitative study of Mozilla’s process management practices found that devel-
opers often try to determine current work loads of reviewers prior to making a decision
as to who would be the best choice to request a review from Baysal and Holmes (2012).
Thus, we investigated the relationship between review queue size and review response time,
expecting to find that reviewers having shorter queues would provide quicker reviews.

We calculated queue sizes for the reviewers at any given time (the process is described
in Section 3.3). The resulting queues ranged from 0 to 11 patches.

Since the average queue was 0.6 patches, we distributed patches into three groups accord-
ing to the queue size: shortest queue length ranging from 0–1 patches (group A), medium
length consisting of 2–3 patches (group B) and longer queues ranging from 4–11 patches
(group C).

We found a significant effect of review queue size on reviewing time (χ2(2)=15.3,
p < 0.01). The medians of queue size for group A, B and C are being 0, 2, and 5 patches
respectively. A post-hoc test showed significant differences between group A and group C
(with median time being 63 and 158 minutes respectively, p < 0.01) and group B and C
(with median time being 90 and 158 minutes respectively, p < 0.05).

Studying the impact of the queue size on the reviewer positivity (with the Kruskal-Wallis
effect being χ2(2)=15.8, p < 0.01), we found a significant difference between A and C



Empir Software Eng

groups (the median positivity being 0.84 and 1 respectively, p < 0.01), as well as B and C
groups (with median positivity being 0.88 and 1.0 respectively, p < 0.05).

Thus, we found that the length of the review queue influences both the delay in complet-
ing the review as well as the eventual outcome: the shorter the queue, the more likely the
reviewer is to do a thorough review and respond quickly; and a longer queue is more likely
to result in a delay, but the patch has a better chance of getting in.

4.1.5 Organization

Many companies that participate in the WebKit development are business competitors. An
interesting question is whether patches are considered on their technical merit alone or if
business interests play any role in the code review process, for instance by postponing the
review of a patch or by rejecting a patch for a presence of minor flaws. While we analyzed
all possible pairs of organizations (36 of them), for the sake of brevity we discuss only
Apple, Google, and “the rest”.

Figure 6 represents review time for each pair of organizations. The first letter in the label
encodes a reviewer’s affiliation, the second encodes submitter’s affiliation; for example,
A-G represents Apple reviewing a Google patch. Analysis of the patches that received a
positive review showed that there is a correlation between review time and the organization
affiliated with the patch writer.

To identify where the correlation exists, we performed a series of pair-wise compar-
isons. We discovered that there is a statistically significant difference between how Apple
approves their own patches (A-A) and how Google approves their own patches (G-G col-
umn). Another statistically significant difference was found between time Apple takes to
accept their own patches and time it takes to accept Google patches (A-G). However, we
found no statistical difference in the opposite direction — between the time for Google to
accept their own patches compared to patches from Apple (G-A).

The correlation between review time and company was also found for patches that
received a negative review. The pair-wise comparison showed almost the same results:
statistical difference between Apple-Apple and Apple-Google, and no statistical differ-
ence between Google-Google and Google-Apple. At the same time the difference between
Apple-Apple and Google-Google is no longer present. Based on these findings, it appears
that Apple treats their own patches differently from external patches, while Google treats
external patches more like their own. Pairs involving “the rest” group exhibited no
statistically significant differences for both review decisions.

Since statistical tests can report only a presence of statistical difference, we also report
the means and medians of review time required for each company pair (Table 4). To ease
comparison of the differences in the response time for organizations, patch reviewers and
writers between the two projects, we placed Tables 4, 5, 6, and 7 on one page (p. 15).
According to the data, Apple is very fast in reviewing its own patches, but is relatively
slow in reviewing Google patches (3–4 times difference in medians, 1.5–2 times difference
in means). At the same time Google exhibits the opposite behaviour, i.e., provides faster
response to the patches from Apple than their own developers. While both means and medi-
ans are almost the same for positive reviews, the median and the mean values of review
time for negative review for Apple patches are 20 and 200 minutes less respectively than for
Google own patches.

To compute the positivity of various organizations, we cleansed the data as we did for the
priority analysis above; we removed any reviewer who had reviewed less than 10 patches
(i.e., removed 5 % of least active reviewers) to avoid an overabundance of positivities of 0 or



Empir Software Eng

Table 4 Response time (in
minutes) for organizations
participating on the WebKit
project

Reviewer → Writer Accepted Rejected

Median Mean Median Mean

Apple → Apple 25 392 60 482

Apple → Google 73 617 283 964

Google → Google 42 484 102 737

Google → Apple 45 483 80 543

1. The box plot with this filter applied is shown in Fig. 7. Statistical tests showed that there is
a correlation between the outcome of the review and patch owner’s affiliation (χ2(2)=10.7,
p < 0.01). From the pair-wise comparison, we found that there is statistically significant
difference between positivity of Apple reviewers towards their own patches (A-A column)
compared to the patches of both Google (A-G column) and “the rest” (A-X column). The
other pair that was statistically different is positivity of Google reviewers between their own
patches (G-G column) and patches from “the rest” (G-X column).

Quantitatively, there are some interesting results. First, the positivity of Apple reviewers
towards their own patches clearly stands out (the median is ≈0.92). Possible explanations
for this include that there is a clear bias among Apple reviewers, or that Apple patches are
of extreme quality, or that Apple applies some form of internal code review process. We
also observed that both Apple and Google are more positive about their own patches than
’foreign’ patches; while this could be a systematic bias, Apple and Google are also the two
most experienced committers to WebKit and this may account for this difference. Finally,
the positivity of Apple reviewers towards Google patches (the median is ≈0.73) is lower
than the positivity of Google reviewers towards Apple patches (the median is ≈0.79).

4.1.6 Reviewer Activity

WebCore has 51 individuals performing code reviews of 95 % of patches. The breakdown
of the reviewers by organization is as follows: 22 reviewers from Apple, 19 reviewers from
Google, 3 reviewers from BlackBerry, Igalia and Intel are being represented by one reviewer
each, and 5 reviewers belong to the group “others”. Comparing reviewing efforts, we noticed
that while Apple is predominant in the number of reviewers, it reviews only 36 % of all
patches; by comparison, Google developers perform 57 % of the total number of reviews.
Since WebKit was originally developed and maintained by Apple, it is perhaps unsurprising
that Apple remains a key gatekeeper of what lands in the source code. However, we can see
that Google has become a more active contributor on the project, yet has not surpassed the
number of Apple reviewers.

Table 5 Response time (in
minutes) for WebKit patch
reviewers and writers

Group Reviewer Writer

Median Mean Median Mean

A 84 621 102 682

B 76 634 76 632

C 46 516 43 491

D 57 496 48 478



Empir Software Eng

Table 6 Response time (in
minutes) for organizations
participating on the Bink project

Reviewer → Writer Accepted Rejected

Median Mean Median Mean

Google → Google 57 385 169 716

Google → Other 95 473 428 737

Other → Other 66 351 n/a n/a

Other → Google 48 399 n/a n/a

To find out whether reviewers have an impact on review delay and outcome, for each
reviewer we calculated the number of previously reviewed patches and then discretized them
according to their reviewing efforts using quartiles. Applying statistical tests, we determined
that the difference for response time for A and B groups of reviewers (i.e., the less active
ones) is statistically significant when compared to C or D groups (i.e., the more active ones).
Since the distribution of delays is very skewed, we report both the median and mean values
for reviewers’ timeliness (see Table 5). The results show that the choice of reviewers plays
an important role on reviewing time. More active reviewers provide faster responses (with
median being 57 minutes and mean being 496 minutes) compared to the individuals who
performed fewer code reviews (the median for time is 84 minutes and 621 minutes for the
mean).

Considering that reviewers’ work loads appear to affect their response rate, WebKit con-
tributors may wish to ask the most active reviewers to assess their patches in order to get a
quick response. With respect to the question whether there are reviewers who are inclined
to be more positive than negative, we found that there is no correlation between the amount
of reviewed patches on the reviewer positivity: 0.83 for group A, 0.84 for group B, 0.75 for
group C, and 0.83 for group D. This suggests that WebKit reviewers stay true and unbiased
in their role of ensuring the quality of code contributions. This observation is important
since reviewers serve as gatekeepers protecting the quality of the project’s code base.

4.1.7 Patch Writer Experience

The contributions to WebCore during the period studied came from 496 individuals among
which 283 developers filing 95 % of patches (submitting 5 patches or more). Considering
our top five organizations, we identified that WebCore patches were submitted by 50 devel-
opers from Apple, 219 individuals from Google, 20 BlackBerry developers, 16 developers
from Intel, 10 from Igalia, and 181 developers come from other organizations.

Table 7 Response time (in
minutes) for Blink patch
reviewers and writers

Group Reviewer Writer

Median Mean Median Mean

A 71 434 106 547

B 71 490 51 384

C 42 338 59 394

D 91 362 56 287



Empir Software Eng

A-A A-G A-X G-G G-A G-X X-X X-A X-G

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Po
si
tiv
ity

Fig. 7 Positivity values by organization: A=Apple, G=Google, X=Rest

Noticing good contributor diversity in the WebCore community, we wondered if patches
from certain developers have a higher chances of being accepted. To assess whether devel-
oper experience influences review timeliness and acceptance, we performed a similar
procedure (as described in Section 4.1.6) of calculating the number of submitted changes
for each developer and then discretizing patch owners according to their contributions.

We achieved similar results in the differences of response time for A and B groups of
submitters (occasional contributors) is statistically significant compared to more experience
developers in C or D groups. From Table 5 we conclude that more experienced patch writers
receive faster responses (with median in group D being 48 minutes and mean being 478
minutes) compared to those who file fewer patches (the median for time in group A is 102
minutes and 682 minutes for the mean).

Investigating the impact of developer experience on positivity of the outcome, we found
correlation between two variables (χ2(3)=17.93, p < 0.01). In particular, statistical differ-
ence was found between group A (least active developers) and groups C and D (more active
developers) with the median positivity values being 1.0, 0.73 and 0.81 respectively, as well
as group B (less active developers) compared to the group D (most active ones) with the
median positivity being 0.63 and 0.81 respectively. These findings suggest that the WebKit
community has a positive incentive for newcomers to contribute to the project as first-patch
writers (i.e., group A with the median number of patches submitted being 1) are likely to
get a positive feedback. For developers of group B (where contributions range between 3–
6 patches) it is more challenging to get their patches in, while contributing to the project
comes with the improved experience of landing patches and as a result with more positive
outcomes.



Empir Software Eng

Our findings show that developer experience plays a major role during code review. This
supports findings from our previous work, where we have seen faster response time for core
developers compared to the casual contributors on the project (Baysal et al. 2012). This
appears to show that active developers are being rewarded with both faster response and
more positive review outcome for their active involvement in the project.

4.2 Blink

Google forked WebKit to create the Blink project in April 2013. Google decided to fork
WebKit because they wanted to make larger-scale changes to WebKit to fit their own needs
that did not align well with the WebKit project itself. Several of the organizations who
contributed to WebKit migrated to Blink after the fork (Protalinski 2013). Our data demon-
strates that the following companies participate on Blink by submitting patches: Samsung,
Opera, Intel, Adobe, Igalia, Yandex, and BlackBerry (this list is ordered by the number of
contributions).

Every Blink patch is submitted to the project’s issue repository.6 We extracted all patches
by scraping the public Blink issue tracking system for the patches submitted between April
03, 2013 and January 07, 2014. The extracted dataset consists of 18,177 bugs, 37,280
patches, 721 emails and 64,610 review flags. We extracted the same information about
issues, patches, and files as we did for the WebKit data (described in Section 3.1).

The reviewers on the Blink project approve patches by annotating it “LGTM” (“Looks
Good To Me”, case-insensitive) on the patch and reject patches by annotating “not LGTM”.
In this work, we consider WebKit’s review+/review- flags and Blink’s “lgtm”/“not
lgtm” annotations as equivalent. Since Blink does not have an explicit review request pro-
cess (e.g., review?), we infer requests by adding a review? flag a patch as soon as it
is submitted to the repository. Since patches are typically committed to the version control
system by an automated process, we define landed patches as those followed by the auto-
mated message from the “commit bot”. The last patch on the issue is likely to be the patch
that eventually lands to the Blink’s source code repository. Committers could optionally
perform a manual merge of the patches to the version control system, although we do not
consider these due to their infrequence.

To determine developer’s organizational affiliations, we first inferred affiliations from
the domain name of their email addresses. Then, we asked a Blink developer to confirm
our guesses. To be consistent with our WebKit dataset, we marked independent developers
contributing to the Blink project as “unknown”.

Data Filtering To clean up our our dataset, we performed pre-processing steps on the
raw data similar to that of the WebKit study:

1. We considered only patches that affect files within Source/core portion (the Blink
team refactored WebCore to this directory) of the source repository reducing the total
number of patches from 37,280 to 23,723.

2. We further eliminated those patches that had not been reviewed, narrowing the input to
9,646 patches.

3. We removed 5 % of slowest patches, eliminating those that took more than 80 hours to
review.

6code.google.com/p/chromium/issues/

code.google.com/p/chromium/issues/


Empir Software Eng

Table 8 Overview of the
numerical factors in Blink Factor Min Median Mean Max

Patch Size 1 31 195.3 61314

Number of Components 0 1 1.871 22

Review Queue 0 0 0.738 19

Reviewer Activity 1 185 416.7 2393

Patch Writer Experience 1 107 175.4 1333

4. We eliminated the least active reviewers: those who performed less than 10 code
reviews; this resulted in retaining a set of 174 reviewers out of the 223 individual
reviewers performing code reviews for Blink.

After applying data filtering, the final Blink dataset consisted of 8,731 patches.7 Table 8
contains the overview of the numerical factors.

4.2.1 Patch Size

To investigate the correlation between patch size and review response time we again split
the patches according to their size into four equal groups (quartiles): A, B, C, and D.
Group A refers to the smallest patches (0–25 %) with the average size of 4 lines, group
B denotes small-to-medium size changes (25–50 %) on average having 18 lines of code,
group C consists of the medium-to-large changes (50–75 %) with the mean of 63 LOC, and
group D represents largest patches (75–100 %) with an average size of 698 lines of code. A
Kruskal-Wallis test revealed a significant effect of the patch size group on acceptance time
(χ2(3)=44.16, p < 0.01). Acceptance time for group A (the median time is 47 minutes,
the mean is 368 minutes) is statistically different compared to the time for group C (with
the median of 76 minutes and the mean of 444 minutes), and D (the median of 69 minutes
and the mean of 388 minutes).

The median positivity values for groups A–D are all 0.99. Reviewers’ positivity remains
quite high and does not appear to be affected by the size of the contributions.

Investigating the relationship between patch size and the number of patch revisions, we
considered all the bug IDs that we have the patches for after applying our data filters. We
calculated the number of patch revisions for each bug, as well as the size of the largest patch.
Our results demonstrate statistically significant, strong impact of patch size on the rounds of
revisions (χ2(3)=1473.7, p < 0.01. The median of the patch revisions for smaller patches
of group A (under 22 LOC) is 1, while the highest number of resubmissions is 7. Group B
(patch size ranges between 22–71 LOC) and group C (with the size between 72–205 LOC)
has the same median value of resubmissions (on average 2 patches per issue), the highest
number of patch revisions is 11 for group B and 23 for group C. The largest patches (on
average of around 1,000 LOC) have more revisions than smaller patches with a median of
3 and a maximum of 30 resubmissions from group D.

4.2.2 Component

Blink’s source code is organized similar to the WebKit’s except that bindings and
bridge have been removed.

7Our Blink dataset is available online:https://cs.uwaterloo.ca/∼obaysal/blink data.sqlite

https://cs.uwaterloo.ca/~obaysal/blink_{d}ata.sqlite


Empir Software Eng

We selected the same number of top actively developed components: dom (5,856
patches), rendering (5,732 patches), page (4,936 patches), html (4,934 patches),
css (4,517 patches), inspector (2,938 patches), loader (2,305 patches). The differ-
ence in the response time between components was statistically significant (χ2(6)=40.75,
p < 0.01); similar to the WebKit study, the rendering component takes longer to review
(the median time is 89 minutes) compared to any other component including inspector
(49 minutes), page (70 minutes), dom and html (58 minutes), and css (63 minutes).

We found no relationship between positivity and the component factor; the average pos-
itivity values for the components are quite high (0.98-0.99), suggesting that patches have
high chance of being landed to these actively developed components.

4.2.3 Review Queue Length

Similar to the WebKit study, we calculated queue sizes for the reviewers at any given time
(the process is described in Section 4.1.4). The resulting queues ranged from 0 to 14 patches
and the average queue was 0.7 patches. Statistical tests showed that there is no signifi-
cant effect of review queue size on neither reviewing time (χ2(14)=21.63, p = 0.086) nor
positivity of the reviewers (χ2(14)=20.20, p = 0.124).

Thus, we found that the length of the review queue affects neither the review response
time nor its outcome.

4.2.4 Organization

While Google developers submit 79.3 % of all patches, other organizations also contribute
to the project including Samsung (8.7 %), Opera (3.8 %), Intel (2.9 %), Adobe (1.9 %)
and Igalia (0.2 %), as well as independent individuals (3.1 %). To assess whether orga-
nization influences review response and outcomes, we grouped non-Google contributions
together and labelled them as “other” and then compared this group against Google-only
contributions.

We discovered that there is a statistically significant relationship between response time
and which organization submits the patch. Regardless of the review outcome, patches from
Google developers receive faster responses than patches coming from other organizations
(57 minutes vs. 95 minutes). Table 6 reports the mean and medians of both accepted and
rejected review times for each group. Google patches are accepted or rejected faster that
patches from others.

In terms of the positivity, we found no difference in review outcomes for Google vs.
“other” patches. This finding is somewhat expected since 98 % of reviews ares done by
Google reviewers who appear to provide mainly positive reviews (see Section 4.2.5).

Comparing review response times, we noticed that the median values of both acceptance
and rejection increase while the mean values decrease for Google reviewers participating
on the Blink project vs. the WebKit project. While we do not have insights on why this
happened, we speculate that Google focuses on rather accepting good contributions (the
positivity values being very high) and providing constructive feedback to patch writers than
just hurling quick negative feedbacks to the developers.

4.2.5 Reviewer Activity

Blink has 174 active reviewers performing code reviews. While the majority of the contribu-
tions to the Blink repository are reviewed by Google (98 %), other organizations perform the



Empir Software Eng

remaining 2 % of code reviews; Intel reviewed 75 patches, Samsung reviewed 41 patches,
Adobe reviewed 13 patches, and independent developers reviewed 29 patches.

To determine whether reviewer activity as a factor has an effect on the response time,
we calculated the number of previously reviewed patches for each reviewer and discretized
reviewers according to their reviewing experience using quartiles (similar to the procedure
we performed for WebKit). Statistical test showed that the difference for response time of
less experienced reviewers (i.e., A and B groups of reviewers with the median response time
of 71 minutes) is statistically significant (χ2(3)=62.14, p < 0.01) compared to more active
ones (group C with median value of the reviewing time being 42 minutes). The difference
in the response time for group C was also statistically significant compared to group D
(median time is 91 minutes). We note that group D consists of one most active reviewer
on the Blink project who reviewed 1,392 patches (15 % of all reviewed patches). Table 7
reports both the median and mean values for reviewers’ timeliness.

Looking at the reviewers’ involvement on the project and whether it affects their pos-
itivity, we found no correlation between reviewers’ positivity and their activity on the
project. Positivity values remain similar for the group A, B, C and D with medians rang-
ing between 0.99–1.0. This shows that reviewers provide positive feedback to almost all
patches they review; it seems that Google reviewers use positive reinforcement when assess-
ing contributions. If a patch is not quite ready to land to the source code, reviewers would
discuss potential flaws and expect the patch to be resubmitted again for further review. Such
behaviour is likely to increase response from developers submitting their patches.

4.2.6 Patch Writer Experience

The contributions to Blink’s core during the studied period came from 394 developers.
While Blink is developed and maintained mainly by Google — they submit 78 % of all
patches — other organizations also contribute patches to the Blink repository, including
Samsung (757 patches), Opera (328 patches), Intel (256 patches), Adobe (170 patches), and
Igalia (21 patches) and other independent developers (274).

To understand whether the experience of a patch writer affects the timeliness and out-
come, we grouped developers according to their contributions (similar to the step described
in Section 4.1.7). We found that the differences of response time for group A of submitters
is statistically significant (χ2(3)=109.04, p < 0.01) when compared to more experienced
developers (B, C and D groups). From the Table 7 we conclude that more experienced patch
writers are more likely to get faster responses (the median for groups B, C, and D being 51,
59 and 56 minutes respectively) than those who have not gained enough experience in fil-
ing project contributions, individuals who submitted fewer than 30 patches (the median for
group A of submitters is 106 minutes).

When investigating the impact of developer experience on the likelihood of patch accep-
tance, we found correlation between two variables (χ2(3)=32.65, p < 0.01). In particular,
a statistical difference was found between group A (least active contributors) and groups C
and D (more active developers), as well as group B compared to the group D (most active
ones). However, the median and mean values for the groups are almost same, 1.0 for the
median and mean values ranges between 0.98-0.99. The statistical difference accounts for
the distribution of the positivity scores within each group, showing that the developers who
are more actively involved on the project almost certainly can expect their patches to be
accepted. On the other hand, the least active developers receive a fair amount of rejections.
This conclusion also supports the overall code review culture that we have seen from the
lifecycle model (shown in Fig. 3) — Google reviewers are inclined to accept patches with



Empir Software Eng

only very small portion (0.3 %) of the submitted patches receiving negative reviews; patches
that need reworking are simply resubmitted again, after reviewers provide their comments
about the potential flaws.

Our findings show that developer experience is a key factor when it comes to review
outcomes and timeliness. Similar to the WebKit study, we see that more active developers
on the Blink project receive faster responses and their patches have high chances of being
approved.

5 Discussion

In this section, we discuss the results from two empirical studies. We start with highlighting
similarities and differences between the WebKit and Blink findings and provide our answers
to the research questions. Further, we offer other interpretations of the results and discuss
threats to validity.

5.1 WebKit and Blink Comparison

When studying each factor individually, we found that almost all of the studied factors have
a statistically significant effect on the review time across both projects: review queue
showed no effect on time for Blink patches, and priority was not studied for Blink
patches because they do not have priority levels.

In terms of review positivity, we detected more differences between two projects.
Only patch writer experience has a statistically significant effect on positivity
in both WebKit and Blink. Another two factors, organization and review queue,
have a statistically significant effect on positivity only in WebKit. The last two factors,
component and reviewer activity, showed no statistically significant effect on
positivity in both projects.

We now present our answers to the research questions stated at the beginning of our work.

RQ1: What factors can influence how long it takes for a patch to be reviewed?

RQ2: What factors influence the outcome of the review process?

5.2 Other Interpretations

Drawing general conclusions from empirical studies in software engineering carries risk:
any software development process depends on a potentially large number of relevant contex-
tual variables, which are often non-obvious to outsiders. While our results show that certain
non-technical factors have a statistically significant effect on the review time and outcome
of patch submissions, understanding and measuring the practical significance of the results



Empir Software Eng

remains challenging. Processes and developer behaviour around their contributions to the
WebKit project depend on the organization, its culture, internal structure, settings, internal
development cycles, time pressures, etc. According to Beller et al. (2014), the type of a
change (maintainability vs. functionality) might also account for the variations in time and
outcome of code review.

Any of these “hidden” factors could potentially influence patch review delays and out-
comes; for example, let us consider time pressures. It is our understanding that Apple prefers
strict deadlines for shipping hardware, and the supporting software needs to match the pro-
jected delivery dates of the new hardware. This results in Apple developers prioritizing
internal development goals over external ones, and thus prioritizing patches that help them
meet their short-term objectives.

Organizational and geographical distribution of the developers may also provide insights
into review delays. We understand that WebKit developers at Apple are co-located within
the same building, which may account for a better visibility of the patches that their
co-workers are working on; conversely, WebKit developers at Google tend to be more
geographically distributed, which may result in a poorer awareness of the work of others.

In summary, understanding the reasons behind observable developer behaviour requires
an understanding of the contexts, processes, and the organizational and individual factors
that can influence code review and its outcome. Thus, while our results may be statistically
valid, care must be taken in interpreting their meaning with respect to actual developer
behaviour and intent. We consider that much work remains to be done in studying how best
to interpret empirical software engineering research within the context of these “hidden”
contextual factors.

5.3 Threats to Validity

Internal validity concerns with the rigour of the study design. In our study, the threats are
related to the data extraction process, the selection of the factors that influence code review,
and the validity of the results. While we have provided details on the data extraction, data fil-
tering, and any heuristics used in the study, we also validated our findings with the WebKit
developers and reviewers. We contacted individuals from Google, Apple, BlackBerry, and
Intel and received insights into their internal processes (as discussed in Section 5.2). To
ensure that we are on the correct track in interpreting the results of our studies, we talked to
the WebKit and Blink developers via email (for Apple, Intel, Google), as well as had face-
to-face meetings with Google and Blackberry developers at the respective local offices in
Waterloo, Ontario (Canada). Face-to-face meetings included a presentation of the main find-
ings followed by the discussion about possible explanations and insights into the “hidden”
factors affecting code review process and practice.

When investigating the relation between patch size and the number of patch revisions, we
assumed that patches are independent; this might have introduced some bias since several
different patches can often be associated with the same bug ID and “mentally” form one
large patch. However, for both studies we considered the size of the largest patch due to the
lack of indication of which patches are actually comprising a larger patch and which patches
are being resubmits.

Unlike Bugzilla’s issue tracking — which is used by both Mozilla and WebKit to carry
out code review tasks — Blink’s code review system does not support history tracking
of patch changes and lacks any explicit review requests. We overcome these limitations
by inferring the review start times of Blink patches by considering the most recent patch
(in terms of time) in a list of the patches followed by a review flag. This heuristic is a



Empir Software Eng

“best effort” approximation; unfortunately, accurate timestamps of the review starting point
cannot be determined by scraping the data from the existing code review system.

Our empirical study is also subject to external validity concerns; we cannot general-
ize our findings to say that both organizational and personal factors affect code review in
all open source projects. While we compared WebKit’s code review process with that of
Mozilla Firefox, and found that its patch lifecycle is similar to open source projects, the fact
that WebKit is being developed by competing organizations makes it an interesting case yet
a rather obvious exception. Hence, more studies on similar projects are needed.

Statistical conclusion validity refers to the ability to make an accurate assessment of
whether independent and dependent variables are related and about the strength of that rela-
tionship. To determine whether relationships between variables are statistically significant,
we performed null hypothesis testing. We also applied appropriate statistical tests (analysis
of variance, post-hoc testing, and Spearman’s correlation).

6 Related Work

Prior work related to this study can be divided into two areas: first, on code review in open
source software development; and second, on the effect of organizational structure on the
effectiveness. We now provide main findings for each area.

Rigby and German (2006) presented a first study that investigated the code review pro-
cesses in open source projects. They compared the code review processes of four open
source projects: GCC, Linux, Mozilla, and Apache. They discovered a number of review
patterns and performed a quantitative analysis of the review process of the Apache project.
Later Rigby et al. (2008) analyzed 2,603 patches of the Apache open source system and
found that small, independent, complete patches are more likely to be accepted. They found
that 44 % of submitted patches got accepted compared to 46 % in our study. In our study,
we differentiate negative and positive reviews and investigate what factors may affect time
to acceptance or rejection.

Weissgerber et al. (2008) performed data mining on email archives of two open source
projects to study patch contributions. They found that the probability of a patch being
accepted is about 40 % and that smaller patches have higher chance of being accepted than
larger ones. They also reported that if patches are accepted, they are normally accepted
quickly (61 % of patches are accepted within three days). Our findings show that 91 % of
WebKit patches are accepted within 24 hours (ignoring slowest 5 % of patches from the
analysis).

Bacchelli and Bird (2013) have studied modern code review by exploring the motiva-
tions, challenges and outcomes of toll-based code review. Their work provides insights
and observations collected by surveying developers and managers across diverse teams of
Microsoft.

We have previously studied the code review process of the Mozilla Firefox project, in par-
ticular the differences in the patch lifecycles and time taken for each transition for pre- and
pos-rapid development models (Baysal et al. 2012). When analysing Firefox patch accep-
tance rate, we did not account for the patch size. In this study we investigated the affect of
various factors and dimensions on the review time and outcome.

Jiang et al. (2013) studied the relation of patch characteristics with the probability of
patch acceptance and the time taken for patches to be integrated into the codebase on the
example of the Linux kernel. They found that patch acceptance is affected by the developer
experience, patch maturity and priori subsystem churn, while reviewing time is impacted by



Empir Software Eng

submission time, the number of affected subsystems, the number of suggested reviewers,
and developer experience. While their patch characteristics do not line up with the factors
we studied, we agreed on the same finding that developer experience correlates with the
review time. We also found that for the WebKit project response time is affected by the
reviewer activity, organization, component, and patch size.

Most of the related studies on code review perform mining on project’s commit history,
and thus are not able to reason about negative feedback and rejection interval. We extracted
information from the WebKit’s issue tracking and code review systems, providing a more
comprehensive view of the code review process.

While we are not aware of a published work on the WebKit case study, Bitergia’s blog
provides a general analysis of the WebKit review process, highlighting trends and sum-
maries of how organizations contribute to the project in terms of both patch submission and
reviewing activity (Bitergia 2013).

7 Conclusion

WebKit is comprised of a complex community to which a variety of organizations con-
tribute; these organizations compete at a business level while collaborating at a technical
level. Ideally, the contributions of these organizations to be treated equally, based on their
technical merits alone. While some influencing factors include the size of the patch itself or
the part of the code base being modified, other non-technical factors have significant impact
on the code review process. Our results provide empirical evidence that organizational and
personal factors influence both review timeliness as well as the likelihood of a patch being
accepted. Additionally, we found significant differences in how long a patch took to be
reviewed based on the organizations that wrote and reviewed a given patch along with the
final outcome of the review.

Ultimately, the most influential factors of the code review process on both review time
and patch acceptance are the organization a patch writer is affiliated with and their level of
participation within the project. The more active role a developer decides to play, the faster
and more likely their contributions will make it to the code base.

Acknowledgments We thank the WebKit and Blink developers we talked to for their insights into the
source code hierarchy and the review process.

References

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 2013 international conference on software engineering, pp 712–721

Baysal O, Holmes R (2012) A qualitative study of mozilla’s process management practices. Tech. Rep. CS-
2012-10, David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada.
http://www.cs.uwaterloo.ca/research/tr/2012/CS-2012-10.pdf

Baysal O, Kononenko O, Holmes R, Godfrey M (2012) The secret life of patches: a firefox case study. In:
Procedings of the 19th working conference on reverse engineering, pp 447–455

Baysal O, Kononenko O, Holmes R, Godfrey MW (2013) The Influence of Non-technical Factors on Code
Review. In: Proceedings of the Working Conference on Reverse Engineering, pp 122–131

Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews in open-source projects: Which
problems do they fix? In: Proceedings of the 11th working conference on mining software repositories,
pp 202–211

http://www.cs.uwaterloo.ca/research/tr/2012/CS-2012-10.pdf


Empir Software Eng

Bitergia (2013) Reviewers and companies in the webkit project. http://blog.bitergia.com/2013/03/01/
reviewers-and-companies-in-webkit-project/

Conway M (1968) How do committees invent? Datamation 14(4):28–31
Herraiz I, German DM, Gonzalez-Barahona JM, Robles G (2008) Towards a simplification of the bug

report form in eclipse. In: Proceedings of the 2008 international working conference on mining software
repositories, pp 145–148

Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast? – case study on the linux kernel.
In: Proceedings of the 10th IEEE working conference on mining software repositories. San Francisco,
CA, US

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc
47(260):583–621

Lehmann E, D’Abrera H (2006) Nonparametrics: statistical methods based on ranks. Springer
Massey FJ (1951) The kolmogorov-smirnov test for goodness of fit. J Am Stat Assoc 46(253):8–78
Mozilla Super-review policy. https://www.mozilla.org/hacking/reviewers.html
Nagappan N, Murphy B, Basili V (2008) The influence of organizational structure on software quality: an

empirical case study. In: Proceedings of the 30th International Conference on Software Engeneering, pp
521–530

Protalinski E (2013) Opera confirms it will follow google and ditch webkit for blink, as part of its com-
mitment to chromium. http://thenextweb.com/insider/2013/04/04/opera-confirms-it-will-follow-google-
and-ditch-webkit-for-blink-as-part-of-its-commitment-to-chromium/

Rigby P, German D (2006) A preliminary examination of code review processes in open source projects.
Tech. Rep. DCS-305-IR, University of Victoria, Canada

Rigby PC, German DM, Storey MA (2008) Open source software peer review practices: a case study of the
apache server. In: Proceedings of the 30th international conference on software engineering, pp 541–550

Weissgerber P, Neu D, Diehl S (2008) Small patches get in! In: Proceedings of the 2008 international working
conference on mining software repositories, pp 67–76

Olga Baysal is an Assistant Professor at the Department of Computer Science and Operations Research
(DIRO), Université de Montréal, Canada. Prior to joining DIRO, she completed a short Natural Sciences
and Engineering Research Council of Canada postdoctoral fellowship at the University of Toronto. Olga
received her MMath and PhD in Computer Science from the University of Waterloo, Canada. Her research
interests span a wide range of software engineering areas, including empirical software engineering, mining
software repositories, software analytics, software maintenance and evolution, and human aspects of software
engineering.

http://blog.bitergia.com/2013/03/01/reviewers-and-companies-in-webkit-p roject/
http://blog.bitergia.com/2013/03/01/reviewers-and-companies-in-webkit-p roject/
https://www.mozilla.org/hacking/reviewers.html
http://thenextweb.com/insider/2013/04/04/opera-confirms-it-will-follow-google-and-ditch-webkit-for-blink-as-part-of-its-commitment-to-chromium/
http://thenextweb.com/insider/2013/04/04/opera-confirms-it-will-follow-google-and-ditch-webkit-for-blink-as-part-of-its-commitment-to-chromium/


Empir Software Eng

Oleksii Kononenko is a PhD student in the David R. Cheriton School of Computer Science at the University
of Waterloo, Canada. His research interests lie in the areas of software engineering such as mining software
repositories, software quality, and software clone detection.

Reid Holmes is an Assistant Professor at the University of Waterloo, Canada. He spent his postdoc at the
University of Washington and completed his PhD at the University of Calgary. His research interests include
understanding how software engineers build, validate, and maintain complex software systems. His prior
research focused on testing, static analyses, and source code recommendation systems. More information is
available on his homepage: https://cs.uwaterloo.ca/rtholmes/.

https://cs.uwaterloo.ca/rtholmes/


Empir Software Eng

Michael W. Godfrey is an associate professor in the David R. Cheriton School of Computer Science at the
University of Waterloo, Canada. His research interests span many areas of empirical software engineering
including software evolution, mining software repositories, reverse engineering, program comprehension,
and software clone detection and analysis.


	Investigating technical and non-technical factors influencing modern code review
	Abstract
	Introduction
	Lifecycle Analysis
	Methodology
	Data Extraction
	Data Pre-Processing
	Determining Independent Factors
	Data Analysis

	The Case Studies
	WebKit
	Patch Size
	Priority
	Component
	Review Queue Length
	Organization
	Reviewer Activity
	Patch Writer Experience

	Blink
	Patch Size
	Component
	Review Queue Length
	Organization
	Reviewer Activity
	Patch Writer Experience


	Discussion
	WebKit and Blink Comparison
	Other Interpretations
	Threats to Validity

	Related Work
	Conclusion
	Acknowledgments
	References


