
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Sources of Software Development Task Friction

Nick C. Bradley1 · Thomas Fritz2 ·
Reid Holmes1

Received: date / Accepted: date

Abstract Given a task description, a developer’s job is to alter the software
system in a way that accomplishes the task, usually by fixing a bug or adding a
new feature. Completing these tasks typically requires developers to use mul-
tiple tools, spanning multiple applications, within their environment. In this
paper, we investigate how existing desktop environments align with and facil-
itate developers’ needs as they tackle their tasks. We examine how developers
use their tools to perform their tasks and the ways in which these tools in-
hibit development velocity. Through a controlled user study with 17 subjects
and a field study with 10 industrial engineers, we found that developers fre-
quently formulate specific objectives, or goals, on-demand as they encounter
new information when progressing through their tasks. These goals are of-
ten not achievable directly in the environment, forcing developers to translate
their task into goals and their goals into the low-level actions provided by the
environment. When carrying out these low-level actions, developers routinely
perform extra work such as locating and integrating resources and adapting
their needs to align with the capabilities of the environment. This extra work
acts as a form of friction, limiting how quickly and directly developers can
complete their tasks. Much of this extra work exists due to mismatches be-
tween current tools and environments and how developers actually work in
practice. This work identifies seven types of development friction and provides
design recommendations that future tools and environments could use to more
effectively help developers complete their tasks.

Keywords Developer tasks · Developer goals · Developer tools · Development
friction · Integrated Development Environments · Human aspects of SE

Nick C. Bradley (ncbrad@cs.ubc.ca)
Thomas Fritz (fritz@ifi.uzh.ch)
Reid Holmes (rtholmes@cs.ubc.ca)

1 The University of British Columbia, Vancouver, Canada
2 Department of Informatics, University of Zurich, Zurich, Switzerland

2 Nick C. Bradley et al.

1 Introduction

Developers add value to their systems by making changes that fix defects or
add new features requested in their tasks. However, developers must first break
down the task description into concrete objectives, or goals, which they com-
plete by performing actions across different applications in the environment.
These goals motivate developers’ actions and represent their intentions as they
seek out and respond to feedback from their tools and combine it with their
experience and observations. Unfortunately, actions are often spread across
multiple applications making it difficult for developers to obtain, integrate,
and use their feedback (Maalej, 2009; Ko et al, 2006; Sillito et al, 2008). While
prior work has looked at developers’ information needs across tasks (Ko et al,
2006; Sillito et al, 2008), at specific activities such as code comprehension (Ro-
billard et al, 2004), debugging (Lawrance et al, 2013), and testing (Beller et al,
2015) and at specific tools, especially the IDE (Minelli et al, 2015a; Amann
et al, 2016), little is known about the overall process of developers breaking
down their tasks into goals and actions and, in particular, the challenges they
face in doing so.

To identify these challenges, we first need to understand what developers
are trying to accomplish—their goals. Developers formulate their goals based
on the description of the bug, maintenance, or feature task they are assigned.
They operationalize their goals by performing the low-level actions provided
across the applications in their environment (Wang and Chiew, 2010; Chat-
topadhyay et al, 2019). In the context of coding, Soloway (1986) describes this
process as stepwise refinement where developers decompose their tasks into
sterotypical solutions (goals) consisting of fixed sequences of actions. For ex-
ample, a developer working on a bug fixing task may have the goal of testing
their changes. To operationalize this goal, they may have to switch to their
shell application and run commands to build and start their program, and
then switch to the running program and observe changes in behaviour.

This indirect translation from task descriptions-to-goals and goals-to-actions
can be mentally demanding as developers need to ascertain goals and ideate
how they can complete those goals with the available tool actions. However,
these actions often require developers to locate, integrate, and use specific
information across applications. This separation between information and ac-
tions requires developers to remember information as they switch between
applications and keep track of the windows and resources containing relevant
information. As developers complete goals, they must also organize or close re-
sources that are no longer needed to maintain a usable environment. According
to Green’s Cognitive Dimensions (1989), such a system is considered viscous
as it requires developers to perform extra actions across multiple resources.
We refer to these extra actions as friction because they reduce the velocity
at which developers can accomplish their goals. In this paper, we investigate
friction through the following research questions.

Sources of Software Development Task Friction 3

RQ1 How do developers operationalize goals into low-level actions provided by
the environment?

RQ2 What kinds of friction do developers encounter when performing their
tasks?

To answer these questions, we conducted two studies in which we collected
the screen recordings of 27 developers as they used cross-application work-
flows to complete their tasks. We observed 17 developers in controlled settings
address a real issue on a medium size open-source project and 10 developers
in naturalistic settings working on their own tasks. Taking inspiration from
the Cognitive Walkthrough method (Lewis and Wharton, 1997), we examined
participants’ workflows through a goal-centric lens to identify discrepancies
between the goals they wanted to accomplish and how they were able to op-
erationalize them as sequences of tool actions. Together, these two studies
allowed us to investigate how developers decompose a diverse set of tasks into
goals and the frictions they experience operationalizing these goals across ap-
plications.

We found that developers often derive similar sequences of goals when
decomposing the same task and frequently formulate goals on-demand when
they encountered obstacles. Operationalizing these goals to actions is an indi-
rect process that requires developers to perform actions and move information
across multiple applications and resources. While operationalizing their goals,
developers often encounter friction getting to their resources, integrating in-
formation between windows and resources, and adapting the environment to
support the completion of their goals.

This paper provides insight into how developers decompose their tasks into
goals and how they complete those goals in their environment. We identify
three design aspects of the environment which cause developers to experi-
ence seven types of friction in their cross-application workflows. Finally, we
contribute three design recommendations which seek to mitigate friction at
a more fundamental level by better aligning environments with the ways de-
velopers want to accomplish their tasks. This work motivates further research
into addressing the frictions imposed on developers by environments to enable
them to more effectively accomplish their tasks.

2 Definitions

A list of terms frequently used throughout this work are included here to clarify
their meanings; these are based in-part on the task framework developed by
Byström and Hansen (2005), a summary of which we reproduce here:

4 Nick C. Bradley et al.

°
We recognize that there are more or less specific task descriptions,
sometimes in objective terms, but always in subjective terms (that
is, as perceived by a task performer), that direct the task processes.
Additionally, work tasks often consist of subtasks and may them-
selves be considered as subtasks to larger projects. A work task may
be divided into subtasks that must be accomplished and connected
in order to reach a meaningful result that is related to the task per-
former’s duties.

We use this framework to disambiguate the various uses of task (e.g., Dragunov
et al (2005); Oliver et al (2006); Rattenbury and Canny (2007)) and activity
(e.g., Bannon et al (1983); Jeuris et al (2014); Bardram et al (2019)) found in
the literature.

Task. In this paper, task refers to both the task description, provided either
orally or as issues and todo items, and the task process, the actions developers
perform to reach their goal of a “meaningful result.” We alternately refer to
task processes as goal operationalizations or workflows.

Activity. A descriptive high-level label summarizing observed task processes
using one of several researcher-defined categories. Activities simply aggregate
developer actions and do not depend on the developer’s current context or
goal. For example, the action of setting a breakpoint could be described as a
debugging activity without considering the developer’s overall task.

Goal. The ends towards which a developer’s effort is directed (Chattopadhyay
et al, 2019). When trying to understand a developer’s work, goals provide the
why while task descriptions provide the what and task processes provide the
how. Just as tasks can be divided in subtasks, so too can goals be divided
into more specific subgoals. For example, given a task description, a developer
needs to think about the steps they will take to complete it. This could start
with questions: is the task well-specified? what aspects of the system does it
affect? what changes would need to be made? The developer chooses one of the
questions as their current goal and then considers the actions they could take
to answer the question. As they perform the necessary actions, new questions
may arise which then become subgoals they must satisfy with another set
of actions. These actions cause changes to the resources in the environment
which culminate in the completion of the task and constitute the task process
or workflow.

Resource. Any object represented in the environment that enables developers
to record and communicate information to themselves and other developers.
Common resources include files, documentation, and issues. We also consider
shell commands and tool panes within applications to be resources as they
communicate information to developers. For example, the file and search panes
in IDEs provide information about the structure and content of projects while
shell commands like git status provide information about changes to the
project.

Sources of Software Development Task Friction 5

Action. Any operation a developer can perform on a resource. Actions can
be common across tools (e.g., opening a file) but may also be specific to a tool
or resource (e.g., committing files with git).

Friction. Extraneous actions and mental effort that arise when developers’
goals cut across applications and resources in the environment.

3 Related Work

Prior work has investigated developers’ tasks from different perspectives in-
cluding low-level tool interactions, higher level development activities, and
the way developers structure their goals. Additional studies have examined
the challenges developers face during their tasks and have created approaches
to address some of these challenges.

3.1 Tracking IDE Interactions

IDEs bring together many of the different tools and resources developers re-
quire and have been extensively studied. For example, Murphy et al. instru-
mented the Eclipse IDE to capture low-level interaction data to understand
which IDE features developers use (Murphy et al, 2006). Similarly, Minelli
et al (2015a) and Amann et al (2016) instrumented the Pharo and Visual
Studio IDEs, respectively, to understand how developers spend their time,
finding that as much as 40% is spent outside the IDE. It is thus important
to investigate what developers are doing both within the IDE and externally
to it to gain a complete understanding of how developers satisfy their goals.
Even within the IDE, developers experience challenges and can become dis-
oriented due to its bento box design where each file and tool is displayed in
discrete and separate rectangular areas (DeLine and Rowan, 2010). This de-
sign leads to the window plague where many open tool and code windows make
it difficult for developers to maintain an overview of their work and to locate
and synthesize goal-relevant code and information (Roethlisberger et al, 2009;
Minelli et al, 2015b). For example, Minelli et al (2015a) found that developers
spent 14% of their time “fiddling with the UI” to organize windows within
their IDEs. With the addition of eye tracking, Pilzer et al (2020) found that
developers switched between windows every 16 seconds. Developers need to
open and switch between numerous windows because a single code feature or
concern is often spread across multiple artifacts each requiring its own dedi-
cated window (Robillard and Murphy, 2007). This is also true of developers’
goals, where information and actions are often spread across different tools
and applications including the IDE, web browsers, and shells. Following prior
observations that concerns cross-cut code resources, we investigate how goals
cross-cut tools and the friction it creates.

6 Nick C. Bradley et al.

3.2 Development Activities

Several previous studies have examined how developers interact with their
tools to identify and understand higher-level development activities without
having to consider their current context or goal. Researchers have devised
many different sets of activities aligned to their data and research questions.
For example, within the IDE, Minelli et al (2015a) categorized developer ac-
tions into four activities including navigation, understanding, UI interaction,
and editing, while Amann et al (2016) also considered project management
and building. Bao et al (2018) created a tracking system to capture the ac-
tions developers perform both in the IDE and across their other applications
and trained a classifier to automatically segment low-level activity data into
six higher-level development activities including coding, debugging, and navi-
gating. Singer et al (1997) instead identified fourteen activities by shadowing
a developer over several months. They found that certain activities were not
well supported by existing tools by examining company-wide tool usage logs.
LaToza et al (2006) surveyed and interviewed developers at Microsoft to un-
derstand the relationships between nine predefined development activities, the
tools developers use to complete these activities, and the mental models de-
velopers maintain as they switch between these activities. In contrast to these
prior studies which aggregate developer actions into activity categories to re-
port what developers do, we directly observe sequences of individual actions
to understand developers’ actual development goals and to identify challenges
they experience while trying to accomplish these goals.

3.3 Developer Goal Structure

While examining the activities developers undertake is useful for categorizing
how developers spend their time, they provide little insight into how developers
structure their work goals; specifically, why developers perform their activities
and how they fit into their work. Early on, Bannon et al (1983) examined
the structure of users’ shell actions and observed that users have clear, but
interleaved, goals and that environments do not provide support to effectively
manage the corresponding interleaved commands. González et al (2004) iden-
tified similar behaviour after observing developers and other knowledge work-
ers organizing their physical and digital items and communications around
their goals. Chattopadhyay et al (2019) identified six patterns developers use
to coordinate their goals based on observations of ten developers working on
self-selected implementation, refactoring, and debugging tasks. However, these
prior efforts do not investigate the low-level actions developers undertake to
complete their goals nor the challenges they encounter in doing so. Our work
addresses this gap by investigating how developers’ decomposition of their
tasks into goals is affected by their choice of tool actions.

Sources of Software Development Task Friction 7

3.4 Information in the Development Environment

Information foraging theory (IFT) is a theory that seeks to explain how people
seek information (Pirolli and Card, 1995). In IFT, developers forage for infor-
mation in patches which, in this study, correspond to the resources displayed
in application windows. Developers can either locate their information within
a window, move between windows, or enrich the information shown within a
window by performing actions. For example, a developer wishing to reproduce
a bug would first read the bug report (within-patch) and then switch to the
shell (between-patch) to build and run the program (enrichment). If the pro-
gram is a web application, the URL, shown in the run output, acts as a cue
which prompts the developer to follow the link to the running application. The
developer would then switch between the bug report and the application to
follow the steps-to-reproduce (enrichment) until they observe the bug in the
window (within-patch).

Prior work examining IFT, have limited the patches to individual applica-
tions (e.g., the IDE; Piorkowski et al (2013, 2015)) or specific types of resources
including source code files (Lawrance et al, 2007; Piorkowski et al, 2016) and
version control logs (Ragavan et al, 2021). Lawrance et al (2007) found that
the words used in bug reports can be used to predict which classes develop-
ers are likely to visit. Within the IDE, Piorkowski et al (2016) found that
misleading cues, information being scattered among patches, and the disjoint
topologies used by different patches caused high navigation costs. We extend
this work by investing how these challenges manifest and impact developers
in the novel context of their cross-application environments. We discuss our
findings in relation to these prior findings in Section 8.

3.5 Tool Challenges

Prior research has also noted difficulties developers experience translating and
completing their goals using their tools. Maalej (2009) identified eight inte-
gration problems developers encounter when employing the average four to
five heterogeneous tools needed to link information between their resources.
Sillito et al (2008) noted that developers often have to break down their ques-
tions about program structure into tool-oriented questions and then attempt
to reintegrate the individual, potentially incompatible, answers. Similarly, Ko
et al (2007) identified the information developers need to avoid being blocked
on their programming tasks and noted that, to access this information, de-
velopers have to “translate their questions into an awkward series of actions”
across multiple resources.

For these scenarios, researchers have developed specialized tools and shown
that they allow developers to complete their goals easier; for example, by al-
lowing developers to locate information across siloed resources (e.g., Čubranić
and Murphy (2003); Venolia (2005); Begel et al (2010)), organize and integrate
resource fragments (e.g., DeLine and Rowan (2010); Bragdon et al (2010);
Henley and Fleming (2014); Adeli et al (2020); Fritz and Murphy (2010)), and

8 Nick C. Bradley et al.

transfer content between resources (e.g., Chapuis and Roussel (2007); Zhao
et al (2012)). Other researchers have created approaches to allow develop-
ers to associate their resources with specific tasks to facilitate task switching
and organization (e.g., Kaptelinin (2003); Kersten and Murphy (2005); Dra-
gunov et al (2005); Smith et al (2003); Jeuris et al (2014); Robertson et al
(2004); Tashman (2006); Rattenbury and Canny (2007); Bernstein et al (2008);
Oliver et al (2006, 2008)) based on the concept of activity-centric computing
(Bardram et al, 2019).

However, these studies focus on the information developers need and do
not directly investigate the mechanics of how developers obtain the required
information from their tools. We look specifically at these cross-application
and cross-tool challenges, systematically identifying seven tool-centric frictions
which add complexity to developers’ workflows and reduce the speed at which
they can complete their goals. These observations inform three design recom-
mendations meant to specifically address frictions arising when developers use
multiple applications for their goals as we describe in Section 7.

4 Methodology

To learn how developers decompose and operationalize their tasks into goals
and actions, we adopted a mixed-methods approach using data collected from
both fixed and user-selected tasks. Our approach was inspired by the Cogni-
tive Walkthrough method where an analyst selects a specific task, determines
an ideal sequence of actions, and identifies and reasons about trouble spots
by tracing the mental process of a user (Lewis and Wharton, 1997). How-
ever, we apply these steps to actual users rather than working through the
tasks ourselves. Specifically, we conducted a controlled user study to gain an
understanding of how developers approached a fixed task and the challenges
they encountered in doing so. To account for the effects of the controlled task
and environment on developers’ behaviour, we also collected and examined
live-streamed recordings of real developers working on their own tasks in their
own environments. A high-level overview of our mixed-methods approach is
captured in Figure 1.

4.1 Controlled User Study

Our first study sought to gain insight into how developers decompose and
operationalize a known fixed task (Figure 1, Step 1). We used a fixed task
for all participants to remove task-induced confounds so we could confidently
infer the goals and challenges of participants while allowing us to compare
tool usage strategies between participants. Controlling the development task
also allowed us to create a baseline workflow against which we could compare
participants’ approaches to convey a sense of the different ways developers
breakdown their tasks and the work involved in completing them.

Sources of Software Development Task Friction 9

4.1.1 Participants

We recruited a total of 17 software developers (3 female, 14 male) through per-
sonal contacts and recruiting emails. Ten of our participants were professional
software developers while the remaining seven were computer science students
(one undergraduate, six graduate) experienced in software development. On
average, participants had 15.1 ± 10.0 years of programming experience and
8.2 ± 7.3 years of professional experience. We compensated each participant
with a $20 Amazon gift card for their time.

4.1.2 Project and Task

To gain insight into how developers work, we selected a bug fixing task from a
real software system that we believed participants would be able to fix within
30 minutes. The bug1 was reported on Kanboard, a medium-sized (230 KLOC)
PHP project, which we identified by manually inspecting the recently opened
issues of GitHub repositories labeled with the beginner topic. We selected this
bug because the author included a suggested fix that was simple to understand
and test while still complex enough that participants had to use their tools to
complete it.

1 https://github.com/kanboard/kanboard/issues/4213

���VFUHHQ
UHFRUGLQJV

$QQRWDWHG�HYHQWV�
�JRDO�

DSSOLFDWLRQ�
DFWLRQ�

UHVRXUFH�
WUDQVFULSW�
WLPHVWDPS!

���VFUHHQ
UHFRUGLQJV

&RQWUROOHG�WDVN
&RQWUROOHG�WRROV
���SDUWLFLSDQWV

������

&RQWUROOHG�
8VHU�6WXG\�

)LHOG
6WXG\

6XEMHFW�VHOHFWHG�WDVNV
6XEMHFW�VHOHFWHG�WRROV

���VXEMHFWV
������

�

6HVVLRQ�
WUDQVFULSWLRQ

RQ���KRXUV�RI�YLGHR�
��������

*RDO�
LGHQWLILFDWLRQ
RQ�������HYHQWV�

��������

&DUG�6RUW�
HYHQWV�IURP�
ERWK�VWXGLHV

7KHPDWLF�DQDO\VLV�
RQ�IULFWLRQ�FOXVWHUV�

���URXQGV��

54���+ROLVWLF
)ULFWLRQV�
����

'DWD�
&ROOHFWLRQ

54���*RDO�
2SHUDWLRQDOL]DWLRQ�

������

0HDVXUH�DSSOLFDWLRQ�
DQG�UHVRXUFH�XVH�
DQG�VZLWFKHV�

4XDOLWDWLYHO\�
VXSSRUW�ZLWK�
H[DPSOHV

�

&RPSDUH�
GHFRPSRVLWLRQV�WR�
LGHDOL]HG�VFHQDULR
�&RQWUROOHG�VWXG\�

([DPLQH�
GHFRPSRVLWLRQV
�)LHOG�VWXG\�

4XDQWLWDWLYH�
$QDO\VLV

4XDOLWDWLYH�
$QDO\VLV�

�

54���7DVN
'HFRPSRVLWLRQ�

������

Fig. 1 The mixed methods research approach used. The order in which the steps were
performed are denoted ①–⑤.

10 Nick C. Bradley et al.

4.1.3 Idealized Workflow

The controlled nature of the task enabled us to create an idealized workflow
consisting of the minimum number of actions developers would have to perform
to complete the task. Table 1 provides a high-level overview of the goals a
developer could follow to fix the defect. The table also includes the number
of resources (i.e., files, shell commands, and web pages) they would use to
perform each goal.

Table 1 An idealized workflow to complete Kanboard issue #4213. Numbers on the left of ▷
indicate the average number of resources used by participants in the user study. Numbers on
the right indicate the ideal number of resources assuming no missteps, errors, or distractions.

Application (Avg ▷ Ideal)

Goal Description (Main Resources) Browser Shell IDE

G1 Learn what bug is about (Bug report) 4 ▷ 3 0 ▷ 0 0 ▷ 0
G2 Start test environment (README, docker) 5 ▷ 0 5 ▷ 3 1 ▷ 0
G3 Reproduce defect (Kanboard program) 16 ▷ 5 0 ▷ 0 0 ▷ 0
G4 Find defect in source code (Program files) 4 ▷ 0 2 ▷ 0 6 ▷ 2
G5 Review fix suggestion (Bug report) 1 ▷ 1 0 ▷ 0 0 ▷ 0
G6 Fix bug (Program file) 1 ▷ 0 0 ▷ 0 2 ▷ 1
G7 Check fix works as expected (docker, Program) 4 ▷ 1 3 ▷ 2 1 ▷ 0
G8 Share fix as a pull request (git, PR form) 4 ▷ 1 10 ▷ 4 0 ▷ 0

〈participant average〉▷〈total ideal〉 40 ▷ 11 20 ▷ 9 10 ▷ 3

During goals G1–G3, the developer learns about the defect and reproduces
it. This allows them to confirm that the problem actually exists, they are able
to observe the problem, and they have a procedure they can use to verify that
their changes successfully fix the problem. Ideally, this would involve looking
at three different web pages (the issue report, project README, and project
documentation) in the browser and switching to the shell and executing three
different commands (learned from the web pages) to build and start Kanboard
using its containerized Docker-based test environment. Finally, they would
launch Kanboard in the browser to manually verify that they could reproduce
the defect.

Goals G4–G6 involve actually fixing the fault; it is here where the idealized
workflow hides most of the task’s complexity as the developer would need to
find the affected file on their first try and fix it perfectly. The developer searches
in their IDE and finds the file causing the defect. They revisit the bug report
to review the suggested fix and then switch back to the IDE to implement it.

During goal G7, the developer confirms that the fix worked. This involves
rebuilding the docker image in the shell, relaunching the test environment,
and switching back to the browser to verify that the fix was successful.

Goal G8 involves submitting the changes for the fix. First the developer
performs four steps in the shell: checkout a branch, stage, commit, and push

Sources of Software Development Task Friction 11

the changes to the remote server. Then they follow a link to GitHub’s web
interface to create a pull request for this change in the browser.

Fixing this simple fault needed changes to only two lines of code, but the
developer had to decompose the task into eight goals which they would opera-
tionalize by switching between three applications nine times to access twenty
unique resources a total of twenty-three times. The idealized workflow assumes
the developer switched directly to the required resources and remembered all
of the required information as they switched between applications and goals.

4.1.4 Method

We copied the Kanboard project to a new GitHub repository created specif-
ically for this study to avoid affecting the real project and to eliminate any
anxiety participants might experience sharing their changes. We piloted the
task with an experienced developer, who did not take part in the study, to
verify the task difficulty and duration. Based on their feedback, we added a
steps-to-reproduce comment to the issue description on GitHub with screen-
shots of the steps necessary to see the bug in the Kanboard user interface. This
reduced the overall time participants needed to spend on the task while still
allowing us to observe participants using all of the tools necessary to complete
the task.

We met with each participant individually at a location of their choosing.
The first author was present during the study to take notes and answer any
questions that arose. Each participant was provided a MacBook Air configured
to record the screen and track interactions with default installations of Intel-
liJ, Visual Studio Code, Google Chrome, Firefox, and Terminal. The trackers
recorded the URL and title for web pages participants opened in the browser,
the path of files opened in the IDE, and the session, working directory, exit
code, and command line for commands executed in the shell. Participants were
free to configure the environment as they wished but we requested that they
use only the aforementioned applications to complete the task.

Before starting the study, we briefly described the project and showed
participants a task board containing a link to the issue they should work on.
We told them that they should try to have the task done in 30 minutes and that
the task was considered complete once they had opened a pull request with
any changes they felt solved the issue. We also explained that the project had
already been cloned and configured locally and that they would be working in
a sandboxed environment. To help participants start the task and get familiar
with the project, we requested that they begin by reproducing the issue. If a
participant got stuck or sidetracked we provided guidance to ensure they were
able to complete the entire task so we could observe the full diversity of their
tool interactions.

12 Nick C. Bradley et al.

Table 2 Presenters’ tasks and development experience in years.

Sub Exp Role Time Task Description

S1 7 Senior Developer 14m30s Alter table sorting behaviour.
S2 10 Senior Developer 9m28s Stop streams when window is closed.
S3 25 Technical Trainer 27m45s Create a new Java Spring project.
S4 15 Cloud Advocate 15m10s Understand Twitch service response.
S5 16 Senior Developer 7m55s Release new version of Azure plugin.
S6 10 Developer Evangelist 26m49s Create serverless blog search feature.
S7 15 Outreach Manager 17m00s Migrate ASP.NET button to Blazor.
S8 15 Developer Advocate 6m32s Refactor and deploy REST endpoint.
S9 6 Developer Evangelist 19m02s Obfuscate tokens in log output.

S10 1 Developer Evangelist 16m26s Create README and LICENSE.

4.2 Field Study

We use live-streamed screen recordings of ten developers (Figure 1, Step 2) to
augment the recordings made during the controlled user study and strengthen
the ecological validity of our observations. Researchers have found these record-
ings are not rehearsed and illustrate developers’ real contributions to software
projects using their preferred environment (Alaboudi and LaToza, 2019). Ex-
changes between the developers and their audience provide running commen-
tary, similar to think aloud, describing what they are doing and why.

4.2.1 Subjects

The subjects2 for this study were ten developers and a section of one of their
recently streamed development sessions. Table 2 provides information about
the presenters and their selected sections.

We identified developers and videos through an iterative search and review
process. Videos had to be presented in English in a professional manner with
a clear software development task which the presenter attempted to solve
during the video. We excluded tutorials, Q&A and office-hour-type sessions,
and videos designed specifically to demonstrate a feature or procedure. We
started by examining the most recently published videos from members of the
Live Coders team as they are required present in a professional manner, write
code regularly, and to have had at least five viewers in the 30 days prior to the
review of their application.3 Six of the developers were members of the Live
Coders team. We identified the remaining four developers by searching for live
coding videos on Twitch and YouTube. Our final set of videos capture a diverse
set of tasks, environments, and program languages, sizes, and maturities.

Videos ranged from 1.5 to over 3 hours in length. During this time presen-
ters worked on multiple tasks but always clearly described the task on which
they were currently working, either orally or textually with issues or TODO

2 We label the people evaluated in the controlled study participants (P1..P17) and those
from the field study subjects (S1..S10) throughout the paper.

3 https://livecoders.dev

Sources of Software Development Task Friction 13

items. We scanned through the videos identifying sections in which the presen-
ter switched between multiple applications so that we could extract the max-
imum amount of information about the cross-application friction developers
experience across a range of tools. Due to the frequency of these sections and
the amount of work required to create a detailed transcript of the presenters’
numerous low-level actions, we selected only one section for each presenter.
We ensured the selected section encompassed a complete task to help us infer
the presenter’s goals.

Before finalizing our video selection we verified that the presenters had
professional software development experience using the information provided
on their LinkedIn profiles. The ten presenters (9 male, 1 female) each had at
least one year of development experience and an average of 12± 7 years.

4.2.2 Projects and Tasks

We observed subjects working on both personal and open source community
projects. S1, S4, and S8 worked on bots that respond to commands issued by
viewers through the Twitch API. S3 created a new Java project to compute
stock options, S6 implemented a website search feature using Azure’s Cognitive
Search API, and S10 worked on a pull request tracker. S2 worked on the
Mozilla Firefox browser project, S5 worked on C# Make integration for Azure
DevOps, S7 worked on a project to recreate WebForms components in Blazor,
and S9 worked on Twilio’s CLI for deploying serverless functions. The specific
tasks each subject worked on during the selected section of video are shown
in Table 2.

4.3 Data Preparation

Data from the two studies was processed through three high-level steps to
prepare it for analysis. The anonymous transcribed data is available online for
further analysis.4

4.3.1 Transcribing sessions.

In total, we collected more than 7 hours of screen recordings across the 27 sub-
jects from both studies with an average duration of 16±6 minutes. The first au-
thor transcribed events from the videos by recording the timestamp, resource
identifier, application, and action performed each time a subject switched re-
sources. In total, 1,532 events were transcribed from the screen recordings.

Separately from the transcripts, the first author also identified and recorded
instances in which developers performed unexpected actions or encountered
challenges. These included instances in which developers repeated actions or
sequences of actions, switched quickly between windows, switched back and

4 https://osf.io/68qxg/?view_only=435d824fe8ee493089e66a7cc7fc5b08

14 Nick C. Bradley et al.

forth between resources, performed actions that failed (either explicitly with
an error message or implicitly by not performing the desired operation), per-
formed more actions than necessary to accomplish a goal, or when developers
stated that they or their tools made a mistake or did not work as expected. It
is from these observations that we derive developer friction (RQ2).

4.3.2 Identifying goals.

After transcribing the screen recordings, our dataset consisted of lists of ac-
tions performed by each developer. To understand how developers decompose
their tasks into goals and how directly they can complete these goals in their
environments (RQ1) we had to segment the transcripts into goals (Figure 1,
Step 3).

When deciding where to segment goal boundaries in the transcripts, we
considered each action in the context of its neighbours and how it was used
by the developer. We examined the transcripts both forwards, following the
actions the developers performed inferring what they were trying to achieve,
and backwards, working from the results and inferring which steps were used to
achieve them. We referred to the screen recordings throughout the process to
ensure that we correctly interpreted the actions performed by the developers.
We also looked for and used cues indicating developers’ intentions when they
were present. These included subject utterances and think aloud, e.g., “What
we need to do now is implement actual searching.” (S6), text they highlighted
or copied, text they made visible by scrolling, keywords and search terms, and
the resources they opened and closed.

Two authors independently segmented three action transcripts from the
field study establishing both goal boundaries and descriptions. In 16 out of
28 cases, the coders fully agreed and in 4 cases they were off by one action.
In 8 cases one of the coders segmented the actions using an additional goal.
All three authors discussed which aspects of the actions and cues resulted in
disagreements among the eight goals. Through this process of negotiated agree-
ment (Garrison et al, 2006), we were able to agree on how we should interpret
actions in relation to the goals. However, identifying the precise location of
goal boundaries was still a subjective process. To ensure consistency between
the goals, the first author segmented the remaining transcripts following the
agreed upon interpretation.

5 Making Tasks Actionable

Ultimately developers want to complete their tasks. But tasks can rarely be
done with one action. Instead, developers decompose their tasks into a se-
ries of manageable goals. Since each of these goals still cannot be directly
executed by traditional environments, developers further operationalize each
goal: they manually decompose their goal into a series of actions that they
can perform using their environment. These two levels of decomposition (from

Sources of Software Development Task Friction 15

task-to-goal and goal-to-actions) are not linear sequences: developers often
encounter problems which can divert them as they solve new goals or devise
new operationalizations. The decomposition process also requires explicit de-
veloper effort as they reason from their task through goals to the low-level
actions they perform to complete their work. The workflows of the ten field
study subjects are shown in Figure 2. We describe their task decompositions
and goal operationalizations in the following sections.

5.1 Decomposing Tasks to Goals

Developers decompose their tasks into goals to provide intermediate objectives
between the high-level task description and the low-level actions they need to
perform to complete the task. This aligns with research on the cognitive process
of problem solving in software development (Wang and Chiew, 2010) and how
people conceptualize their actions (Vallacher and Wegner, 2012). In this work
we consider goals at the level of abstraction that developers would use to
communicate with each other. We found that task decomposition happens on-
demand and results in similar sequences of goals for developers completing the
same task (Figure 1, Step 4).

5.1.1 Developers decompose the same task into similar sequences of goals

The controlled nature of the user study provided an opportunity to examine
how participants decomposed their relatively straight-forward task into goals.
We found that the sequence of these goals was generally similar among par-
ticipants and the idealized workflow described in Section 4.1.3. Specifically, all
but three of the participants ordered their goals in the same way: P8 inter-
leaved goals while waiting for a command to finish, P10 choose to understand
the proposed fix before reproducing the bug, and P17 choose to start the test
environment before reading the issue.

However, not all participants used the same number of goals to complete
the task. Nine of the participants decomposed the task into one fewer goals by
using keywords from the suggested fix to locate the bug directly without a ded-
icated defect reproduction goal. Some participants also underwent additional
goals when they sought a holistic understanding of the project before attempt-
ing to start the test environment (P1, P6, P7, P10, P11), and when they had
to re-attempt failed goals, for instance after implementing the fix in the wrong
code location (P13, P16) or attempting to reproduce the bug before starting
the test environment (P12).

5.1.2 Developers formulate goals on-demand

Occasionally, developers encounter unexpected obstacles that they must over-
come to continue making progress on their original goal. In these cases, they

16 Nick C. Bradley et al.

Fig. 2 Workflows used by developers in the field study to complete their tasks. Vertical bars
indicate goal boundaries. Numbers identify individual resources and the coloured background
indicates the associated application. Revisited resources are shown in bold.

formulate new goals to overcome these obstacles. For example, when attempt-
ing to create a branch using git, P4 encountered a error stating she had
provided incorrect flags. She responded that she knew “there was a way to
do it” and proceeded to consult the help page, trying several variations of
the command, before she was successful and could resume her original goal of
sharing her changes.

Sources of Software Development Task Friction 17

There were also many instances of developers formulating on-demand goals
in the field study. While debugging, S2 remarked “I didn’t hit my breakpoint”
and formulated a new goal to investigate whether the debugger “hits the un-
load event if you close a window.” S3 formulated a new goal to investigate
“why that [package version] is red? That shouldn’t be red” when he noticed
that the POM file in his Java project reported and error. He had to complete
this emergent goal before he could finish creating his project and complete his
original goal.

5.2 Operationalizing Goals to Actions

After decomposing tasks into goals, developers map these goals into actions
that they use to interact with their resources. However, coming up with an
effective mapping for a goal is not automatic: developers must consider what
actions are available in each of their applications and how those actions can
be combined across applications and resources to successfully operationalize
their goal. Developers also have to handle discrepancies between their expec-
tations and the actual result of their actions. We describe the factors affecting
developers ability to map and operationalize their goals below (Figure 1, Step
4).

IDE

Shell

19 | 2
(9.5x)

29 | 2
(14.5x)

12 | 0

20 | 1
(20x)

11 | 1
(11x)

29 | 3
(9.7x)

90 | 13
(6.9x)

24 | 9
 (2.7x)

6.5 | 1
(6.5x)Browser

(x)∞

Fig. 3 Resource switches. Numbers include the average number of times each kind of switch
happened, the idealized number of times a switch would be needed, and the proportion of
switches in excess of ideal. Self-loops indicate that subjects switched between resources
within the application (e.g., from one web page to another), while arrows between nodes
indicate that subjects switched from a resource in one application to a resource in another
application.

18 Nick C. Bradley et al.

5.2.1 Environments do not allow developers to directly express their
higher-level goals

Instead of directly communicating their goals to the environment, developers
have to mentally map their goals to the low-level actions offered by the envi-
ronment. This process is not trivial as the low-level nature of actions means
developers have to consider and use many actions for each of their goals. On
average, participants used 8.1 ± 6.5 actions per goal, using a maximum of
36 actions for a single goal. The need to consider so many actions imposes
additional overhead as developers need to know how the actions can be effec-
tively composed. For example, the excess switches in Figure 3 were the result
of participants using extra actions to overcome incomplete mappings of their
goals. This overhead is also evidenced by the actions that did not work as
participants expected (shown using a in Figure 2).

5.2.2 Developers’ knowledge and preferences of application differences affect
their operationalizations

The applications developers use each have different user interfaces and set
of actions. While some applications share similar interfaces at a high-level
(e.g., tab-based web browsers), default key-bindings, parameters and syntax
of text-based shells and even the interfaces of individual web pages vary. These
interfaces each have individual strengths and weakness which developers must
consider when operationalizing their goal. For example, P16 believed that it
would be easier to run the project’s docker commands from within his IDE
rather than switching to the shell so he decided to spend extra time configuring
his IDE’s docker component.

Multiple applications often overlap in their functionality, requiring develop-
ers to choose among alternatives. For example, two of the user study subjects
(P8, P16) and 1 of 4 subjects (S10) in the field study that used version control
during their task, used the IDE, while all other participants chose to invoke git
directly in the shell. Similarly, some subjects searched through their code using
the GitHub repository search (S9), shell-based grep (P2), and using the IDE
(all other subjects). These choices impact the number of actions developers
have to consider when operationalizing their goal. For example, when commit-
ting changes, participants who chose to use the shell had to perform actions
to see their outstanding changes and to verify they had been committed while
this information was provided automatically in the IDE interface.

5.2.3 Operationalizing goals typically requires multiple applications and
resources

Developers primarily use three kinds of applications: web browsers, IDEs, and
shells. They used these applications to work with resources including code files,
documentation, log files, and command output. Table 1 shows how participants
used these applications to complete the goals of the task. Overall, participants

Sources of Software Development Task Friction 19

in the user study used their browsers to view 677 (57%) resources, their shells
to view 334 (28%) resources,5 and their IDEs to view 174 (15%) resources,
while subjects in the field study viewed their resources evenly across the three
applications.

Beyond simple interactions with their environment to switch between win-
dows, developers had to perform actions in multiple applications across mul-
tiple resources to complete their goals. Figure 2 shows the applications, re-
sources, and actions used by the subjects in the field study. The alternating
colouring indicates that developers do not use applications sequentially but
rather they need to switch between applications to interact with different re-
sources while operationalizing their goals.

5.2.4 Developers must continuously locate and manage resources across
applications

Developers need to locate, examine, modify, and manage many resources to
accomplish their tasks. Managing resources is challenging because developers
have to locate them before they can be opened, decide how they should be
organized, and determine when they are no longer relevant and should be
closed. This overhead increases with the number of resources used in a goal as
the environment becomes cluttered. Subjects in the user study used an average
of 25.7 resources to complete the task and 3.4 resources to complete each goal.
Subjects in the field study used an average of 18.3 resources to complete their
tasks and 2.7 resources to complete each goal.

To access their resources, developers have to frequently switch between
different application windows and tabs (Figure 3). Over the course of com-
pleting their tasks, subjects switched between their resources an average 70
times (9 times per goal) in the user study and 34 times (6 times per goal) in
the field study. Developers often switch to revisit resources, either to recall
previously used information or to obtain new information from other areas of
the resource. For example, subjects revisited the issue description to recall the
suggested fix and to copy the exact keywords required to locate the source of
the bug. Revisits are depicted in Figure 2 by boldface numbers. On average,
subjects revisited resources 3 times per goal in the user study and 2 times per
goal in the field study.

In some cases, only a small portion of a given resource is relevant to a
goal. For example, subjects in the user study only used 2 of the 45 lines in
the patched source code file, and only needed one sentence and 2 command
descriptions from the whole project documentation. Developers have to spend
time and mental effort getting to these pieces of information by first iden-
tifying the resource containing the information using a potentially unhelpful
descriptor (e.g., a title or file name) and then reading, scrolling, or searching
the resource to find the relevant content for their goal.

5 Including the IDE-integrated shell.

20 Nick C. Bradley et al.

5.2.5 Information flows between applications and resources

The information developers need is spread across multiple resources and appli-
cations. This means that developers have to manually seek out and move the
information between resources. They do so by using copy and paste or recalling
the information from memory (sometimes with the help of the environment;
e.g., auto-completing directory paths).

Figure 2 shows instances where it was apparent that developers sought out
and moved information between resources verbatim. Developers moved infor-
mation under two scenarios. In the first scenario, developers used information
they observed in a previously viewed resource in a later resource. This is the
case when the arrow starts and ends on different resources. For example, S6
used information (directory names) from the output of ls to recall and change
into his project’s directory (depicted by the arrow from resource 3 to resource
5). In the second scenario, developers realized they needed some information
in a particular resource and had to perform actions to obtain the informa-
tion before moving it into the original resource. This is the case when the
arrow starts and ends on the same resource. For example, when configuring
his project to use the latest version of Java, S2 had to leave his IDE to find
the installation path and replicate that path in the configuration dialog.

Developers also move information implicitly across resources. For example,
S4 used the property name of an object to inspect debug output, understand
the structure of the object by searching for the name in online documentation,
and to follow a hyperlink describing the property in detail. We do not show
these implicit movements in Figure 2 since they require interpretation of the
information and where it originated (i.e., the information may be abstract and
not directly visible in the resource). It is not clear, for example, how S4 knew
which property to investigate based on the resources he previously used.

5.2.6 Discrepancies between expected and actual results of an action cause
additional actions and adjustments

The actions developers perform do not always work as intended. Figure 2
shows the actions that failed during the field study (using a).

The most common failure encountered by developers was due to invalid
shell commands (48%) (S6, S9, S10). Developers also encountered failures
identifying the resources that contained the information they needed (26%)
(S3, S6, S9) and when their actions behaved differently than expected (17%)
(S1, S2, S3, S9). For example, S1 accidentally aborted a commit when he used
the wrong key sequence to exit vi while S3 had to guess an alternative param-
eter value when a previous attempt failed. Finally, there were two instances
where developers attempted to verify a code change by observing the out-
put but failed to ensure the necessary preconditions were met (9%); e.g., that
the development server was running (S1) and that the required environment
variables were set (S8).

Sources of Software Development Task Friction 21

Sometimes it is not apparent when an action did not work as expected.
In these cases, developers have to explicitly verify the effect of their actions,
which are shown as a ✓ in Figure 2. Sometimes verification requires only a single
action (e.g., running git status to ensure the commit action committed the
correct files), but other times it can be a time consuming process (e.g., when
manually testing a program change). Of particular interest are cases where
developers have to re-verify their changes, repeatedly performing the same
sequence of actions. For example, S2 modified his code five times during the
development session and each time had to perform nine actions across both
the shell and browser to verify the change.

RQ1 Summary

Developers use similar sequences of goals when decomposing the same
task, formulating goals on-demand to overcome unexpected obstacles.
Operationalizing goals to actions is an indirect and personal process
complicated by the need to work across applications.

6 Friction

To complete a task, developers decompose the task into goals and then oper-
ationalize these goals by performing sequences of actions across applications
in the environment. Since developers’ goals frequently cut across applications
and resources, performing these actions can be difficult and induce friction
that manifests itself as extraneous actions and mental effort. In this section,
we describe the frictions developers experience when interacting with their
complete environments, an area which has been largely neglected in favour of
more targeted studies of individual applications and tools.

To examine the friction that occurs due to the mismatch between devel-
opers’ goals and the actions available, we analyzed the video recordings and
transcripts from both studies using a grounded theory methodology Strauss
and Corbin (1994). After identifying the goals of each developer, the first au-
thor recorded descriptions of the actions developers performed that did not
directly contribute to their goal and organized these descriptions into instances
of friction. All three authors then conducted four rounds of thematic analy-
sis categorizing the instances of friction into three higher-level themes that
describe the ways developers interact with their environments: translating,
integrating, and accessing resources (Figure 1, Step 5).

We observed a total of 386 instances of friction (231 instances in the user
study and 155 instances in the field study). A summary of the frictions and
their distribution are provide in Table 3.

22 Nick C. Bradley et al.

Table 3 A summary of frictions in cross-application workflows. Cause summarizes how
developers encounter these frictions and Workaround exemplifies how developers manually
overcome the friction.

Burden Cause Workaround

L
o
w
-L

e
v
e
l
A
c
ti
o
n
s

T
r
a
n
sl
a
ti
o
n

F
r
ic
ti
o
n

Plan
Workflows

59/386;
15%

Crucial information for
completing goals is often not
completely represented in a fixed
resource (e.g., who last changed
a file). Developers must devise
workflows to get this information
considering the available tools.

Developers complete their goals
opportunistically either using
tools that are readily available
or those they are familiar with.
They seek out and use feedback
about their actions to update
their planned workflows.

Learn and
Adapt

55/386;
14%

Developers must learn how they
can achieve a goal using the
available actions. They form
expectations about their tools
which may lead to errors and
confusion if behaviour is not
consistent between tools.

Developers use trial-and-error to
learn (and relearn) the steps
necessary to complete their goals
in different applications. When a
tool does not meet their needs,
they often install new tools or
plug-ins, or perform extra work
to adapt it.

D
is
p
e
r
se

d
R
e
so

u
r
c
e
s

In
te

g
r
a
ti
o
n

F
r
ic
ti
o
n

Switch

94/386;
24%

Developers often use multiple
resources per goal which they
must switch between. Standard
navigation tools require
developers to implicitly maintain
relationships between resources,
differentiate within- and
across-application switches, and
do not provide sufficient cues for
developers to switch accurately.

Developers use CTRL-tab and
ALT-tab to switch between their
windows and tabs or visual
search by manually clicking
through their open resources.
This process requires repeated
switches which are distracting.
Switching may fail, forcing the
developer to re-open the
resource.

Organize

40/386;
10%

Operating system windows open
at fixed sizes and positions,
regardless of why the window
was opened or how the content
will be used relative to other
resources.

Developers manually arrange
tabs and windows to put related
resources closer together so they
can use information from
multiple windows
simultaneously.

Transfer

61/386;
16%

The information developers need
for their tasks is spread across
different applications and tabs.
This information must be
manually integrated in order for
developers to accomplish their
goals.

Developers preemptively copy
information they will
subsequently need, or later
navigate to a resource containing
the information they require.
This is usually accomplished
with copy-and-paste.

In
d
e
p
e
n
d
e
n
t
A
p
p
li
c
a
ti
o
n
s

A
c
c
e
ss

F
r
ic
ti
o
n

Navigate

45/386;
12%

Goals require developers to
manually access related
resources across applications.
Developers must traverse
different organizational
structures starting from
application-dependent fixed
locations (e.g., the shell’s default
directory or browser home page).

Developers manually navigate
from the fixed default locations
to their project location by
either inputting the location
directly or by using
application-specific navigation
steps (e.g., using cd in the shell
or browser history).

Configure

32/386;
8%

Applications need to be in a
specific state for developers to
perform actions and access
information for their goal. This
state is fragmented across
applications, sometimes obscure,
and changes as developers
perform actions for subgoals.

Developers often emit details
about their environment in
logging statements to record and
surface their values. They
perform extra steps to set and
verify their current project
across all of the applications
they use.

Sources of Software Development Task Friction 23

6.1 Translating Goals to Actions

The information and actions provided by the environment do not always align
with developers’ goals, forcing them to plan workflows that translate their
goals into low-level actions supported by the environment. This mismatch
between the environment and developers’ goals means developers often need
to learn how the available actions can be made to satisfy their needs, or adapt
the environment to better conform to their desired workflows.

Did my changes
work?

> git status

1 change
+++ table.php

Shell

table.php

IDE

Plan Workflows Learn and Adapt

> git revert
> git reset HEAD
> git status
> git reset HEAD^
> git status

Shell

1 2

 Rebuild app
 Refresh app
 Check for bug

> docker build
> docker run

Shell

Docker plugin

+

Documentation
docker build

docker run

Browser

Fig. 4 Developers must translate their goals into actions. They need to ① mentally decom-
pose their goals into a plan the actions. This can require developers to ② learn the exact
details of the commands or to adapt their tools to simplify the actions.

6.1.1 Planning Goal Workflows

The information developers need to accomplish their goals is often not rep-
resented explicitly in the environment. Developers frequently need to devise
workflows to answer high-level questions with the tools that are available to
them. While some questions have answers that are available directly in the
environment, answering them still requires effort. For example, questions like
“What branches do I have [locally]?” (S7) and “Where is [Java] installed?”
(S3) can be answered by single commands, but identifying and executing the
commands can interrupt developers’ tasks as they have to switch to separate
applications and transfer the answers to where they are needed.

Unfortunately, many of these questions require more complex workflows
for which developers need to seek out and synthesize multiple resources. One
such case arose in the user study when subjects needed to know if their patch
successfully fixed the issue. Since the environment does not provide any way
for developers to ascertain this information directly, subjects had to devise
a workflow that included building their app in the shell, refreshing it in the
browser, replicating the issue in the browser, and comparing the updated out-
put with the screenshot in the issue tracker to actually answer their question
(Figure 4, ①). When S3 got an error in his IDE he wondered “why is that
[dependency] red?” He had to check online that he was using the correct ver-
sion, and then had to refresh the dependencies, recompile the project, and
invalidate the IDE caches. Ultimately, it was an error in his IDE but it took
over seven minutes of attention to determine whether it was actually an error.

24 Nick C. Bradley et al.

The information provided by environments can sometimes be ambiguous.
When feedback is not as developers expect, they have to determine if they were
expecting the wrong information or asking for the wrong information. For ex-
ample, subjects in the controlled study expected that their code changes would
be automatically shown in the Kanboard web application based on their ex-
perience with other web frameworks. Instead, Kanboard required the subjects
to relaunch the development instance after every change. The uncertainty of
this expectation caused participants to wonder whether the page had actu-
ally changed and resulted in them spending extra time inspecting the page’s
rendered HTML code and comparing it with the screenshot provided in the
issue tracker. S2, from the field study, was expecting that the breakpoint he
set would pause execution allowing him to inspect the state of his application.
When this did not happen, he had to determine what caused the breakpoint
to not work as expected.

6.1.2 Learning and Adapting the Environment

Developers form expectations about their environments that can lead to er-
rors when they are incorrect. While errors help alert developers that their
expectations are wrong, they do little to help developers effectively change
their expectations. Instead, developers have to go through a tedious and time-
consuming process of learning and correcting their expectations to conform to
the environment’s conventions. For example, S10 expected the touch command
would create an empty file but instead she received an error that the command
is not available on Windows. She had to use six actions to learn an alterna-
tive method for creating a file. Similarly, P9 and P11 used eight and eleven
actions, respectively, to learn how to move their commit to a new branch.
Even experienced developers working in their own environments form incor-
rect expectations which they have to correct. For example, when attempting
to install the latest Java version, S3 stated he “always forgets the commands”
which caused him to run five unnecessary commands despite reading the help
page three times. S9 expected the action npm link would create a binary but
it took twelve commands, two Google searches, and reading a Stack Over-
flow and blog post to determine that the correct action was the very similar
twilio:link.

Instead of adapting to the environment’s conventions, developers can change
them through customization. This requires developers to be aware of their work
habits and to seek out and incorporate the changes into their environments.
For example, P16 digressed from his goal to spend more than 3 minutes con-
figuring his IDE to run Docker directly so he would not have to work in the
shell (Figure 4, ②). Similarly, P1 took time from his goal to alter the behaviour
of his IDE by installing a VIM plugin while S8 configured his shell to use an
advanced version of cd. Regardless of whether developers choose to learn ex-
isting conventions or to customize them, they are both active processes that
take developers’ time and attention away from their goals.

Sources of Software Development Task Friction 25

6.2 Integrating Resources

Developers have to piece together information from multiple resources, such
as source code files, issues, and Q&A websites, using various applications to
accomplish their goals. Integrating information from multiple resources and
applications can induce friction, especially when developers switch, organize,
and transfer content between resources, requiring additional mental and man-
ual effort. Figure 5 depicts these burdens for the reproduce and find defect
goals of the user study task (Table 1, G3 and G4).

Issue 4213 Kanboard App

Solution code

Steps to Repro.

Debugger

table.php
IDEWeb Browser Web Browser

2

3

1

Fig. 5 Resources are dispersed in windows across the environment. To integrate these re-
sources, developers manually ① switch between and ② organize windows to make information
visible so they can ③ transfer it.

6.2.1 Switching Between Resources

The application and resource-centric nature of current environments com-
monly treats resources and applications as information silos offering only rudi-
mentary support for the cross-cutting workflows used by developers. This lack
of cross-resource workflow support often limits the simultaneous display of in-
formation and leads to developers frequently switching back and forth between
resources to gather and integrate the relevant information located in various
places. In both of our studies, developers frequently switched back and forth
between resources. In the controlled user study for example, subjects switched
an average of 13 times between the issue and the Kanboard program to apply
the steps-to-reproduce, and S4 switched 10 times between an API response
and its documentation to understand it.

This switching can incur a high cost, especially since it requires developers
to get to the relevant resources again, often having to remember where they are
and frequently resulting in “mis-switches”—switches to the wrong resource—
that can further lead to distractions. Almost all developers in both studies had
several mis-switch sequences (depicted in Figure 2 by |). Additionally, these
‘switch cycles’ often involve more than two resources, incurring an even higher
switching and relocation cost. For example, S8 had to switch back and forth
between six resources across three different applications to diagnose a bug. An-
other common switch cycle with multiple resources occurred when developers

26 Nick C. Bradley et al.

engaged in workflows to gather feedback for their changes. For example, after
S2 made code changes in the IDE, he switched to the corresponding shell to
build the project, then to the web browser to verify the changes. He repeated
this loop five times to complete his goal.

6.2.2 Organizing Resources

Tasks and goals often require accessing resources in multiple applications and
at the same time, resources often crosscut goals. This crosscutting nature
of tasks, goals and resources can induce friction by requiring developers to
manually organize their resources. In our studies, participants organized their
resources by re-ordering application tabs (P4, S6), moving windows to virtual
desktops (P1, P4, P5, P6, P17), positioning windows to make the contents
visible simultaneously (P1, P6, P9, P11, P14, S4), or even using an additional
browser application as a makeshift way to separate and organize the project’s
online documentation from the web app they were debugging (P13, P16).
In some cases however, even the organizational mechanisms were insufficient,
resulting in a high cost for relocating a resource. For instance, S6 had created
a project but could not recall how it was organized within the filesystem:
“I know I created a [project]...so where did I store it?” He had to navigate
between five different directories to locate his project which took over a minute
and caused him some confusion “I feel like I’m missing something.”

6.2.3 Transferring Content Between Resources

In addition to switching between resources, developers frequently leverage and
reuse information between resources (depicted in Figure 2 by $). This infor-
mation transfer induces friction as developers need to either remember the
information and apply it to the other resource, or relocate the information
manually using copy-and-paste, often also disrupting their flow of work. These
situations occur frequently in any task, for example when developers copy and
paste commands to run in the shell from some kind of documentation (e.g.
S9), copy license information from files they worked on earlier (S10), or copy
the branch name to use as a parameter in a shell git command (S7).

Transfer friction further increases when developers repeatedly transfer in-
formation and have to continuously relocate themselves or are transferring
between resources that require complex switches. For example, S6 duplicated
the structure of an existing source code file in a new code file by repeatedly
switching back and forth between the two files, memorizing parts of the struc-
ture and recreating it in the new file. For each transfer the developer had to
re-locate herself in the new file and recall what she was doing. Another com-
mon case across study participants was the transfer of the issue number into
the commit message or a pull request description to link them. This transfer
was performed by 14 subjects in the controlled and field study and required
them to interrupt their current goal of committing code changes to switch to
the issue tracker in the browser, find the issue, copy its number, and paste it

Sources of Software Development Task Friction 27

in the shell. To work around the current limitations for transferring informa-
tion and to avoid disruption to their workflows, we observed some developers
preemptively copying information. For example, P7 preemptively copied cre-
dentials listed in the documentation although they were never needed and
might have overwritten other relevant information in the clipboard.

6.3 Accessing Information

One of the common themes of developers’ actions is to get to a resource to
extract information or make changes. However, the environment’s siloed ap-
plications create friction making this information difficult to access. Even if
developers know exactly which resource they need to accomplish their goals,
getting to the resource in the environment is often not straightforward requir-
ing them to navigate to the resource across different organizational structures.
Developers also have to perform actions to identify and configure application
state as a prerequisite to performing other actions. Figure 6 depicts the bur-
dens developers experience accessing the information needed to complete their
goals across the siloed applications in the environment.

github.com
Web Browser

github.com/cake
Web Browser

Code Issues Actions

github.com/cake/
issues

Web Browser

github.com/cake/
issues/63

Web Browser

> cd ./projects/cake
> git checkout -b #63
> build
Failed.
> git checkout -b #62

Shell

config.ini
IDE

1

2

1

Fig. 6 Accessing information requires developers navigate different organizational struc-
tures while maintaining appropriate state. Obtaining different kinds of information such as
the issue number or build status requires developers to ① navigate different organizational
structures. State, such as the active branch, can ② affect the behaviour of subsequent actions
in unexpected ways.

6.3.1 Navigating to Resources

Resources are stored and accessed in independent structures that vary by
resource type, application, and location (remote or local). For instance, to get

28 Nick C. Bradley et al.

the steps-to-reproduce contained in a task issue, the developer might open
a new tab in a web browser window, go to her GitHub account, choose the
‘Issues’ tab and then the ‘Assigned’ tab within, scroll to the relevant issue,
open it in the same tab and then browse the issue to find the reproduction
steps, thereby navigating the structure of the tabs of a web browser and various
(nested) structures within the GitHub service.

The lack of uniform structures and mechanisms to access resources requires
developers to keep track of the different structures and mechanisms and cor-
rectly piece them together to navigate to the relevant resource. Developers
frequently need to re-specify their project in different applications before they
can access these resources. In our controlled user study, all 17 subjects nav-
igated to the Kanboard project in both their IDE and on GitHub to access
specific resources, and all but three also navigated to the Kanboard project
in their shell, using an average of four cd and ls commands. Subjects in the
field study had to navigate within even more applications, including Sublime
Merge (S1), AppVeyor (S5), and AWS (S8) to access the relevant resources
(depicted in Figure 2 by •).

Occasionally, developers go down the wrong path and have to go back or
even switch applications. For example, after navigating to his project in his
IDE, S9 starting looking for a necessary file by traversing the project’s direc-
tories. He quickly gave up on this strategy and instead switched to GitHub
where he navigated to the ‘Code’ tab. Using GitHub’s code navigation feature,
he traced through a series of method definitions to locate his desired file. He
then had to manually navigate to the same file in his IDE so he could make
changes. Just to locate a relevant file, S9 had to navigate different organi-
zational structures in two separate applications using different navigational
mechanisms.

Given the high number of resources and the high frequency with which
developers access resources to complete their tasks, the induced friction can
incur a high cost.

6.3.2 Identifying and Configuring Application State

Applications need to be in a specific state for developers to run actions success-
fully. For example, the shell’s working directory determines where an action is
run. However, the state of an application is not always apparent and remem-
bering the state accurately can be difficult for developers. This is especially
true when switching between applications and resources since they act as silos
which fragment the state needed to complete a goal. As developers perform ac-
tions, they also inadvertently alter the environment’s state making it difficult
to manage.

When the actual state of an application is different from what developers
assume they encounter unexpected behaviour from their actions. This means
developers either have to explicitly seek out the current state of their applica-
tion or handle the behaviour of any actions they perform. For example, when
the working directory of the shell was set outside of his project, P2 had to

Sources of Software Development Task Friction 29

investigate the large number of irrelevant search results returned by grep. S8
had to trace through his program to identify the name of an environment vari-
able he suspected to have caused an error. He then had to manually navigate
through a web portal to locate and set the correct value for the variable. Had
the environment variables been visible, this could have been resolved directly.

RQ2 Summary

Environments often force developers to perform extra work to ac-
complish their goals. These extra steps introduce friction into devel-
oper workflows by requiring developers to adapt to their environments
(translation friction), integrate information between resources (integra-
tion friction), and find and manage their resources (access friction).

7 Design Challenges

In this section we examine the relationship between the environments’ design
aspects and the frictions developers experience (see Figure 7 for an overview).
We describe how each of the environment’s design aspects burden developers
and offer design recommendations (denoted with a §) meant to better align
the environment with developers’ cross-application workflows.

Independent
Applications

NavigateAccess
Friction (§6.3) Configure

Dispersed
Resources

Switch
Integration
Friction (§6.2)

Transfer
Organize

Low-Level Actions
PlanTranslation

Friction (§6.1) Learn and Adapt

Design
The environment’s…

Burden
which requires developers to…

Friction
cause…

Developer
Goal

Environment
Action

O
pe

ra
tio

na
liz

e

Fig. 7 Relationships between the environment’s design and the burdens they impose on
developers. Designs are ordered with burdens that are predominately cognitive at the top
and predominately mechanical at the bottom to correspond with the process by which
developers operationalize their goals into actions. For example, the environment’s low-level
actions cause translation friction which requires developers to plan their workflows and
learn and adapt the available actions—primarily cognitive burdens.

30 Nick C. Bradley et al.

7.1 Low-Level Actions

To be able to complete their goals, developers need to plan a workflow that con-
sists of a series of low-level actions that the environment supports. Developers
often resort to trial-and-error to construct these workflows, relying on feed-
back from their tools to learn and adapt their actions. These learned workflows
are not always ideal, often incorporating actions from multiple applications,
even when the goal can be achieved in a single application. Consolidating these
workflows to use actions within a single application could help reduce the inte-
gration and access friction developers experience. Unfortunately, this requires
developers to be aware of the relevant features within the application, and
to invest time to learn how to translate their current workflows to use these
features.

§
Use Familiar Features. Environments could observe developers’
cross-application workflows and demonstrate equivalent workflows
using features within the IDE (e.g., demonstrate the IDE’s version
control feature when a user commits their changes using shell com-
mands).

While this approach could help developers become aware of more efficient
actions for certain goals, it may not optimize the developer’s overall workflow.
It may also be difficult for developers to recall alternative workflows when they
are needed if they are demonstrated after the developer has already completed
their goal. A more ambitious approach would infer the developer’s goal and
automatically plan and execute the necessary actions when needed.

7.2 Dispersed Resources

Developers’ cross-application workflows cause information to be shown in dif-
ferent places in the environment. This dispersion of information can make it
difficult for developers to integrate information related to their goals. While
developers are good at recognizing when and where they need to use this infor-
mation, the process of obtaining the information is tedious and often disrup-
tive as developers have to switch away from their current resource to manually
obtain and transfer the information. One scenario developers frequently en-
counter is when they needed to include a specific resource identifier (e.g., an
issue number) when entering text (e.g., a commit message). For example, in-
cluding the issue number in the commit message requires developers to locate
and switch to the issue on GitHub, locate the issue number, and transfer the
number into their message.

§
Provide Information On-Demand. Environments could provide de-
velopers with goal-relevant auto-completion showing automatically
extracted information (e.g., issue numbers, docker/commit SHAs,
test names, file paths, and method names) directly where the devel-
oper is typing.

Sources of Software Development Task Friction 31

While providing information to developers where it is needed could reduce the
friction associated with switching between resources, too much information
could distract or overload developers. Careful consideration would need to be
given to the way in which the information is provided to the developer.

7.3 Isolated Applications

Developers rely on a diverse set of tools across multiple isolated applications.
Unfortunately, this isolation makes it difficult for developers to maintain a
consistent state (e.g., working location, branch, environment variables) be-
cause they need to repeatedly configure this state in each application they
use. Developers have to familiarize themselves with the different organizational
structures and navigational mechanisms each application uses to represent and
manage their state. Developers also need to manage state changes which occur
inadvertently as they perform their actions. For example, it can be difficult to
return to a resource once a developer closes it as they often have to re-navigate
from an arbitrary location defined by the application.

§
Set Projects Globally. Environments could explicitly track the active
project and provide hints to allow all applications to open to that
project automatically (e.g., IDEs, shells, GitHub, etc.) as a sensible
default.

While setting the active project at the environment level could reduce the
amount of navigation developers need to perform when switching between
projects, opening applications to specific projects could be confusing. Provid-
ing an explicit “switch project” affordance to the environment could make this
behaviour more obvious and would provide a hook enabling the environment
to automatically set the appropriate state.

8 Discussion

In this section we compare the workflows used by developers across the two
studies, describe the relationship of our findings to Information Foraging The-
ory (IFT), and discuss threats to validity.

8.1 Similarities and Differences Between Studies

We observed some notable similarities and differences in the types and fre-
quency of frictions developers experienced in the user and field studies. In
both studies, developers transferred content between resources a similar num-
ber of times. Both groups relied heavily on the shell to complete their tasks
and experienced frictions associated with manually obtaining goal-relevant in-
formation to overcome the lack of information provided by individual shell

32 Nick C. Bradley et al.

commands (e.g., explicitly listing the files in a directory or staged to be com-
mitted). Browsers were also used similarly between both groups to view docu-
mentation, manage their projects on GitHub, and test their web applications.
However, subjects in the field study also used the browser to access other
code-related services like build environments and cloud platforms, motivat-
ing further research into how these disparate services affect the development
process.

Participants in the user study accumulated more windows over the course
of the task as they followed links in the documentation and opened new shells.
They also spent more time organizing these windows, likely the result of the
smaller laptop screen and the number of windows they opened. Despite this
organization, they still mis-switched frequently and resorted to either step-
ping through tabs individually or “thrashing” between windows seemingly
randomly. We speculate the accumulation of windows was due to participants’
unfamiliarity with the project and task: they may have been afraid to close
resources that might be needed in the future, perceiving them as costly to
re-open.

Subjects in the field study worked with smaller sets of windows, reusing
the ones they had already opened (i.e., opening a link in the same tab or stop-
ping a command in the shell to run another command) and were more willing
to close resources. However, they spent more time obtaining goal-relevant in-
formation, for example, when trying to understand the behaviour of their
programs or configuring their projects. They also spent more time managing
their environment (e.g., handling updates, installing project dependencies and
tools, setting environment variables). These are indicative of the fundamental
costs of working in a cross-application environment and likely did not occur
during the controlled user study due to the constrained nature of the task. In
the field study, these frictions arose throughout the development process and
subjects had to interrupt their tasks to handle them.

We believe that the observations from both studies are equally informative.
The user study participants represent both novice and experienced develop-
ers who are working on new projects with unfamiliar tools and environments,
requiring support to efficiently acquire and organize knowledge about their
project. In contrast, the field study showed that developers familiar with their
project and environment still need support to obtain information and man-
age state across the different applications and services required during the
development process. The fact that we observed the similar frictions in both
studies, even when developers had optimized their environments, suggests that
the frictions generalize across developer experience, tools, and environments
indicating the need for better support.

8.2 Information Foraging Across Applications

Piorkowski et al (2016) examined developers’ foraging behaviour during a bug
fixing task and identified six factors that made between-patch foraging diffi-

Sources of Software Development Task Friction 33

cult in the Eclipse IDE. We observed three of these factors in cross-application
environments: disjoint topologies, scattered information prey, and misleading
cues (false advertising). Consistent with this prior work, we found that getting
to resources was costly due to the disjoint topologies used across applications
forcing developers to navigate through different organizational structures (Sec-
tion 6.3.1). However, we found this problem to be even more costly in cross-
application environments because developers have to navigate from a base lo-
cation (e.g., home directory) to their project in each application they use even
before they can start looking for their desired information. As in the IDE,
this information ends up dispersed across tabs and windows forcing develop-
ers to switch between them. However, these tabs can be open in one of many
applications which can cause developers to mis-switch or walk through each
tab and visually scan its contents (Section 6.2.1). This suggests that the cues
provided in cross-application environments about the information contained
in a window can also be insufficient or misleading.

In some cases, developers attempted to organize their windows anticipating
revisits (Section 6.2.2). This is similar to producer effect proposed by Raga-
van et al (2021) to describe the effort developers put into structuring their
commits for future consumption by other developers working on the project.
Surprisingly, we observed this even for resources managed entirely by the same
developer and even for short-lived windows. Failing to anticipate these future
needs led to expensive foraging to re-find resources.

Developers also adapted their environment to obtain-goal relevant infor-
mation (Section 6.1.1) which is known as enrichment in IFT. Unlike prior
work which considers enrichment as an isolated activity (e.g., filtering a set
of links), we found that it is often a complex process requiring developers to
learn or customize actions (Section 6.1.2) and to manage (Section 6.3.2) and
transfer (Section 6.2.3) the information they generate. In particular, we found
that when developers were entering unstructured text (e.g., a commit mes-
sage), they often had to interrupt themselves to seek out information from a
structured information source (e.g., a list of issue numbers) which often re-
quired developers to perform multiple actions across tools, consistent with the
observations made by Ko et al (2007).

8.3 Threats to Validity

The nature of the experiments, observations, and analyses of this work gives
rise to several threats to the validity of our findings.

Construct Validity. In the user study, we provided participants with a com-
puter that had the environment pre-configured with the default install of the
tools required for the project they were working with. This was to reduce the
overhead associated with configuring the project and tooling, along with the
privacy concerns associated with participants accidentally opening sensitive
content on their own computers while being observed. This meant that the

34 Nick C. Bradley et al.

tools and their configuration may have been different than those they were fa-
miliar with. Participants worked on a single task from an open source project.
We chose to use a single task so we could compare participants’ workflows
with the ideal workflow using a diverse set of tools necessary to complete a
real, moderately-complex task, within a reasonable amount of time.

In the field study, the dataset consisted of publicly streamed software de-
velopment sessions. While Alaboudi and LaToza (2019) found that streamed
sessions are not rehearsed and include actions needed to contribute to real
projects, the sessions in our dataset may not represent the actual work done
by developers working in a professional context. To reduce this threat, we dis-
carded candidate videos which did not meet our screening criteria to remove
streams that did not seem to match actual development sessions.

Internal Validity. As with all qualitative studies, our findings are subject to
the researchers’ perceptions. To mitigate this bias, multiple coders were in-
volved in segmenting the transcripts and identifying developers’ goals using
multiple cues from participants. The three authors conducted multiple rounds
of thematic analysis to refine the friction categories. However, it is possible
that other researchers may have identified alternative frictions from the data.

In both studies, the developers knew they were being observed. This may
have affected how they completed their tasks. In particular, participants in
the user study may have felt they needed to complete the task quickly and
rushed through the actions in an ad hoc manner. Subjects in the field study
may have altered their actions since they knew their activities would be visible
to an external audience. However, their experience presenting also helped to
mitigate observation effects.

External Validity. It is possible that our results do not generalize to all devel-
opers working in all environments. In the user study we recruited developers
through recruitment emails and personal contacts which may have introduced
a selection bias. In the field study we collected a pool of candidate videos
from developers listed on the Live Coders Team site and videos suggested by
Twitch and YouTube. It is possible that by starting from a curated listing of
streamers we selected videos that are not representative of streamers in gen-
eral. To mitigate this, we included four streamers that were not part of the
Live Coders Team. It is also possible that developers who choose to stream
their development sessions do not represent developers generally.

In the user study, participants worked on a single task from a single project.
While we selected a task from a project with a medium-sized code base in a
popular language using conventional tools, it is possible that we may have
identified different types of friction if we observed participants completing
their own work tasks or additional tasks for other projects. While the field
study mitigates this threat somewhat as those developers were working with
a diverse set of projects and languages, the tasks they selected to record may
not be representative of all development tasks.

Sources of Software Development Task Friction 35

Ultimately, we tried to make our results as generalizable as possible by
observing 27 developers, with diverse backgrounds and experience, working
on real development tasks. They were using typical desktop environments and
a broad set of tools and applications. To improve the ecological validity of our
findings, we only included frictions we observed across multiple developers and
from both studies.

9 Conclusion

Developers rely on their tools and environments to complete their tasks. While
new and more capable tools continue to be introduced to support increasingly
complex development activities, the glue between these tools has largely re-
mained unchanged. In this work we have examined how developers complete
their tasks, finding frequent misalignment between developers and their envi-
ronments. By watching 17 developers perform a controlled task and 10 indus-
trial developers perform their own tasks, we observed developers frequently
decomposing their tasks into high-level goals and then operationalizing those
goals as sequences of low-level actions that they could then manually perform.
The misalignment between the high-level goals the developers want to perform
and the low-level actions provided by their environments induces friction that
impedes their progress. We identify seven specific ways these frictions impact
developers and provide design recommendations that could improve developer
workflows and make them more productive.

Funding This work is supported, in part, by the Natural Sciences and Engi-
neering Research Council of Canada grant no. PGSD3-519053-2018.

References

Adeli M, Nelson N, Chattopadhyay S, Coffey H, Henley A, Sarma A (2020)
Supporting Code Comprehension via Annotations: Right Information at
the Right Time and Place. In: Proceedings of the Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp 1–10, DOI
10.1109/VL/HCC50065.2020.9127264

Alaboudi A, LaToza TD (2019) An Exploratory Study of Live-Streamed Pro-
gramming. In: Proceedings of the Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp 5–13, DOI 10.1109/VLHCC.
2019.8818832

Amann S, Proksch S, Nadi S, Mezini M (2016) A Study of Visual Studio Usage
in Practice. In: Proceedings of the International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol 1, pp 124–134, DOI
10.1109/SANER.2016.39

36 Nick C. Bradley et al.

Bannon L, Cypher A, Greenspan S, Monty ML (1983) Evaluation and
Analysis of Users’ Activity Organization. In: Proceedings of the Confer-
ence on Human Factors in Computing Systems (CHI), pp 54–57, DOI
10.1145/800045.801580

Bao L, Xing Z, Xia X, Lo D, Hassan AE (2018) Inference of Development Ac-
tivities from Interaction with Uninstrumented Applications. Empirical Soft-
ware Engineering (ESE) 23(3):1313–1351, DOI 10.1007/s10664-017-9547-8

Bardram JE, Jeuris S, Tell P, Houben S, Voida S (2019) Activity-centric
Computing Systems. Communications of the ACM 62(8):72–81, DOI
10.1145/3325901

Begel A, Khoo YP, Zimmermann T (2010) Codebook: Discovering and Ex-
ploiting Relationships in Software Repositories. In: Proceedings of the In-
ternational Conference on Software Engineering (ICSE), pp 125–134, DOI
10.1145/1806799.1806821

Beller M, Gousios G, Panichella A, Zaidman A (2015) When, How, and Why
Developers (Do Not) Test in Their IDEs. In: Proceedings of the Joint Meet-
ing on European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering (ESEC/FSE), pp 179–190, DOI
10.1145/2786805.2786843

Bernstein MS, Shrager J, Winograd T (2008) Taskposé: Exploring Fluid
Boundaries in an Associative Window Visualization. In: Proceedings of the
Symposium on User Interface Software and Technology (UIST), pp 231–234,
DOI 10.1145/1449715.1449753

Bragdon A, Zeleznik R, Reiss SP, Karumuri S, Cheung W, Kaplan J, Coleman
C, Adeputra F, LaViola JJ Jr (2010) Code Bubbles: A Working Set-based
Interface for Code Understanding and Maintenance. In: Proceedings of the
Conference on Human Factors in Computing Systems (CHI), pp 2503–2512,
DOI 10.1145/1753326.1753706

Byström K, Hansen P (2005) Conceptual framework for tasks in information
studies. Journal of the American Society for Information Science and Tech-
nology 56(10):1050–1061, DOI 10.1002/asi.20197

Chapuis O, Roussel N (2007) Copy-and-paste between overlapping windows.
In: Proceedings of the Conference on Human Factors in Computing Systems
(CHI), pp 201–210, DOI 10.1145/1240624.1240657

Chattopadhyay S, Nelson N, Gonzalez YR, Leon AA, Pandita R, Sarma A
(2019) Latent Patterns in Activities: A Field Study of How Developers Man-
age Context. In: Proceedings of the International Conference on Software
Engineering (ICSE), pp 373–383, DOI 10.1109/ICSE.2019.00051

DeLine R, Rowan K (2010) Code canvas: Zooming towards better development
environments. In: Proceedings of the International Conference on Software
Engineering (ICSE), vol 2, pp 207–210, DOI 10.1145/1810295.1810331

Dragunov AN, Dietterich TG, Johnsrude K, McLaughlin M, Li L, Herlocker
JL (2005) TaskTracer: A Desktop Environment to Support Multi-tasking
Knowledge Workers. In: Proceedings of the International Conference on In-
telligent User Interfaces (IUI), pp 75–82, DOI 10.1145/1040830.1040855

Sources of Software Development Task Friction 37

Fritz T, Murphy GC (2010) Using information fragments to answer the ques-
tions developers ask. In: Proceedings of the International Conference on
Software Engineering (ICSE), ICSE ’10, pp 175–184, DOI 10.1145/1806799.
1806828

Garrison DR, Cleveland-Innes M, Koole M, Kappelman J (2006) Revisiting
methodological issues in transcript analysis: Negotiated coding and relia-
bility. The Internet and Higher Education 9(1):1–8, DOI 10.1016/j.iheduc.
2005.11.001

González VM, Mark G, Mark G (2004) Constant, Constant, Multi-tasking
Craziness: Managing Multiple Working Spheres. In: Proceedings of the Con-
ference on Human Factors in Computing Systems (CHI), pp 113–120, DOI
10.1145/985692.985707

Green TR (1989) Cognitive dimensions of notations. People and computers V
pp 443–460

Henley AZ, Fleming SD (2014) The patchworks code editor: Toward faster
navigation with less code arranging and fewer navigation mistakes. In: Pro-
ceedings of the Conference on Human Factors in Computing Systems (CHI),
pp 2511–2520, DOI 10.1145/2556288.2557073

Jeuris S, Houben S, Bardram J (2014) Laevo: A temporal desktop inter-
face for integrated knowledge work. In: Proceedings of the Symposium
on User Interface Software and Technology (UIST), pp 679–688, DOI
10.1145/2642918.2647391

Kaptelinin V (2003) UMEA: Translating Interaction Histories into Project
Contexts. In: Proceedings of the Conference on Human Factors in Comput-
ing Systems (CHI), pp 353–360, DOI 10.1145/642611.642673

Kersten M, Murphy GC (2005) Mylar: A Degree-of-Interest Model for IDEs.
In: Proceedings of the International Conference on Aspect-oriented Software
Development (AOSD), pp 159–168, DOI 10.1145/1052898.1052912

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An Exploratory Study of
How Developers Seek, Relate, and Collect Relevant Information During
Software Maintenance Tasks. IEEE Transactions on Software engineering
32(12):971–987, DOI 10.1109/TSE.2006.116

Ko AJ, DeLine R, Venolia G (2007) Information Needs in Collocated Software
Development Teams. In: Proceedings of the International Conference on
Software Engineering (ICSE), pp 344–353, DOI 10.1109/ICSE.2007.45

LaToza TD, Venolia G, DeLine R (2006) Maintaining Mental Models: A Study
of Developer Work Habits. In: Proceedings of the International Conference
on Software Engineering (ICSE), pp 492–501

Lawrance J, Bellamy R, Burnett M (2007) Scents in Programs:Does Infor-
mation Foraging Theory Apply to Program Maintenance? In: Proceedings
of the Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp 15–22, DOI 10.1109/VLHCC.2007.25

Lawrance J, Bogart C, Burnett M, Bellamy R, Rector K, Fleming SD (2013)
How programmers debug, revisited: An information foraging theory per-
spective. IEEE Transactions on Software engineering 39(2):197–215, DOI
10.1109/TSE.2010.111

38 Nick C. Bradley et al.

Lewis C, Wharton C (1997) Chapter 30 - Cognitive Walkthroughs. In: He-
lander MG, Landauer TK, Prabhu PV (eds) Handbook of Human-Computer
Interaction, 2nd edn, pp 717–732, DOI 10.1016/B978-044481862-1.50096-0

Maalej W (2009) Task-First or Context-First? Tool Integration Revisited. In:
Proceedings of the International Conference on Automated Software Engi-
neering (ASE), pp 344–355, DOI 10.1109/ASE.2009.36

Minelli R, Mocci A, Lanza M (2015a) I Know What You Did Last Summer -
An Investigation of How Developers Spend Their Time. In: Proceedings of
the International Conference on Program Comprehension (ICPC), pp 25–35,
DOI 10.1109/ICPC.2015.12

Minelli R, Mocci A, Lanza M (2015b) The Plague Doctor: A Promising Cure
for the Window Plague. In: Proceedings of the International Conference on
Program Comprehension (ICPC), pp 182–185, DOI 10.1109/ICPC.2015.28

Murphy GC, Kersten M, Findlater L (2006) How Are Java Software Developers
Using the Eclipse IDE? IEEE Software 23(4):76–83, DOI 10.1109/MS.2006.
105

Oliver N, Smith G, Thakkar C, Surendran AC (2006) SWISH: Semantic Anal-
ysis of Window Titles and Switching History. In: Proceedings of the Inter-
national Conference on Intelligent User Interfaces (IUI), pp 194–201, DOI
10.1145/1111449.1111492

Oliver N, Czerwinski M, Smith G, Roomp K (2008) RelAltTab: Assisting Users
in Switching Windows. In: Proceedings of the International Conference on
Intelligent User Interfaces (IUI), pp 385–388, DOI 10.1145/1378773.1378836

Pilzer J, Rosenast R, Meyer AN, Huang EM, Fritz T (2020) Supporting Soft-
ware Developers’ Focused Work on Window-Based Desktops. In: Proceed-
ings of the Conference on Human Factors in Computing Systems (CHI), pp
1–13

Piorkowski D, Fleming SD, Scaffidi C, Burnett M, Kwan I, Henley AZ, Mac-
beth J, Hill C, Horvath A (2015) To fix or to learn? How production bias
affects developers’ information foraging during debugging. In: 2015 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME),
pp 11–20, DOI 10.1109/ICSM.2015.7332447

Piorkowski D, Henley AZ, Nabi T, Fleming SD, Scaffidi C, Burnett M (2016)
Foraging and Navigations, Fundamentally: Developers’ Predictions of Value
and Cost. In: Proceedings of the Joint Meeting on European Software En-
gineering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE), pp 97–108, DOI 10.1145/2950290.2950302

Piorkowski DJ, Fleming SD, Kwan I, Burnett MM, Scaffidi C, Bellamy RK,
Jordahl J (2013) The whats and hows of programmers’ foraging diets. In:
Proceedings of the Conference on Human Factors in Computing Systems
(CHI), pp 3063–3072, DOI 10.1145/2470654.2466418

Pirolli P, Card S (1995) Information foraging in information access environ-
ments. In: Proceedings of the Conference on Human Factors in Computing
Systems (CHI), pp 51–58, DOI 10.1145/223904.223911

Ragavan SS, Codoban M, Piorkowski D, Dig D, Burnett M (2021) Version
Control Systems: An Information Foraging Perspective. IEEE Transactions

Sources of Software Development Task Friction 39

on Software engineering 47(8):1644–1655, DOI 10.1109/TSE.2019.2931296
Rattenbury T, Canny J (2007) CAAD: An Automatic Task Support System.
In: Proceedings of the Conference on Human Factors in Computing Systems
(CHI), pp 687–696, DOI 10.1145/1240624.1240731

Robertson G, Horvitz E, Czerwinski M, Baudisch P, Hutchings DR, Meyers
B, Robbins D, Smith G (2004) Scalable Fabric: Flexible Task Management.
In: Proceedings of the Working Conference on Advanced Visual Interfaces
(AVI), pp 85–89, DOI 10.1145/989863.989874

Robillard M, Coelho W, Murphy G (2004) How Effective Developers Investi-
gate Source Code: An Exploratory Study. IEEE Transactions on Software
engineering 30(12):889–903, DOI 10.1109/TSE.2004.101

Robillard MP, Murphy GC (2007) Representing concerns in source code. ACM
Transactions on Software Engineering and Methodology 16(1):3–es, DOI
10.1145/1189748.1189751

Roethlisberger D, Nierstrasz O, Ducasse S (2009) Autumn Leaves: Curing the
Window Plague in IDEs. In: Proceedings of the Working Conference on
Reverse Engineering (WCRE), pp 237–246, DOI 10.1109/WCRE.2009.18

Sillito J, Murphy GC, Volder KD (2008) Asking and Answering Questions
during a Programming Change Task. IEEE Transactions on Software engi-
neering 34(4):434–451, DOI 10.1109/TSE.2008.26

Singer J, Lethbridge T, Vinson N, Anquetil N (1997) An Examination of
Software Engineering Work Practices. In: Proceedings of the Conference of
the Centre for Advanced Studies on Collaborative Research (CASCON), pp
21–36

Smith G, Baudisch P, Robertson GG, Czerwinski M, Meyers BR, Robbins
DC, Andrews DB (2003) GroupBar: The TaskBar Evolved. In: Proceedings
of the Australian Conference on Human-Computer Interaction (OZCHI),
vol 3, p 10

Soloway E (1986) Learning to program = learning to construct mecha-
nisms and explanations. Communications of the ACM 29(9):850–858, DOI
10.1145/6592.6594

Strauss A, Corbin J (1994) Grounded theory methodology. In: Denzin NK,
Lincoln YS (eds) Handbook of qualitative research, Sage Publications, pp
273–285

Tashman C (2006) WindowScape: A Task Oriented Window Manager. In:
Proceedings of the Symposium on User Interface Software and Technology
(UIST), pp 77–80, DOI 10.1145/1166253.1166266

Vallacher RR, Wegner DM (2012) Action identification theory. In: Handbook
of Theories of Social Psychology, Vol. 1, Sage Publications Ltd, pp 327–348,
DOI 10.4135/9781446249215.n17

Venolia G (2005) Bridges between silos: A microsoft research project
Wang Y, Chiew V (2010) On the Cognitive Process of Human Problem Solving.
Cognitive Systems Research 11(1):81–92, DOI 10.1016/j.cogsys.2008.08.003

Zhao S, Chevalier F, Ooi WT, Lee CY, Agarwal A (2012) AutoComPaste:
Auto-completing text as an alternative to copy-paste. In: Proceedings of the
International Working Conference on Advanced Visual Interfaces (AVI), pp

40 Nick C. Bradley et al.

365–372, DOI 10.1145/2254556.2254626
Čubranić D, Murphy GC (2003) Hipikat: Recommending Pertinent Software
Development Artifacts. In: Proceedings of the International Conference on
Software Engineering (ICSE), pp 408–418

