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ABSTRACT
Modern distributed systems are comprised of many components
that often have complex configuration parameters to allow them
to be tuned to differing runtime requirements. Engineers must
manually adjust many of these parameters to achieve their desired
runtime behaviours. Unfortunately, static configurations are often
insufficient, but ad hoc configuration modifications can unexpect-
edly degrade overall system quality.

In this work, we describe Finch, a tool for injecting a machine
learning-based MAPE-K feedback loop into existing REST-based
systems to automate configuration tuning. Finch configures and
optimizes systems according to service-level agreements under un-
certain workloads and usage patterns. Rather than changing the
core infrastructure of a target system to fit the feedback loop, Finch
asks the user to perform a small set of actions: adding limited instru-
mentation to the code and configuration parameters and defining
service-level objectives and agreements. With these changes, Finch
learns how to dynamically configure the system at runtime to self-
adapt to dynamic workloads.

We provide a proof-of-concept evaluation to demonstrate how
Finch can provide an automated self-adaptive system that replaces
the trial-and-error engineering effort that otherwise would be spent
manually optimizing a system’s wide array of configuration param-
eters.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; System administration.
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1 INTRODUCTION
The industrial adoption of microservices (e.g., databases and their
replication infrastructure, caching components, proxies, and load
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balancers) has led to increasingly complex configuration schemes
that are manually fine-tuned by engineers. Ganek and Corbi dis-
cussed the need for autonomic computing to handle the complexity
of managing software systems [14]. They noted that managing
complex systems has become too costly, error-prone, and labour-
intensive because pressured engineers make mistakes, increasing
the potential of system outages that can impact business operations.
This has driven many researchers to study self-adaptive systems
(e.g., [11, 13, 17, 24, 25, 29]); however, the software industry still
lacks practical tools to provide self-adaptive system configurations.
Thus, most system configuration and tuning is performed manually,
often at runtime, which is known to be a very time consuming and
risky practice [10, 14, 31].

In this work we present Finch, a tool that enables engineers
to integrate self-adaptation mechanisms into their systems. Finch
delegates the configuration and tuning of a system to a learned
model, rather than requiring engineers to perform these operations
manually or through manually tuned heuristics. A high-level view
of how Finch integrates with a target system is given in Figure 1.

Figure 1: Overview of Finch target system integration. Finch:
(1) is injected into the target system; (2) monitors and ana-
lyzes the target system’s context; (3) learns how to config-
ure the target systems; and (4) executes configuration adap-
tation plans to update the target system’s configuration.

Building self-adaptive systems is amajor engineering challenge [5].
Finch aims to enable lightweight self-adaptation by giving the user
the ability to inject the main components of a self-adaptive mecha-
nism into an existing target system in a loosely-coupled fashion.
One of Finch’s main goals is to provide lightweight self-adaptive
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configuration support with minimal engineer effort. Finch automat-
ically assesses the system’s workload and predicts the impact of
configuration changes that could potentially improve the system’s
runtime behaviour, and automatically applies these changes.

Our approach consists of providing mechanisms for injecting
a control loop into an existing target system, and an API for col-
lecting relevant system metrics and configurations as the system
executes. Developers map Service Level Agreements (SLAs) to a
subset of the metrics collected for the system. These are evaluated
by the machine learning component that is concurrently relearning
the model while analyzing current event data and predicts optimal
configurations for the system for its given workload. Finch pro-
vides configuration adaptation plans that can be both automatically
executed, allowing the system to have self-adaptive capabilities,
and interpretable, allowing engineers to understand the impact of a
change in the configuration space before it is deployed.

The main contributions of this paper are:
• An initial approach for augmenting existing systems with
a self-adaptive feedback loop for tracking and improving
system behaviours under load.

• A group of experiments to evaluate Finch’s performance
when integrated into a web service, demonstrating how
Finch can learn how to improve system performance with
automatically learned configurations.

Section 2 discusses past research in the space of self-adaptive
systems. Section 3 outlines the design and usage of Finch. Section 4
presents an initial evaluation of the approach, followed by a dis-
cussion on limitations and future directions in Section 5. Section 6
concludes.

2 RELATEDWORK AND FOUNDATIONS
Our approach draws ideas from many different, although overlap-
ping, fields. Here we discuss where these ideas come from and how
they relate to Finch.

Control theory in software engineering. The ideas in control the-
ory have been widely adopted in the software engineering research
community, with special attention to the Monitor-Analyze-Plan-
Execute over a shared Knowledge, known as MAPE-K feedback
loop, which proved to be a powerful tool to build self-adaptive
systems [1, 4, 8, 10, 19, 29]. Angelopoulos et. al. discussed the in-
tersection between software engineering and control theory [12].
They showed how control-theoretical software systems are imple-
mented and their design process, as well as the differences of the
word “adaptation” in both fields. All These works were shown to
be invaluable to the development of Finch, because the injection
of a MAPE-K loop into the target system is the core component of
Finch.

Time series analysis. Time series data has been used to analyze
and predict patterns in data with respect to time, with applica-
tions on understanding how to efficiently allocate computational
resources, which is a key strategy in our work to provide ahead-of-
time adaptation.

Many techniques for forecasting workload and performance
metrics using time series data have been developed (e.g., [3, 7, 15, 16,

22]).With these forecasts, these authors providedmethodologies for
virtual machine allocation in data centres. Theseworks did not focus
on tools for applying machine learning to software systems nor
on tools to enable self-adaptability in arbitrary software systems—
which is our end goal.

Workload modelling. Another important aspect of Finch is being
able to simulate workload intensity for initial training of the adap-
tation model. To have an accurate workloads, we need to model
them as closely as possible to real-world workloads. Herbst et. al.
presented the Descartes Load Intensity Model [20], a powerful tool
for describing load intensity variations over time, that can also be
used for an accurate benchmarking based on realistic workload and
performance analysis. Finch uses some of these ideas to model and
simulate workloads for training the adaptation model.

Self-adaptive systems. Cornel Barna et. al. proposed Hogna, a
platform for deploying self-adaptive applications in cloud environ-
ments [2]. Hogna provides a framework that abstracts deployment
details, for example: spinning-off and managing instances on Ama-
zon EC2 or OpenStack, enabling the user to focus on the adaptation
mechanism. A key difference betweenHogna and Finch is that Finch
is not a deployment framework, but rather a library that assists the
implementation of a MAPE-K closed loop by abstracting formal
modelling to a machine learning model that can be matched with
the specified SLAs, instrumented data, and identified configuration
parameters of the system.

Most previous work approaches the adaptation problem with
reactive strategies: when a violation occurs—the service gets slower,
errors are thrown—an adaptation is triggered and executed, stabiliz-
ing the system. Finch is capable of providing the same style adapta-
tion, while providing ahead-of-time adaptation: we use time-series
analysis to create an adaptation plan for a future time, executing
it right before a violation occurs, mitigating the risk of a potential
SLO violation.

Andrew Pavlo et. al. presented Peloton, a database system de-
signed for autonomous operation [24]. Similar to Finch, one of their
main goals was to decrease the need for manually-performed op-
erations, though they focused solely on applying their ideas and
techniques to their DBMS implementation. They achieved this by
classifying the workload trends, collecting monitoring data, and
forecasting resource utilization, then training a model based on this
data to predict the best optimization plan. These ideas are important
to our work, the key difference is that instead of directly embedding
these ideas in a specific system—in this case a DBMS—and requiring
the autonomous components to be tightly coupled to the system
being configured, we are embedding a subset of these ideas in a tool
that can be integrated in any arbitrarily chosen software system.

More recently, self-adaptive configuration has been explored
to support auto-scaling of containerized environments (e.g., [18,
27, 28]). Some approaches have also explored using Q-Learning to
help learn SLA parameters to avoid the drawbacks of manually-
defined SLA thresholds [18]. These techniques have also been used
to enable serverless computing approaches to flexibly scale based
on user demand and other resource constraints [30].

Machine learning-enhanced software systems. In a recent work
entitled The Case for Learned Index Structures, Kraska et. al. have
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Figure 2: Finch’s high-level architecture. The target system
needs to provide information to the monitoring and config-
uration interfaces, but are otherwise unchanged. The Finch
ML-based MAPE-K feedback loop monitors and plans adap-
tation plans that are automatically deployed to the system
at runtime according to workload demands.

demonstrated that machine learned models have the potential
to provide significant benefits over state-of-the-art database in-
dexes [21]. This research showed that by replacing manually tuned
heuristics with learned models enabled it to outperform cache-
optimized B-Trees by up to 70%.

We draw much of our inspiration from this work; Finch’s central
idea is to allow systems that relies heavily onmanual configurations
and heuristics to be enhanced with learned models. This could be
applied to many different domains. In this work we apply this idea
to a REST-based API backend.

The idea of machine learning-enhanced software systems is to
move from using the same algorithms, heuristics, data structures,
or configurations in multiple different contexts, to personalized
configurations; different configurations that perform better for
different scenarios. This relates well to the No Free Lunch theorem:

If an algorithm performs well on a certain class of
problems then it necessarily pays for that with de-
graded performance on the set of all remaining prob-
lems.

This is the main idea behind Finch: the integration of learned
models to generate adaptation plans according to the different
scenarios.

3 APPROACH
Our approach has been designed to integrate into existing systems
with as few manual steps as possible. In this section we discuss
these integration steps and then detail how Finch uses these steps
to enable the target system to automatically adapt its configurations
according to runtime workloads.

3.1 Target system integration
The high-level architecture of Finch is shown in Figure 2. The
bottom tier of this figure represents the target system. To enable
automatic self-adaptation, the target system developer must add
some limited instrumentation so Finch can monitor the system
at runtime. They must also provide a description of the key con-
figuration parameters that Finch can modify to adapt the target
system.

Defining configuration parameters. In order to automatically adapt
a target system’s configuration, Finch needs to know what the valid
configuration space is. This is a required, but incremental, process:
developers do not need to specify all possible configuration param-
eters. Parameters can be either discrete or continuous. Discrete
parameters take specific value; the space of which must be speci-
fied. Continuous parameters are only applicable for numeric values;
these parameters require minimum and maximum values. Both
kinds of parameters are provided with an initial starting value. Ad-
ditionally, there are two kinds of configuration parameters, normal
parameters can be changed and will automatically be reflected in
the runtime execution of the system, and complex parameters that
require an external script to be called (e.g., to restart a service) once
the value has been changed.

Normal configuration parameters are described by defining the
name of the configuration parameter, the current value, and the
possible values or range values. Figure 3 shows an example of a nor-
mal configuration parameter definition. In this case, parameter_1
can take any value between 1 and 1,000, and the user has specified
that 750 should be used as the initial value. Figure 4 shows an ex-
ample of a complex parameter for the Postgres database system.
In this case, the developer has defined an initial value of 128 for
the pg_shared_buffers parameter and given four other discrete
values Finch can use while evaluating alternative configurations. If
Finch deploys a configuration that modifies this parameter value,
it calls the user-created configurePG script which will restart the
Postgres server to deploy the change.

[
"parameter_1": {
"value": 750,
"valueType": "range",
"values": [1, 1000],
"isCustom": false

}
]

Figure 3: A normal adaptive configuration definition. The
initial value for the parameter is 750 but Finch is free to as-
sign any value between 1 and 1000.

Some configuration parameters require updating files on disk
and restarting services before they can take effect. The isCustom
property identifies these cases by allowing Finch to invoke the
function defined in adaptationMethod to update the configuration
and restart the service; these methods are typically only a few lines
of code (e.g., update a value in a text-based configuration file, restart
the service).
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[
"pg_shared_buffers": {
"value": 128,
"valueType": "discrete",
"values": [16, 128, 4000, 16000],
"isCustom": true,
"adaptationMethod": "configurePG"

}
]

Figure 4: A complex adaptive configuration definition. The
variable can be set to one of four values, with its initial value
being 128. After Finch applies a configuration that changes
this parameter, the specified adaptationMethod script will be
called to reflect the value in the running system.

Specifying Service Level Agreements (SLAs). The current imple-
mentation of Finch only supports SLAs that evaluate the perfor-
mance of REST endpoints. As such, supporting the monitoring
interface requires only a single programmatic call needs to be made
from the target system Finch which then automatically adds in-
strumentation to all existing REST endpoints in the target system
to track latency and throughput for each endpoint. These perfor-
mance metrics can then be compared evaluated along with the
current workload relative to the SLAs to determine the quality of
the underlying configuration.

As with the configuration parameter space, these need not be
exhaustive: developers can start with a single SLA. They can also
add more SLAs, or modify existing SLAs over time as their oper-
ational needs and goals evolve. SLAs are defined with percentile
thresholds to be more sensitive to important violations of expected
performance attributes. This is especially important for latency and
throughput because average values can hide outliers and can be
easily skewed. To better illustrate this problem, consider the fol-
lowing scenario: A target system receives 100 requests per minute,
80 of which take 200ms to serve (which is relatively quick). The
remaining 20 requests take 10,000ms (10 seconds). Assessing the
performance of the system using the average, suggests the latency
is 2.1 seconds, which is an acceptable value; however, this obscures
the fact that 20% of the requests take 10 seconds, which is an unac-
ceptable latency value.

Exemplar SLAs are given in Figure 5 and Figure 6. Finch cur-
rently only supports latencey and throughput metrics for SLAs.
The threshold and agreement values are used to determine whether
the current system performance is in violation of the SLA. Defining
SLAs at the HTTP endpoint level of REST-based systems matches
well with how designers specify the quality attributes of these end-
points. Endpoints like these are also an accessible level of abstrac-
tion for engineers as they define important runtime expectations
for their systems.

Observing runtime behaviour. To observe the system as thor-
oughly and efficiently as possible, Finch makes extensive use of
modern observability and software instrumentation techniques.
These techniques inject code into parts of the target system to
record its context. Instrumentation can evaluate function parame-
ters, latencies, and time to execute certain code blocks. The purpose

[
{
"sla": "Retrieving the listings should not take > 250ms",
"endpoint": "/v2/listings",
"method": "GET",
"metric": "latency",
"threshold": "250",
"agreement": "95"

}
]

Figure 5: Example of a latency-based SLA a user could use to
characterize how long a request should take. In this case, 95%
of the requests to the listings endpoint should take fewer
than 250ms.

[
{
"sla": "Report service should scale to 100 requests per second",
"endpoint": "/v2/reports",
"method": "POST",
"metric": "throughput",
"threshold": "100",
"agreement": "90"

}
]

Figure 6: Example of a throughput-based SLA a user could
define for their service. Here, the reports endpoint should
be able to scale to 100 requests per second 90% of the time.

of collecting information can be used to help measure performance,
assist debugging tasks, and find system bottlenecks.

A user needs to instrument their system to use Finch. Luckily,
the software industry has been enforcing system instrumentation
by providing many solutions, such as Dtrace [6], Prometheus [26],
Nagios [23], and Datadog [9], so this requirement is often not out-
of-step with common system infrastructure. Instrumentation is
also heavily used in industry to detect Service-Level Agreement
violations and to perform resource management—two tasks that
are essential for Finch to fulfill its purpose.

Finch instruments the target system using the Prometheus plat-
form [26]. Prometheus contains many language-specific client li-
braries to enable it to instrument systems implemented in over a
dozen languages. Prometheus is a pull-based monitoring tool and a
time-series database. Unlike monitoring tools like Nagios, which
frequently executes check scripts, Prometheus only collects time
series data from a set of instrumented targets over the network. For
each target, the Prometheus server simply fetches the current state
of all the metrics over HTTP and has no other execution overhead
that would be pull-related.

To monitor the target system, Finch provides a small instru-
mentation API. This API consists of three methods. The first is for
workload monitoring. The second is for latency monitoring, which
takes the endpoint, the HTTP method, and the duration of the re-
quest. The last method is for configuration parameter monitoring.
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3.2 Enabling self-adaptation with Finch
According to the self-adaptive systems community, a centralized
and top-down self-adaptive system operates with the guidance
of a central controller. This controller assesses its own behavior
with respect to its current surroundings, and adapts itself if the
monitoring and analysis warrants it [5]. Given this definition, we
built Finch to follow a centralized and top-down approach.

The main design goal of Finch is to allow its users to inject a
MAPE-K feedback loop into their system through its API. To carry
out an effective reasoning on the target system’s context uncer-
tainty, we need visible feedback loops that are first class citizens in
the system, as discussed by Y. Brun et. al. [5]. In industry, the self-
adaptation mechanism is hard-wired into the managed system most
of the time. That is, they change the managed element’s structure
to fit the feedback loop into the target system.

Of course, this requires a noticeable engineering effort; usually
systems are not initially designed with self-adaptability in mind.
This is why Finch relies on automatically-injected instrumentation;
rather than hard wiring the self-adaptation mechanisms inside the
target system, Finch acts as a co-pilot that automatically collects
data related to the system’s context, environment, and states, stor-
ing this data for future reference and model training. Guided by an
internal feedback loop, Finch carries out execution plans that aim to
ensure the target system does not violate its SLAs. The adaptation
leads to more event data to be stored and analyzed, and the cycle
repeats.

Configuration adaptation as a learning problem. A learning prob-
lem can be defined as a set of observations comprised of input and
output data, and some unknown relationship between the two. The
goal of a learning system is to learn a mapping between input and
output data, so that predictions can be made for new instances
drawn from the domain where the output variable is unknown.

The main hypothesis behind Finch is that if we can model the
configuration scheme or the heuristics of a system as a learning
problem, then Finch can learn models that capture patterns between
the system’s context and the system’s configuration parameters,
enabling the system to predict the optimal set of configuration
parameters for a specific observed workload. This prediction can
be used to either adapt to different workloads that require different
configurations or to prevent poor configurations.

To construct its dataset, Finch collects four classes of features on
the target system; performance and behavior metrics, configuration
parameters, the workload, and service level indicators. The goal
of choosing these features was to gather a dataset that a machine
learning model could be trained on, which would later make pre-
dictions based on these features. These particular features were
chosen so Finch would be able to dynamically find an optimal set
of configuration parameters for a given workload.

3.2.1 Resulting dataset. Tomake its configuration adaptation plans,
Finch collects four classes of features on the target system: perfor-
mance and behavior metrics, configuration parameters, the work-
load, and service level indicators (SLI). The goal of these features is
to gather a dataset that the machine learning models can be trained
on, which would later make predictions based on these features.

These particular features were chosen in order to answer the fol-
lowing question: For a given the workload (e.g, requests per second)
and the performance metrics of the system, what is the optimal set of
configuration knobs (parameters) that will prevent SLA violations, in
this case, in the requests served?

The dataset is constructed in such a way that each row describes
the context of the system —workload, metrics, SLIs, and configura-
tion knobs— at a given timestamp.

The following matrix summarizes how the dataset is organized:

���������
t1 W1 M11 M21 . . . Mi1 k11 k21 . . . kl1 SLI11 SLI21 . . . SLIδ1
t2 W2 M12 M22 . . . Mi2 k12 k22 . . . kl2 SLI12 SLI22 . . . SLIδ2
...
...
...
...
. . .

...
...
...
. . .
...
...

...
. . .

...

tnWn M1n M2n . . .Min k1n k2n . . . kln SLI1n SLI2n . . . SLIδn

���������
Where:
(1) n is the number of collected samples
(2) tϕ is the timestamp of the ϕth example
(3) Mjϕ is the jth instrumented metric in timestamp tϕ . j ranges

from 1 to i , the last instrumented metric.
(4) kcϕ is the value in the cth configuration parameter in times-

tamp tϕ . c ranges from 1 to l , the last collected configuration
knob.

(5) SLIoϕ is the oth service level indicator in the timestamp tϕ—
which is one of the instrumented metrics that was set to be
an SLI. o ranges from 1 to δ , the last collected SLI.

This dataset captures the context of a system with respect to
workload, instrumented metrics, and the values in configuration
parameters.

3.3 Running Finch
Upon launch, Finch reads the SLA and configuration parameter
descriptions and will add the required instrumentation to the target
system. Initially, Finch will work as passive co-pilot; it collects
data, analyzes it, and frequently builds a dataset with this data.
After a while, it starts training models on this dataset, and if the
accuracy is acceptable, whenever there’s an SLA violation, it will
trigger configuration adaptation in order to try to improve the
target system performance.

Finch’s main components were written using the Go program-
ming language and the machine learning components were de-
veloped in Python. Finch’s runtime spawns two main lightweight
threads, which in Go are called Goroutine(s). These two Goroutines
are two observer threads. The first is responsible for periodically
building the dataset. This thread will periodically extract all col-
lected metrics from Prometheus through its HTTP API, parse this
data, and save the dataset. It then calls the machine learning compo-
nent to train the models using this dataset. The second Goroutine is
responsible for monitoring the current state of the system by query-
ing Prometheus every few seconds, and checking the the current
SLI values. Upon violation of an SLA, it calls the machine learning
component, uses the most recently trained models to predict the
most optimal configuration, then calls each respective adaptation
method responsible for changing its configuration in the target
system. Both Goroutines are controlled by two variables: one that
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controls how often the dataset is constructed, and another one
controls how frequently the current context is observed.

3.3.1 The MAPE-K feedback loop. The MAPE-K feedback loop
periodically builds the dataset starts an inner loop that extracts
all metrics from Prometheus and builds the necessary dataset for
training at a configurable interval.

Monitoring and analyzing the current context and state of the
target system requires more non-trivial work, such as periodically
extracting, from Prometheus, a single row of metrics of that given
timestamp, analyzing, extracting, and saving the current state of
all SLAs defined by the user for the target system against the cur-
rent context, checking if there is any SLA violation, triggering the
adaptation procedure, waiting for the adaptation to fully propagate,
and checking for improvements in order to prevent unnecessary
new adaptations. A depiction of the target system’s runtime be-
haviour triggering a Finch configuration change and responding to
the change is shown in Figure 8.

Internally, Finch implements a state machine to keep track of its
operations in order to ensure that the target system is progressing
and to control adaptations. Figure 7 illustrates this state machine.

Stable Violation

Improvement? Models
trained?

SLAs under 
agreement?

[yes]
[no]

[no]

[yes][yes]

[no]

[yes]
[SLA violated]

Figure 7: Finch’s state machine that is followed at runtime
to monitor the target system.

3.3.2 Machine learning architecture. Given the previously defined
dataset, Finch trains many different models, one for each SLA’s
indicator. In the end we want to predict the SLI, given the set of
configuration parameters and system metrics—including workload.

Finch has 2 ML pipelines. The first ML pipeline trains the models,
which includes basic standardization, normalization, grid search,
and cross validation. The second ML pipeline predicts the SLI, given
the configuration parameters. After running these pipelines, the
last step is finding the optimal configuration.

Training pipeline. As mentioned before, Finch trains a model for
each SLA indicator. If the user has two SLAs with respect to the
latency of endpoint A and B, then the two collected SLIs are the
99th percentiles of these endpoints’ latency. Thus, Finch will train
two models, one for each SLI.

Training different models requires slicing the original dataset to
fit the models’ needs. For example, when we want to predict the
latency of endpoint A, latency A is the target, or y, of the model,
and the corpus, or X , is the rest of the dataset minus the other SLIs
collected. This way, the systemmetrics, workload and configuration
parameters are isolated for the model training.

Figure 8: An exemplar of how a SLA violation could be de-
tected, a threshold for adaptation reached triggering a new
configuration, and how the SLA could come back into com-
pliance once the new configuration is deployed to the target
system.

3.3.3 Creating adaptive machine learning models. Since the dataset
is specific to the target system, there is no one global configuration
model that would be applicable to all systems. For example: we
cannot simply use logistic regression or a neural network with
static hyperparameters. A system-specific dataset means that it
can have an arbitrary dimension (number of features) and size, it
can have continuous values, discrete values, or both. Finch cannot
know this beforehand. Thus, to work with uncertain datasets, when
training the models Finch must perform a grid search.

Grid search is a technique to search for the best hyperparameters
and models. Hyperparameters are parameters that are not directly
learned by the models. They are parameters that configure certain
aspects of a given machine learning models, for instance: how deep
a decision tree should be, how many decision trees (i.e estimators)
a random forest should have, or how many layers a neural network
should have. Each machine learning model performs better when
choosing the right model and the right hyperparameters for a given
dataset. Some combinations of models-hyperparameters perform
better with highly dimensional data, while some perform better
with well-balanced datasets, some are more resistant to outliers,
while sometimes the outliers is what you are trying to identify.

In Finch’s training pipeline, grid search exhaustively considers
all hyperparameter combinations and many different models, trains
one model per combination, and selects the best performing one.
This adds a considerate time and space complexity in the training
pipeline, but cannot be avoided when choosing a model that will
not overfit or underfit on dynamically generated datasets.

To ameliorate this, grid search is only performed in two scenar-
ios. First, in the initial training cycle, where Finch first handles the
extracted dataset, after the first training cycle, it will know the best
hyperparameters for the learned models and use them to re-train
the model with the new data. Second, when the model’s predic-
tion performance starts to degrade, indicating that the dataset has
changed in some important aspect, triggering a need to re-learn
improved models and hyperparameters from the new dataset.

In this pipeline, models such as linear regression, ridge regres-
sion, lasso, support vector machines, and decision trees are all
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considered. However, in the evaluations performed in this work,
which used a few variations of dataset structure, we have found
that one machine learning model/technique worked best for the
majority of datasets: gradient boosting with decision trees.

To validate the grid search and avoid overfitting, Finch performs
cross-validation with 5 splits, and 30%/70% test/train split ratio.

3.3.4 Predicting the optimal configuration. When defining the adap-
tive configuration parameters, the user also defines the value range
or the possible values. For instance, a certain configuration pa-
rameter A could take values ranging from 1 to 100, and another
parameter B could take the following array of discrete values: 1,
5, 10, 50. After the models have been trained, Finch could simply
predict the optimal configuration by passing the desired SLIs as
our X , and in return get the optimal configuration as the y coming
from the prediction method.

However, that approach turned out not to be very effective, and
we devised an additional algorithm on top of this straightforward
call to prediction method. This algorithm was devised to cope with
the following problem: in some cases, a configuration parameter
did not overlap with respect to its effects on different SLAs. In these
cases, a model for a specific SLA predicts the right configuration
parameter, but only for that given parameter which affects it di-
rectly, and makes inaccurate predictions for the other configuration
parameters, since it does not affect it directly. This prediction af-
fects other SLAs negatively. Think of an SLA being selfish and only
caring about the configuration parameter that affects it, and not
considering the other defined SLAs.

To overcome this problem and find configurations that satis-
fies as many SLAs as possible, the algorithm establishes consensus
between the SLAs through a voting mechanism. To start, the algo-
rithm creates a 2D array with the Cartesian product of all possible
parameter combinations, then, for each SLA, it predicts its respec-
tive SLI value for each of these combinations. The time to predict
all these combinations is negligible, since predictions usually take
a short amount of time, even with large matrices.

Next, for each SLA’s predictions, Finch filters the configurations
that satisfy the SLA plus a tolerance factor. For each SLA this re-
sults in a set of configuration parameters that is both diverse and
satisfies the SLA constraints. In a final step, the configurations
are combined. For each discrete configuration parameter the value
that most frequently occurs in the surviving configurations is se-
lected; for continuous parameters, the mean parameter from the
configurations is used. Ultimately, this results in a set of configura-
tion parameters which Finch believes will satisfy as many SLAs as
possible given the current system load.

3.3.5 Passive and active training modes. Finch is always re-training
its models with current data. However, the initial training cycles
require grid search to be performed, and during these first few
cycles, Finch passively collects data and trains models, but does
not make predictions or adaptation plans. During this period, it
is necessary to collect a diverse dataset so that Finch can see how
how the target system responds to different configurations under
different workloads. There are two ways to achieve this: passive and
active training modes. These two options mode can be configured
in Finch’s configuration file. The passive mode just collects data and
trains models while the system is running, not intervening with

the target system’s natural execution. The active training mode
can speed up the learning process by allowing Finch to actively
and frequently mutate the configuration parameters in the target
system in order to more quickly gather a diverse dataset.

4 EVALUATION
We have conducted an initial proof-of-concept evaluation of Finch
to provide initial evidence for three main research questions:

• RQ1: Can Finch learn configurations that do not violate
target system’s SLAs?

• RQ2:What performance overhead is incurred by Finch?
• RQ3: How much training data is needed to make accurate
configuration adaptations?

For this prototype evaluation, we opted to use an in-house REST-
based inventory management and shopping system; this system
captured the most common points of complexity in web services,
which are:

• A Docker-based backend component comprising the core
logic of the application.

• Multiple HTTP endpoints served over a RESTful API. In our
scenario, these endpoints are subject to a set of Service Level
Agreements.

• A Postgres database running with a Docker container.
After building this system we modified it to support Finch (as

described in Section 3.1). To enable Finch to make meaningful pre-
dictions, we created a workload simulator that simulated realistic
use cases for the system. The simulator generated random work-
loads consisting of users browsing shopping items, adding and
removing items arbitrarily to a shopping cart, and finalizing their
shopping session by checking out. The simulation we created ran
these user cases multiple times in parallel in order to stress the
system in a realistic way.

4.1 Experiment 1: Configuration throttling
To examine whether Finch infers viable configurations that do not
violate the target system’s SLAs (RQ1), we created a configura-
tion parameter that randomly (and temporarily) slowed down the
target system by blocking execution for either Bi milliseconds or
( 1
Bi ) ∗ 10000 milliseconds for each throttling point B ∈ 1 . . . i . This
means that a delay will block the execution either proportionally
or inversely proportionally to the value of a configuration parame-
ter. For instance, if a configuration value is 1000, in a proportional
throttle point, it will block the execution for 1000 ms. In a inversely
proportional throttle point, it will block the execution for 10 ms.
Thus, if this configuration can take a number between 1 and 1000,
it could be one extreme or the other, depending on the type of
blocking point.

These Bi values were used as artificial configuration parameters
to influence the performance of the target system. We then ran
Finch to see if it could monitor, analyze, predict, and execute the
adaptation plans that would correctly modify the configuration
parameters in such a way that the performance will resolve any
SLA violations that arise from the system delays. These adaptations
must be automatic: that is, Finch must modify the target system’s
configuration to minimize the incurred delays without any explicit
programming.
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To evaluate this, we ran 3 different sets of random artificially gen-
erated configuration parameters and studied Finch’s performance
on them. We focused on 2 questions during this experiment:

• Can Finch predict the optimal or the sub-optimal configura-
tion?

• If yes, how long does it take to converge to the optimal or
sub-optimal configuration?

For the model accuracy, it was used the coefficient of determina-
tion R2 of the prediction, where R2 = 1− u

v , where u is the residual
sum of the squares

∑n
i=1(ytrue − ypred )2 and v is the regression

sum of squares
∑n
i=1(ytrue − ytrue )2.

Experiment 1 Results: All tests were ran on a Dell laptop run-
ning Ubuntu 14.04 with 4 Intel Core i7-5500U CPU @ 2.40GHz
and 16 GB of memory. The target system had five configuration
parameters and each training cycle took one hour. From these three
experiments, Finch successfully adapted the configuration after a
single training cycle and learned the optimal set of configuration
parameters, achieving 100% on its predictions and stabilizing after
the second cycle. Table 1 shows the results of these 3 experiments.

However, when the system runs for multiple days, training cycles
can become a bottleneck. This is an addressable concern though,
as the developer can configure Finch to extract the dataset less
frequently after the model stabilizes. For future work, training the
models could be easily distributed to machines that are not running
the target system, in order to prevent resource saturation and affect
the service quality. Predicting the optimal configuration parame-
ters was relatively quick: performing the prediction took between
100 and 200 milliseconds. All SLA violations were automatically
resolved in less than 10 minutes.

4.2 Experiment 2: Performance overhead
Given the results found in Experiment 1, the training algorithm is
observed to become a bottleneck as the dataset grows. To investigate
this bottleneck further and to closely observe Finch’s resource usage
(RQ2), we collected a larger dataset, with a total of 28,147 rows over
10 hours of execution. The strategy for the configuration parameters
used was the same as in the first experiment.

The first training cycle, the one that performs an expensive grid
search, took 29 minutes to find the optimal models and their hyper-
parameters for five SLI models. The subsequent training executions
already knew the best model (enabling Finch to just fit the model to
the data), and took 4 minutes to train and around 250 milliseconds
to make predictions.

Experiment 2 results: Golang’s pprof was used to perform a
thorough profiling of both CPU-time and heap usage of the target
system when using Finch. While acting as a passive co-pilot (no
training and no adaptations created/carried out) and monitoring
alongside Prometheus, Finch’s performance overhead over a 2-
minute profiling windows averaged 5.9%. In the same 2-minute
windows, Finch’s MAPE-K loop, its main component, averaged
2.6% overhead. While running only its monitoring/analyzing loop,
Finch incurred roughly 8.5% CPU overhead.

4.3 Experiment 3: Postgres configuration
Due to Postgres’s large set of configuration parameters, it can be
a challenging task to adapt Postgres to different workloads. For

instance, for a certain type of query, properly configuring Postgres’
work_memory variable can drastically improve its performance,
whereas for other queries this parameter may be less important. In
this example, we use Finch in the same target system from Experi-
ment 1 and 2, but now instead of random throttling points, Finch
tries to learn how to better configure the Postgres database behind
the target system. Postgres 9.4 was used, and the monitored several
additional configuration parameters:

• Shared buffers
• Effective cache size
• Work memory
• Write ahead log buffers
• Checkpoint completion target
• Maintenance work memory
• Checkpoint segments
• Default statistics target
• Random page cost

The SLAs were the same as in the previous experiments. How-
ever, the adaptive configuration file contains the previous configu-
ration points and as well as configurations for the variables listed
above. The workload simulator then ran on the target system.

Experiment 3 Results: The target system started with the default
configuration for Postgres. Under heavy workloads, some of the
SLAs were violated. After a two-hour training cycle, Finch triggered
an adaptation to address these SLA violations. After predicting the
best optimal configuration for the workload and carrying out the
adaptation, the 99th percentile latency was reduced by 39.85%. This
demonstrates that Finch can automatically identify configurations
that improve SLA compliance. The comparison of pre- and post-
adaptation latency can be seen in Figure 9.

Table 1

Before Training After Training

Endpoint 1 9,000 4,711

Endpoint 2 271 65

Endpoint 3 1,246 1,231

Endpoint 4 238 68

Endpoint 5 255 248
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Figure 9: Experiment 3: 99th percentile latency of all end-
points before and after adaptation. Each item in the X axis
is an endpoint affected by a configuration parameter. Y axis
is the latency. The average latency reduction was 39.85%.

4.4 How much data is required?
A fundamental question for all ML-based approaches is how much
data is needed to make accurate predictions (RQ3)? For both Exper-
iments 1 and 3, Finch needed at least 1,000 rows in the dataset to
reach a good cross validation accuracy. However, this could grow if
we had larger configuration parameter spaces. At the same time, due



Lightweight Self-Adaptive Configuration
Using Machine Learning CASCON’21, November 22–26 2021, Toronto, Canada

Table 1: Data from using Finch with artificially generated configuration parameters.

Configuration precision Average model accuracy Dataset size (# of rows) Training time Prediction time

Run 1
Initial 40% N/A N/A N/A N/A
Cycle #1 60% 71% 326 46 seconds 200 milliseconds
Cycle #2 100% 80% 1,082 1 min 20 seconds 117 milliseconds

Run 2
Initial 40% N/A N/A N/A N/A
Cycle #1 60% 68% 374 51 seconds 165 milliseconds
Cycle #2 100% 80% 1,165 1 min 12 seconds 128 milliseconds

Run 3
Initial 20% N/A N/A N/A N/A
Cycle #1 80% 87% 334 43 seconds 125 milliseconds
Cycle #2 100% 94% 1,125 1 min 7 seconds 119 milliseconds

to the incremental nature of Finch, this relatively limited number of
samples shows that it is possible to make effective predictions even
with limited training data. That said, the models trained in Finch
will likely not generalize between target applications, so these data
points must be collected on a per-system basis.

5 DISCUSSION
Finch represents a prototypical tool that has several limitations and
while promising leaves much space for future improvement.

Threats to validity. Our initial prototypical evaluation sought to
determine whether Finch could monitor, plan, and adapt a running
system. The primary threat to the external validity of these results
was that we only evaluated on a single system. In terms of construct
validity, the system was also exercised under synthetic loads, which
could be addressed by applying Finch to a deployed system (or a
mirror of a deployed system). Our evaluation also focused on a
small subset of Postgres configuration options. Additionally, the
evaluation did not explicitly examine the time-series impact of
the data that was collected. Evaluating the approach’s ability to
adapt configurations for real systems under real load remains future
work, although our initial analysis does at least seem to point to
the prototype heading in the right direction.

In terms of internal validity, gaining user experience defining
SLAs and configuration parameters would be helpful to ensure
that the Finch SLA and parameter schemas are expressive enough
for users to effectively define their configuration and monitoring
needs. Additionally, comparing to other self-adaptive approaches
from research and industry (both in terms of developer overhead
and runtime performance) would help to better situate Finch among
related approaches.

Future work. The domain of the tool is currently limited to REST-
based systems. This is not a limitation of the underlying data models
or approach, but rather a reflection of our selection of Prometheus
which specifically instruments REST endpoints. If we were to ex-
pand to another type of tracing or logging framework (such as

Dtrace [6]) or by allowing developers to manually generate in-
strumentation events we could expand the breadth of the kinds of
system events Finch could observe.

Increasing the range of systems we could observe would also
cause us to increase the breadth of SLAs our system could support.
Right now our SLA definitions only support evaluating throughput
and latency which both naturally map to REST-based systems. Ex-
panding to a richer set of measures would also increase the power
of the tool (for example CPU, memory, IO, error rates, or perhaps
even the cost function associated with cloud-based resources).

In some training cycles, grid search is automatically used in
order to improve the quality of the accuracy. This special and costly
training happens during the first few cycles, and when the accuracy
starts dropping, usually because of change in the usage patterns.
Because this is a computationally-expensive operation, this can
negatively affect the target system by using too much compute
power during the training operation. This performance issue could
be reduced by distributing this training pipeline to other machines.

Additionally, before deploying Finch in practice, a more com-
prehensive interface would be required. In particular, the current
prototype automatically deploys new configurations either by mod-
ifying the in-memory configuration or changing the configuration
file and restarting the system appropriately. While this automatic
process is works, it is understandable that an operator may want to
examine and approve plans before they are deployed, or to explicitly
specify when those configuration updates may take place.

6 CONCLUSIONS
In this paper we introduce Finch, a proof-of-concept tool for en-
abling self-adaptation in target systems without requiring com-
plex architectural changes. Currently, the tooling for building self-
adaptive systems is scarce and complex; our proposed approach
provides initial evidence that a lightweight facility for enabling self-
adapting configuration of non-autonomous REST-based systems is
possible.

We show that Finch learns how to configure a target system after
it ran alongside the system for a short training period. Finch ob-
serves system behaviours under workloads and evaluates whether
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the system violates any of its Service Level Agreements. If any
violations are encountered, Finch executes adaptations that change
the target system’s configuration; in our prototype study, these
changes have been shown to successfully optimizes the system’s
performance. The success of the adaptation stems from the ma-
chine learning-based MAPE-K feedback loop that is injected into
the target system. In summary, we feel that Finch is to provide a
lightweight mechanism for enabling configuration self-adaptation
in existing REST-based systems, incurs a performance overhead no
higher than 8.5%, and is able to successfully recommend configura-
tions that can resolve SLA violations. We hope that this lightweight
approach can be applied in additional configuration-rich settings
where varying runtime conditions would benefit from dynamic
configurations and that Finch can provide initial evidence that such
a system could have practical utility.
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