Adaptive Feature-Preserving Isotropic Remeshing

YUAN YAO, University of British Columbia

Fig. 1. Isotropic Remeshing. The left figure is the original 3D mesh of cow head. The medium one is the isotropic remeshing result. The right one is adaptive

remeshing result.

Remeshing is a traditional topic in computational geometry. There are al-
ready many different mature algorithms in isotropic remeshing, anisotropic
remeshing and even quadratic remeshing. In this work I mainly focus on im-
plementing a classic incremental remeshing algorithm proposed by [Botsch
and Kobbelt 2004]. Besides the basic approach, this work also tries to add
feature-preserving and adaptive remeshing for improving the quality of
final results. The results for standard isotropic remeshing is as good as in
the original paper, however the adaptive method works but lack of details.
Additionally, I noticed that the library I am using is libigl which is actually
not suitable for this inremental remeshing algorithm as it’s more often to be
used for solving linear system.

Additional Key Words and Phrases: remeshing, isotropic, adaptive, feature-
preserving

ACM Reference format:

Yuan Yao. 2019. Adaptive Feature-Preserving Isotropic Remeshing. ACM
Trans. Graph. 36, 4, Article 1 (July 2019), 4 pages.

https://doi.org/

1 INTRODUCTION

Triangle and quad-dominant meshes are ubiquitously used in com-
puter graphics and CAD applications to represent surfaces, either
directly, or as the control grid for higher-order parametric or subdi-
vision surfaces. Nowadays, meshes can be acquired with high accu-
racyusing multiple methods, for example, using three-dimensional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.

0730-0301/2019/7-ART1 $15.00

https://doi.org/

(3D)laser scanners, RGBD cameras, dense reconstruction from multi-
view stereo images and isosurface contouring. Using these acquire-
draw meshes directly in downstream applications is difficult be-
causethey usually contain redundant data and have poor mesh
quality.Remeshing is necessary to improve mesh quality while pre-
serving the original geometry.

The most widely used triangular remeshing method is incremen-
tal isotropic remeshing which firstly proposed by [Botsch and
Kobbelt 2004] and is a simplified version of [Kobbelt et al. 2000].
It produces results that are comparable to the ones by the original
algorithm, but it has the advantage of being simpler to implement
and of being robust. In particular, it does not need any parameteri-
zation nor the involved computation of (geodesic) Voronoi cells as
some other variational methods do.

In this project, I mainly do such works:

o Implement a basic incremental remeshing algorithm. This
algorithm consists of five steps including: split edge, collapse
edge, flip edge, tangential relaxation and project to surface.

o Tadd afeature preserving strategy. The feature vertices/edges
are computed at very beginning and are preserved along the
whole pipeline with vertices data structure.

o I also tried to modify it to be adaptive, which means the
length in smooth region is large but short in areas near sharp
features.

2 APPROACH

In this section, I mainly describe the methods and pipeline I use
for the remeshing. The key objective for the isotropic remeshing
is to set all the edge length be the same and all the vertices have
perfect valence(6 for interior vertex, 4 for boundary vertex). Refer to
[Botsch and Kobbelt 2004], I follow the traditional procedure: split
edge, collapse edge, flip edge, tangential relaxation and projection

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2019.

https://doi.org/
https://doi.org/

1:2 « Yuan Yao

Heoeew®

Edge Edge Edge Vertex
Collapse Spllt FI|p Relocatlon

o0 & O B

Fig. 2. Baisc Operations. Edge collapse is to collapse an edge and merge the
two vertices together. Edge split would insert a new vertex which decrease
the length of the original edge. Edge filp can change the valence. Vertex
relocation move the vertex to a reasonable position which could be used for
recover the original mesh.

to surface. The input to the whole method is only the target length
for the final mesh’s edges. The output would be a mesh which
tries to satisfy this length. Besides, I also add two more functions:
feature-preserving and adaptation which can help to improve the
performance.

The incremental remeshing method separates the whole pipeline
into five steps: split long edge, collapse short edge, flip edge, tan-
gential relaxation and project back to surface. The function of the
first two steps are to cut or merge the edges to make them at the
similar level with the target length. Then we flip the edges which
can make the valence better. Finally, to recover the original surface
and details, the method project the vertex back to the original mesh.
Figure 2 shows how the basic operations in this method works. The
rest of this section will explain more details about these and other
functions I add.

Split edges. Given the input target length, we firstly compute a
upper bound and lower bound for the further computation by

low = (4/5) * length, high = (4/3) = length (1)

Then we traverse all the edges, and split is if it’s longer than high.
At the mean time, keep updating all the data structures to preserve
the consistency. The new inserted vertex is on the middle of the
edge. Now we have many edges no more than high, for those edges
which are still long, they will be splitted in the later iteration.

Collapse edges. After splitting edges, we get rid of some long
edges, so it’s time to deal with short edges. Similarly. for those edges
shorter than low, we collapse it by merging the two vertices and
remove one of them. Actually this could cause many problems like
non-manifold or triangle flipping.

Flip edge. To flip edge, it has to make the valence perform better.
So the measurement for a potential edge flipping is

deviation = abs(valence(a) — target_val(a))
+ abs(valence(b) — target_val(b))
2
+ abs(valence(c) — target_val(c)) @)
+ abs(valence(d) — target_val(d))

Here target_val means the target valence of the vertex, if it’s an

interior vertex, it’s 6, if on boundary, it’s 4. a,b,c,d are 4 vertices

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2019.

on the two triangles adjacent to the edge. If the deviation become
smaller, which means the valence is closer to perfect settings, we
flip this edge, otherwise keep it. So we traverse all the edges and do
this check and flip the edge or not.

* tangent

Fig. 3. Tangent relaxation illustration. Move the new vertex along the normal
of the original vertex.

Tangential relaxation. It applies an iterative smoothing filter to
the mesh. Here, the vertex movement has to be constrained to the
vertex tangent plane in order to stabilize the following projection
operator. Let p be an arbitrary vertex in the current mesh, let n be
its normal, and let g be the position of the vertex as calculated by a
smoothing algorithm:

1
g=——~ >, p (3)
NG, &)

The new position p’ of p is then computed by projecting q onto
p’s tangent plane:

P =g+l (p-q) @
This step is also illustrated in figure 3.

Fig. 4. Project back to surface by finding the closest triangle on the original
mesh. After finding the closest triangle, do the barycentric interpolation.

Surface projection. This step is way more important as it will
largely recover the surface from original mesh 4. We project each
vertex back to the original mesh by finding the closest triangle and
doing interpolation. Then treat these vertices as the final locations.
This can help to approximate the original mesh. To accelerate the
process, we use AABB tree for searching.

Fig. 5. Feature determination. Compute the angle between the normals of
the vertices adjacent to the edge, if it’s larger than a threshold, then set the
edge and attibuted vertices to be features.

Feature preserving. To preserve the features in the original mesh,
I add a feature list and maintain it through the whole pipeline. To
determine a feature edge, I compute the angle between the normals
of the vertices adjacent to the edge and use this to set if the edge is
feature or not.

Adaptive. I also add a simple adaptive remeshing scheme. The
key idea for adaptive remeshing is to set different target lengths
on different areas. To know whether a vertex is in a smooth or
sharp region, we need to use principle curvature k,in and kpyqx-
Therefore the target length I set is

|kmin|

|kmax|

local_target_length = * target_length (5)

Here target_length is the length we set as the input. This obser-
vation is not always correct, but can indeed generate some adaptive
results.

3 RESULTS

In this section, I firstly describe more details on implementation
and experiment settings. Then I present some visual results using
different settings and method.

3.1 Implementation

T use libigl [] as the third party library whose data is simple vertex-
face lists rather classic half-edge data structure. It’s more general but
actually not suitable for this algorithm as it is harder to represent the
topology although it can easily provide global information and be
more efficient for some global computation. To help with topology
update, I add a new array which store the neighbor edges for a
directed edge in a directional way. This largely help to find the
neighbor edge and update other topology stuff.

However, libigl indeed provide some useful build-in function
which I used. They have an interface for edge collapse and an AABB
tree-based point to surface function which help to project back on
original surface. It also integrate a easy-to-use GUI which I can
change and modify it easily.

Adaptive Feature-Preserving Isotropic Remeshing + 1:3

For the algorithm implementation, I did not check if the collapsed
edge would become longer than high and I do not add any other
constraint for edge flipping as these things are not that necessary
and would cause some flipping triangles sometimes. The feature
preserving part is a little tricky, I only care about the projection to
feature edge but not check if edge collapse and other parts affect
that. The results are already good enough and can observe some
features get preserved.

3.2 Experiment

For this section, I will present experiment on different models, set-
tings and their corresponding results. All the data are from the given
models by the course website.

Fig. 6. Remeshing results. The left one is the original mesh, the right one is
the remeshing result using target length 0.02. The result is almost isotropic
but lost some information because of the high target length.

Visual results. As figure 6 shows, my implementation can indeed
achieve isotropic remeshing as expected. It takes 5 6 seconds to get
such results in near 4 iterations.

Xl

Fig. 7. Results of remeshing a cube in different iterations. From left to right:
the original mesh, after 1 iteration, after 2 iterations, after 5 iterations, after
10 iterations.

Iteration. Iteration indeed is very important for some cases. Like
figure 7, the first two iterations’ results are largely different from the
original because of the small amount of vertices. And it also shows
the power of projection back to surface, which can still recover the
original information after many iterations.

Target length. As our input of the algorithm is target length, it
could affect the final results in a very critical way. As figure 8 il-
lustrates, the smaller the target length is, the more details the final
result can recover.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2019.

1:4 « Yuan Yao

Fig. 9. Results of adaptive remeshing(same as teaser). The right one, which
is the result of adaptive remeshing, has indeed some adaptation but still
cannot recover the original details. The problem is that the threshold and
metric | use for setting different target length are not almost correct.

Adaptive. As I mentioned before, I only tried a very simple and
quick metric to determine if the target length for different vertices
and edges. However the metric is not always correct, therefore the
results can have some adaptation but cannot reproduce the original
details. The results are shown in 9.

4 CONCLUSION

Remeshing is a super funny task, it integrate many of the topology
operations and also some differential geometry knowledge and
closest point problem. This work implemented a very standard and
efficient incremental remeshing algorithm and tries to add some
more functions. Although the adaptive results are not that good, it’s
also worth trying new metric to determine the best target length
in different region. There are also some potential future works
and direction like remeshing using graph convolutional network
which can highly speedup and may resolve flipping triangle problem
as it can self modify the topology. Additionally, it would also be
interesting to transfer this method into quadratic remeshing.

REFERENCES

Mario Botsch and Leif Kobbelt. 2004. A remeshing approach to multiresolution modeling.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing. ACM, 185-192.

Leif P Kobbelt, Thilo Bareuther, and Hans-Peter Seidel. 2000. Multiresolution shape
deformations for meshes with dynamic vertex connectivity. In Computer Graphics
Forum, Vol. 19. Wiley Online Library, 249-260.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Approach
	3 Results
	3.1 Implementation
	3.2 Experiment

	4 Conclusion
	References

