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Abstract

Reactive programming is a paradigm that allows programmers to define perpetual data-flow dependen-
cies in a way that is intuitive and provides an abstraction layer for necessary low-level synchronization
operations. The result is a graph-like structure of interconnected operators that process incoming data
and transfer it to their successors. However, this structure is typically not accessible to the user of a
reactive framework, and may not even be represented by its internal implementation.

In this thesis, we present and evaluate approaches to formally represent reactive data-flow in graph
form. We then use approaches known from the field of metaprogramming to create an external meta-
representation for reactive programs, which makes the structure and semantics of the data-flow accessi-
ble to the user. Additionally, we show how this meta-representation can be transformed into executable
code in a reactive framework, and outline how run-time information can be incorporated into the meta-
representation graph.

We have implemented the presented meta-representation in the programming language Scala, as well
as a transformation procedure into executable code within the REScala framework. Finally, we have
evaluated the performance overhead of our implementation and we have implemented several case
studies to evaluate the meta-representation’s applicability in common metaprogramming use-cases.
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1 Introduction

In many modern usage scenarios, programs are required to efficiently react to streams of input data and
apply complex processing and combination to them in real-time. Simultaneously dealing with common
additional challenges like concurrency, data transfer over networks and run-time modifications to the
data stream can further complicate this task. While classical object-oriented programming provides
solutions for most of these requirements in the form of design patterns and abstraction through libraries,
it is often difficult to combine all of them, ensure data consistency and at the same time create code that
is efficient and maintainable.

Reactive programming is an approach to these issues that found wide-spread acclaim in research and
real-life applications, as it allows programmers to handle the creation, management and usage of data
processing streams in an intuitive way that better represents the relevant program flow [1]. With no addi-
tional actions required from the programmer, reactive frameworks provide guarantees that are essential
to prevent unexpected or unpredictable behavior as well as potential data inconsistencies.

The persistent synchronization of data and the triggering of relevant events based on it is the fun-
damental principle of reactive programming. This data-flow is commonly visualized as a graph-like
network of interconnected operation nodes, and reactive data-flow graphs are often used when analyz-
ing or specifying the semantics of reactive frameworks [1, 2, 3].

Giving users access to the same data-flow modelling can, besides visualization of their programs, allow
then an analysis and visualization of their programs. Further, they might be interested in performing
transformations on already existing data-flow structures for reasons like optimizations, adaptions to
specific execution environments or simply to alter the reactive program’s semantics.

The actual implementation of data-flow handling within reactive frameworks may however not repro-
duce this model but only the resulting behavior, as it is optimized for efficiency while providing an easy
to use external interface to the user. These interfaces on the other hand only provide the necessary access
for entering or reading data from the reactive network, as well as ways to add additional dependencies.
It is therefore not possible to extract and analyze the theoretical graph structure of a reactive program
after it is created.

Providing access to the structure of programs as data that can be analyzed and manipulated by other
programs is a whole field of software engineering called metaprogramming. Metaprograms can take an
external view-point that allows them to inspect a meta representation of another program or even them-
selves. This meta representation retains significant semantic information that is not typically available
by accessing the internal representation of a program, or simply following the execution of low-level
assembly or bytecode.

It is possible to categorize different metaprogramming attempts into static metaprogramming, which
exclusively inspects a program’s structure as it is available at compile-time, and dynamic metaprogram-
ming which is applied during run-time and therefore can provide insight into the actual execution be-
havior of a program under certain input and environment conditions.

In this thesis, after introducing the foundations of reactive programming usage and implementation in
Chapter 2, we present a meta representation that is designed to statically model the high-level semantics
of data-flow in reactive programs in Chapter 3. We show how this representation can be used to design
reactive programs and, in combination with an existing reactive framework, build an executable reactive
program in Chapter 4. In this chapter we further show how run-time information can be gathered
and re-integrated into the meta representation to analyze the run-time state and behavior of reactive
programs.

We have implemented the presented meta representation in the programming language Scala, as well
as transformations that allows the conversion of reactive programs between this form and an executable
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representation in the REScala framework. In Chapter 5 we present this implementation, outline chal-
lenges we encountered and necessary adaptions in comparison to the formal models.

An evaluation of our implementation and our findings can be found in Chapter 6. As part of the
evaluation we have applied benchmarking to measure the resulting performance overhead compared to
plain REScala code and further evaluated the usefulness for implementing actual reactive metaprograms,
by case studies of optimizations and analyses conducted based on the meta representation.

Finally, in Chapter 7 we provide an overview of other research and the resulting approaches in
metaprogramming and representation of data-flow. In doing this, we focus on a comparison to our
design decisions and potential future extensions that might be applicable to our meta representation.
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2 Background

The contributions presented in this thesis are based on reactive programming concepts formed over the
last decades that we will briefly introduce in this chapter. Section 2.1 will give an introduction into the
relevance and fundamental ideas behind reactive programming. In Section 2.2, we will then present
further concepts and terminology that are relevant to the theoretical understanding of the reactive data-
flow we model in Chapter 3. Finally, in Section 2.3 we will give an outline about the concrete framework
REScala that we used for our implementation presented in Chapter 5.

2.1 Reactive Programming

One of the most basic operations in programming languages is the assignment of a value or an expression
to a variable. In purely functional programming languages, this is equivalent to giving a label to the
assigned expression allow it to be used multiple times and enable features like recursion. Since purely
functional expressions are guaranteed to always evaluate to the same result and have no side effects, it
does not matter how often and at which point(s) in the program’s execution they are evaluated.

In stateful programming languages however, the evaluation order and number of re-evaluations can
be crucial to the program’s semantics and therefore need to be exactly specified. The typical approach
to define assignments in stateful imperative languages is that assignments represent a one-time transfer
of the current expression value at the exact point in time the assignment is executed. By doing so, the
assigned expression is evaluated exactly once and its value is stored to allow re-use without re-evaluation.

A consequence of immediate one-time evaluation semantics is that assignments do not establish any
permanent dependency between expressions and their assigned variables since later updates of the for-
mer don’t affect the latter at all. In many common use cases, this behavior is however not the one
desired by the programmer. Their intention is instead to establish a constant connection between the
source expression and the target value that keeps them synchronized.

To achieve this behavior, there exist multiple workarounds, the simplest being a manual update of the
target variable by re-assigning the expression and therefore the updated value. This is obviously not
an ideal approach, as it requires the programmer to consider all dependencies whenever a variable is
updated, and transitive dependencies between variables can cause long, hardly manageable chains of
updates. Especially in modular scenarios where programmers don’t necessarily have an overview over
the full program code, manually keeping variables synchronized can become tedious, bloats the code
with unrelated operations and involves a significant risk of programming errors.

The classical way to avoid manual variable updates in object-oriented programming languages is to
encapsulate the variable with and object and its assignment with a method that automatically performs
necessary dependency updates. Using a dynamically maintained list of dependencies leads to a paradigm
knows as the Observer pattern [4] that has become the de-facto standard for variable state synchro-
nization. Allowing dynamic bindings between variables and dependencies however, requires both the
observed variable and the dependent observer to adhere to interfaces defined by the pattern, which
implement the expected management of dependencies and propagate actual changes.

In Fig. 2.1, examples for both manual updating of dependencies and utilization of a variant of the
Observer pattern are shown. While the automated observer code shown on the right side allows a
more efficient maintenance of complex data dependencies in the long run, several disadvantages of the
observer pattern become apparent:

• The observer management adds a large amount of boilerplate code that is not relevant for the
actual computation and makes the intended purpose of the code hard to understand.
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1 // Initial setup
2 var a = 1
3 var b = a + 1
4
5 // First update
6 a = 2
7 b = a + 1
8
9 // Second update

10 a = 3
11 b = a + 1

1 // Class definitions
2 class A(int value) extends Observable {
3 private var a = value
4 private var observers = mutable.Set()
5 def addObserver(o : Observer) = { observers += o }
6 def set(value : int) = { a = value; observers.foreach(update) }
7 }
8
9 class B extends Observer {

10 private var b = update()
11 def update() = { b = a + 1 }
12 def get() = b
13 }
14
15 // Initial setup
16 val a = new A(1)
17 val b = new B()
18 a.addObserver(b)
19
20 // First update (b is set to 3)
21 a. set(2)
22
23 // Second update (b is set to 4)
24 a. set(3)

Figure 2.1: Non-reactive data dependency handling through manual updating (left) and the Observer
pattern (right).

• Only the actual updating process for changes is automatized, but not the actual management
of data dependencies, which is still a responsibility of the programmer. This especially becomes
problematic when also considering the issue of removing dependencies when they are no longer
required, which if forgotten is a common cause for programming errors [5].

• It is technically possible to chain multiple observers triggering each other and create more complex
dependency patterns. However, the resulting behavior such as the order or the number of times
each variable is updated may depend on the internal definition of the methods defined by the
pattern. Managing this process and understanding its consequences requires the user to have
insight into the internal control flow, which means that no actual layer of abstraction from the
updating process is generated.

Features found in modern programming languages like traits or operator overloading can reduce the
visible overhead caused by the Observer pattern, and attempts have been made to further improve the
level of abstraction by syntactic abbreviations [6] or macros [7]. They can however not solve the general
issue of hard to track control flow and a lack of control over order of the performed updates [5].

Reactive Programming is an programming paradigm designed to replace the Observer pattern by a
design that provides the same automatized data-flow as the observer pattern while providing solutions
for all the previously listed issues. It has first been developed for usage in purely functional programming
languages [8, 9], but its concepts were recently adapted to more commonly used, stateful object-oriented
languages [3, 10].

One fundamental element type of reactive programming is signals, which represent a variable con-
nected within a dependency network that is automatically updated when the expressions it is based on
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are changed. In contrast to the observer pattern, all signals in a reactive program are automatically
both in the role of a sender of their updated values and a receiver of incoming changes. A special type
of signals are reactive variables, which act as a signal source as they are the only signals not implicitly
updated by their dependencies but manually set by the user.

In addition to signals, most reactive frameworks usually also support another type of element that is
events. Events, while working like signals in receiving, processing and further propagating reactive value
changes, do not have a persistent value. Instead, when they are fired they can act as a trigger for reactive
signals or other events, and further call observers, which are arbitrary functions that can contain external
side-effects but are themselves not part of the reactive dependency chain. As with signals, events can
exist in both an implicitly triggered form and as an event source that is manually fired by the user.

1 // Initial setup
2 val a = Var(1)
3 val b = a.map(_ + 1)
4
5 // First update (b holds the value 3)
6 a. set(2)
7
8 // Second update (b holds the value 4)
9 a. set(3)

1 // Initial setup
2 val a = Var(1)
3 val b = a.map(_ + 1)
4 val c = b.map(_ * 2)
5 var d = Signal { b() + c() }
6 var e = d.changed
7 e += { v => println("d is now" + v) }
8
9 // First update (prints "d is now 7")

10 a. set(2)
11
12 // Second update (prints "d is now 10")
13 a. set(3)

Figure 2.2: Reactive example programs.

The left side of Fig. 2.2 shows a reactive version of the previously shown sample code. The reactive
variable a is a signal that has the dependent signal b added to it. When it is then updated with a new
value, changes are implicitly propagated as it would have been the case with the observer pattern, but
without any boilerplate code for dependency set-up. The right side of the figure shows a more complex
example that creates two dependent signals b and c for a single reactive variable a, which are themselves
merged into another signal d depending on both. Additionally, an event e triggered by the changes to
the signal d has an observer function added to it that prints the current signal value.

The simple examples shown in Fig. 2.2 already illustrate the significantly reduced boilerplate code
needed by reactive programs in comparison to the observer pattern. Another advantage becomes obvious
when analyzing the behavior of the program shown on the right side of the figure. In a program using
the observer pattern, the observer function might be triggered multiple times after both b and c are
propagating their updates to d. The result is multiple printed messages with intermediate values of d.
The reactive program however avoids this so-called glitches that will be further discussed in the next
section and only triggers the observer function once after all signals are updated.

This and all further code samples in this chapter are using the syntax of the REScala framework for
Scala [3]. We will provide a more in-depth introduction to this framework in Section 2.3, and use it as
the foundation for our implementation we present in Chapter 5.

2.2 Reactive Data-Flow Management

Both reactive and classical non-reactive programs have in common that they create a chain of operations
that process data based on a given control-flow. An established way to visualize this flow in non-reactive
programs are data-flow graphs [11]. While it is possible to re-use this modelling for reactive programs,
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data-flow graphs need to be interpreted differently in this context than they would be in their originally
specified form. While there each edge only represents an instantaneous one-time transfer of data, for
reactive programs each data dependency must be considered as permanent.

a

b

 + 1

b

d

 +

c

d.changed

 changed

a

 · 2+ 1

Figure 2.3: Data-flow graphs for the programs from Fig. 2.2.

Fig. 2.3 shows data-flow graphs for the examples from Fig. 2.2. In this thesis, we use rectangular
shapes to refer to signals in data-flow graphs and hexagonal ones for events. Event and signal sources
are marked by double stroke boxes. While we will re-use this visual design as a guideline for all graph
models presented in this thesis, data-flow graphs are only intended to visually support an understanding
of reactive data-flow management in this chapter. Therefore, we will also skip all formal specification of
data-flow graphs here, which will be discussed in detail in Chapter 3.

To support for the permanent establishment of data dependencies that is the core feature of reactive
programming, it is necessary to ensure that data-flow equivalent to the shown graphs is permanently
ensured. Compared to alternatives like the observer-pattern, this process takes place completely hidden
from the user and is provided by a reactive framework. Two generalized ways to handle data-flow
between reactive elements exist in real reactive frameworks [1]:

1. The direction of the given data-flow graph visualization intuitively suggests a propagation of up-
dated values that is push-based. In this type of value propagation, reactive updates are pushed from
their originating reactive element to its dependencies, and in the same way further on, following
the direction of the data-flow graph.

2. An alternative approach that is also found in reactive frameworks is pull-based data-flow. In this
variant, changes to a reactive element are not immediately propagated but just stored for the
element itself. Only if the current value of an element is requested, its incoming data-flow edges are
re-evaluated, causing a chain of re-evaluation that proceeds throughout the graph in the opposite
direction of the data-flow edges.

While a pull-based management of data-flow is closer to the lazy evaluation semantics used in many
functional programming languages like Haskell, it raises the question when re-evaluation of an element
must be triggered. In reactive frameworks that only support signals but not events, this trigger is when-
ever a signal is read. In scenarios where more updates of signals than actual read operations of their
value occur, this can lead to performance benefits as value propagation only takes place when the result
is relevant.
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If events need to be supported on the other hand, a potential triggering of the event’s observer func-
tions could take place in every step of the program’s execution. Consequently, pull-based approaches can
only avoid erratic, delayed triggering of those by permanently pulling for potentially updated values.
This behavior typically results in a very low efficiency compared to push-based approaches. For this rea-
son, push-based data-flow management is the more wide-spread variant in real-world implementations
of reactive frameworks [1] and will be assumed as the default implementation in this thesis if no explicit
management type is stated.

The combination of data-flow graph and used data-flow management semantics is not sufficient to
fully define the data-flow of a reactive program. The right data-flow graph shown in Fig. 2.3 is an
example where different evaluation orders with different results can exists within a push-based data-
flow approach: When the signal source a is updated, an update of both signals b and c is triggered.
Assuming a depth-first approach on updating the signals, each of those separately cause the signal d to
be updated and the d.changed event to be fired. This means that d is set and the event is fired twice,
once with an intermediate value based on an updated b but unmodified c (or vice versa) and again once
both b and c are updated.

This behavior may not be the one that a programmer would intuitively expect. Instead, the alternative
behavior of updating both b and c first, then d and finally triggering the event d.changed exactly once is
the result expected by most programmers. If this assumption is violated by repeatedly causing a signal to
re-evaluate or an event to fire based on intermediate values, the resulting behavior is called a glitch. An
order of propagating value changes that guarantees that each reactive element is updated exactly once
is called glitch-free [1].

To avoid multiple necessary re-evaluations of a single reactive element, a glitch-free re-evaluation
order must ensure that before any signal is updated or any event is fired, all predecessors have already
been re-evaluated. An ordering that fulfils this requirement is called a topological ordering. There exist
multiple approaches to find a topological ordering of a graph, like usage of a priority queue or reverse
post-ordering [12]. We will however demonstrate an approach here that is based on level-based node
labelling.

In this approach, level labels need to be assigned to each node in a way that they are guaranteed to
have a higher level number than all of their predecessors. The most straight-forward method to assign
all nodes their correct depth level is to traverse the graph and label each node with the highest level of its
predecessors incremented by one. Afterwards a topological ordering is ensured by simply re-evaluating
nodes in increasing level order.

Figure 2.4 shows the labeled version of the right data-flow graph from Fig. 2.3 on the left side.
Here, the resulting labelling is very simple and intuitive. The right side of the figure shows however
an only slightly modified graph with an added direct dependency between the signals b and c. Here,
it is significantly harder to intuitively assign labels. The presented approach is however still working as
intended and the resulting labels can be seen on the graph.

The issues and design choices shown in this section are a commonality of all reactive frameworks that
much establish a permanent data-flow between elements that follows a consistent pattern. There are
however additional features that some reactive frameworks implement to extend the feature level of a
programming language that can be expressed without leaving the reactive programming context. In the
next section, we will present the REScala framework we based our implementation on and the extensions
to the presented paradigms and features.

2.3 The REScala Framework

Support for reactive programming has been realized for many different programming languages, both
purely functional ones [9] and those already supporting state natively with non-reactive semantics [10].
Assuming a given non-reactive base language, two general approaches for extensions are possible:
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Figure 2.4: Labelled data-flow graph from the right side of Fig. 2.3 (left) and modified, less intuitive
version (right).

1. Extending the language with new syntax, either by modifying the original language specification
and extending or re-implementing existing compilers.

2. Using the existing syntax and adding support for reactive elements via a library providing the
necessary interfaces and background implementation.

The latter approach is usually less invasive and requires less effort of a programmer to set-up and
maintain the reactive framework. However, it often comes with the price of less syntactic adaptation to
the additional features and more runtime performance overhead compared to language-level extensions.

The programming language Scala [13] provides features to solve both issues: To keep code clean
and readable, it provides a highly flexible syntax and expressive language features such as first-class
functions, that combined even allow the implementation of many existing language features on a library-
level. For performance, Scala code is compiled to Java Bytecode, allowing runtime optimizations through
the employed Java VM to further reduce overhead. Because of these advantages, Scala is a language well-
suited to implement reactive extensions on a library level.

The REScala framework is an existing library-based implementation of reactive programming features
for Scala [3, 14]. It features all the previously described functionality with a push-driven data-flow
management model. Signals and events are represented through objects that provide an abstracted
interface for the backend propagation functionalities. The processing of events and signals is possible
through pre-defined methods based on typical functional operators such as map or fold, as well as signal
expressions that allow arbitrary function definitions based on other signals. The examples shown Fig. 2.2
in the previous section demonstrated these basic reactive functionalities.

In extension to the already discussed features of reactive frameworks, REScala supports dynamic de-
pendencies. These allow modifications to the statically defined data-flow during a reactive program’s
runtime. An example usage of dynamic dependencies can be seen in Fig. 2.5, where a higher-order con-
ditional expression is embedded within a signal expression. In a reactive engine that does not support
dynamic dependencies, this signal expression would be required to always consider all possible incoming
data-flow edges from the signals a, b and c. This would lead to potentially unnecessary re-evaluations of
x , for example when c is updated while a is set to true. A dynamic dependency model allows the calcu-
lation of the actual dependencies of the expression at runtime and therefore can avoid the propagation
of updates from the currently not relevant reactive element.
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1 val a = Var(true)
2 val b = Var(1)
3 val c = Var(2)
4 val x = Signal { if (a()) b() else c() }
5 println(x.now) // prints 1
6
7 c. set(3) // No reevaluation of x
8 a. set( false ) // Changes dependencies of x
9 c. set(4) // Triggers reevaluation of x

10
11 println(x.now) // prints 4

b

x

ca

if (a) b else c

Figure 2.5: Program illustrating dynamic dependencies (left) and resulting data-flow graph (right).

While in the shown example, a dynamic evaluation of dependencies enables a mere optimization of
run-time performance, it can also completely enable additional scenarios that would be impossible with
purely static dependencies: An operation supported by REScala that would be impossible to handle
without dynamic dependencies is the flattening of nested reactive values, i.e. where the value of a signal
is a signal itself. The result of this operation is a single signal containing the value inner original signal.
As the inner signal is dynamically stored within the outer nested signal and may be modified at any
time, a static dependency model would not allow to handle this case properly. Instead it would require
manual extraction of the outer signal’s current value, leaving the reactive context and disabling the
provided features and guarantees.

Another feature supported by REScala is the concurrent propagation of multiple updates in the reactive
graph. This allows users to access reactive elements from different threads while REScala internally guar-
antees thread-safety. To allow different implementation approaches to provide this guarantee, REScala
provides a well-defined interface and multiple included implementations for propagation engines that
can be selected as a parameter when using the framework. These engines then control the propagation
process and can provide thread synchronization on different granularity levels.

Fig. 2.6 shows a small, simplified excerpt of the interface definitions REScala provides for signals and
events. The traits Signal and Event specify the interface provided to create dependent reactive elements.
The subclasses Var and Evt model the reactive sources that can be manually set or fired by the user. The
special method apply in line 2 is translated to a simple empty-parentheses call on the signal by Scala and
only used within signal expressions to get the current value of the signal while simultaneously creating
a dynamic dependency link between the signal expression and the referenced signal.

All interface methods use implicit parameters to allow the selected propagation engine to coordinate
the propagation process. The parameter Engine used for updating reactive sources specifies the selected
engine while the Ticket parameter is generated from an engine to ensure that all propagation steps
are performed as internally scheduled. As these are internal features of the REScala propagation pro-
cess that are not relevant for the topics covered by this thesis, we will not further elaborate on their
implementation and only show them again when discussing how they affected our implementation in
Chapter 5.
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1 trait Signal[+A] {
2 def apply(implicit ticket : Ticket): A
3 def map[B](f: A => B)(implicit ticket: Ticket): Signal[B]
4 def changed(implicit ticket : Ticket): Event[A]
5 }
6
7 trait Event[+T] {
8 def +=(observer: T => Unit)(implicit ticket: Ticket): Observe
9 def map[U](f: T => U)(implicit ticket: Ticket): Event[U]

10 def filter (f : T => Boolean)(implicit ticket: Ticket): Event[T]
11 def ||[U >: T](other: Event[U])(implicit ticket : Ticket): Event[U]
12 def toggle[A](a: Signal[A], b: Signal[A])(implicit ticket : Ticket): Signal[U]
13 }
14
15 class Var[A] extends Signal[A] {
16 def set(value: A)(implicit engine: Engine): Unit
17 }
18
19 class Evt[T] extends Event[T] {
20 def fire (value: T)( implicit engine: Engine): Unit
21 }

Figure 2.6: Simplified excerpt of the REScala interface definitions for signals and events.
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3 A Meta Representation for Static Data-Flow Graphs

The general idea of modelling the statically created data-flow structures within reactive programs
through graphs is very common in reactive programming research [1, 2, 3]. Like other authors, we
have already used graphical examples for data-flow graphs as in Fig. 2.3 for illustrative purposes in the
previous section. Unfortunately, besides outlining this general idea, no efforts have been made yet to
also find a common representation for reactive data-flow on a formal level.

To create a meta representation that is suitable for metaprogramming purposes as we intend in this
thesis, it is necessary to have an appropriate representation of data-flow first. The most simple approach
to define such a representation is to use a generic graph model. Such a modelling is typically defined
as a tuple (V, E) of vertices V and edges E ✓ (V ⇥ V ). Applied on reactive programs, this would result
in representing each reactive element by a vertex and each data-flow connection by an edge connecting
the dependent vertices.

To add information about the direction of data-flow, using directed edges is a measure found in all re-
search, while the used direction of flow is already a design decision. Depending on the desired view-point
of the representation, it can be appropriate to consider data-flow as a structural dependency pointing
from an element to its source of incoming data-flow, or to follow the direction of the flow as it is propa-
gated from root elements to their destination. In the previous Fig. 2.3 and all following illustrations, we
use the latter approach as it avoids a differentiation between edge and flow directions.

While this simple approach is already well-defined model for generic data-flow, it cannot store all of
the information contained in graphs as the one shown in Fig. 2.3. Using such a definition, it is neither
possible to differentiate between signals and events, nor to clearly identify source elements that can be
manually triggered. Furthermore, no semantic information about the operations that are applied when
processing the data-flow is made available by this representation.

This lack of a semantic context for the graph’s elements makes is difficult to evaluate the data-flow
graph in a level of detail that might be necessary for most metaprograms. Besides analyses not being
able to access this information, extensions or transformations of existing graphs are almost impossible
to perform while ensuring the validity of the resulting graph.

This is because events and signals define different sets of operations that can defined on them in a
meaningful way. While it is for example appropriate to filter events, so that they are only fired under
certain conditions, signals always need to carry a valid value and make a filtering operation therefore
not suitable to be applied to them. Also, operations typically specify exactly which type and number of
incoming elements they expect. An example for this can be the changed-event as seen in Fig. 2.3, which
semantically only allows exactly one incoming signal node as its dependency.

In this chapter, we present more powerful alternatives how to model reactive data-flow graphs. In
Section 3.1, we start with a very straight-forward approach of modelling graphs using only two different
types of vertices. Then, we show a way to include more information about data-flow semantics in the
graph in Section 3.2, and finally in Section 3.3 we add a representation for scheduled updates and
retaining the performed operation order.

The order of sections in this chapter follows a design process, starting from a rather straight-forward
modelling approach that still shows significant insufficiencies when applied, and moving on to more
refined models that solve their predecessor’s issues. While this means that the final graph definition
as shown in Section 3.3 is the most powerful, this does not necessarily mean that the previous ones,
especially as presented in Section 3.2, are not also applicable in situations where for example resources
are limited and a simpler model is sufficient.
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3.1 Simple Reactive Data-Flow Graphs

As we have outlined, defining a model for data-flow with no distinction between the two fundamental
types of elements in reactive programming, signals and events, leads to a significant loss of information.
The most intuitive solution is therefore adding a formal separation between these two kinds of vertices
in the data-flow graph. This leads to our first formal definition of a reactive data-flow graph.

Definition 3.1 (Reactive Data Flow Graph).

A reactive data-flow graph is a tuple (VS, VE , E) with

• VS, the set of signal vertices representing reactive signals,

• VE , the set of event vertices representing reactive events,

• and E 2 ((VS [ VE)⇥ (VS [ VE)), the set of directed data-flow edges between two vertices.

Using the sets VS and VE , we can individually handle signals and events in further formal definitions.
This allows us to define methods that can be applied to a data-flow graph that allow its extension in a
way to ensure a valid data-flow graph. If we start with an initially empty data-flow graph, we can use
such methods to formally construct any reactive program in a similar way as a programmer would do in
a metaprogram. We will define a sample set of these methods here to allow us the exploration of our
model and its expressivity.

We start by defining methods to add signal and event sources to a reactive data-flow graph.

Definition 3.2 (Data Flow Source Construction).

Let G = (VS, VE , E) be a reactive data-flow graph, v ⇤S be a fresh signal vertex, and v ⇤E be a fresh event
vertex.

G.Var() = (v ⇤S , (VS + v ⇤S , VE , E))

G.Evt() = (v ⇤E , (VS, VE + v ⇤E , E))

The two defined operations Var() and Evt() add a new signal and event vertex respectively to an
existing data-flow graph, and return a pair of both the added vertex and the resulting graph. By repeated
application, we can consequently create an arbitrary large graph with source vertices of both types but
no data-flow dependencies. Consequently, the next step is to define methods that add dependent signal
and event elements based on a graph that already contains at least one of these source elements.

Definition 3.3 (Data Flow Dependency Construction).

Let G = (VS, VE , E) be a reactive data-flow graph, vS, v 0S 2 VS be existing signal vertices, and vE , v 0E 2 VE
be existing event vertices. Further let v ⇤S and v ⇤E be fresh signal and event vertices.

G.changed(vS) = (v ⇤E , (VS, VE + v ⇤S , E + (vS, v ⇤E )))

G.mapS(vS, f ) = (v ⇤S , (VS + v ⇤S , VE , E + (vS, v ⇤S )))

G.mapE(vE , f ) = (v ⇤E , (VS, VE + v ⇤E , E + (vE , v ⇤E )))

G.filter(vE , f ) = (v ⇤E , (VS, VE + v ⇤E , E + (vE , v ⇤E )))

G.or(vE , v 0E) = (v
⇤
E , (VS, VE + v ⇤E , E + (vE , v ⇤E ) + (v

0
E , v ⇤E )))

G.toggle(vS, v 0S, vE) = (v ⇤S , (VS + v ⇤S , VE , E + (vS, v ⇤S ) + (v
0
S, v ⇤S ) + (vE , v ⇤S )))
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The list of defined methods is exemplary for an arbitrary number of possible operations to connect
data-flow vertices. We have selected the ones shown here as a running example, as we will discuss some
of them in greater detail in later stages of extending our reactive graph model. However, as all of them
represent specific operations applied to a reactive element, we want to give a brief overview of their
intended semantics for better understanding:

• changed is applied to a signal node and adds an event triggered by the change of this signal.

• mapS and mapE are applied to a signal or event respectively, and map its value by applying a given
function f to it.

• filter is applied to an event and filters it based on a given function f . If the function returns true,
the filter vertex also fires. Otherwise, the filter vertex ignores the incoming event.

• or is applied to two events and fires every time either one of them is fired.

• toggle is applied to two signals and an event. Initially, it takes the value of the first signal. Every
time the event is fired, it switches to the value of the previously not considered signal.

Using the previous definitions, we can construct or extend data-flow graphs for a large set of reactive
programs. While we do not cover all types of vertices that are typically supported by actual reactive
frameworks like REScala, adding new types of operations only requires a new method for each of them.

1 G0 = (;,;,;)
2 (e1, G1) = G0.Evt()

3 (e2, G2) = G1.Evt()

4 (v , G3) = G2.Var()

5 (or, G4) = G3.or(e1, e2)

6 (fil, G5) = G4.filter(or, {_> 0})
7 (mapE, G6) = G5.mapE(fil, {_� 1})
8 (mapS1, G7) = G6.mapS(v , {_ ⇤ 2})
9 (mapS2, G8) = G7.mapS(v , {_ ⇤ 3})

10 (tgl, G9) = G8.toggle(fil, m1, m2)

11 (ch, G10) = G9.changed(tgl)

12 (mapS3, G11) = G10.mapS(tgl, {_+ 1})

(mapS1)

(tgl)

(mapS2)

(v)(e2)

(fil)

(e1)

(or)

(ch) (mapS3)(mapE)

Figure 3.1: Construction of a reactive data-flow graph (left) and visualization of the result G11 (right).
Node labels are only for visualization purposes and not represented by the graph model.

In Fig. 3.1, we show how to use the presented methods to define a non-trivial example data-flow
graph. After defining several source elements using our first set of defined methods, we combine them
into new signals and events using the dependency generating methods. The resulting graph models a
data-flow as it could occur in a real-life reactive program.

The right side of Fig. 3.1 however also reveals a shortcoming of the presented model for data-flow
graphs. While it is now possible to differentiate between reactive signals and events, illustrated as in
the previous chapter by rectangular boxes for signals and hexagonal ones for events, all other semantic
information, like the mapping or filtering functions f , that is added during graph construction is lost.
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Even the labels on the graph’s vertices are just added to the figure for illustrative purposes but not
retained by the graph representation itself. Consequently, it is, for example, no longer possible to tell the
difference between the two mappings m1 and m2 of the variable v .

The loss of semantic information however has an even more significant impact: When examining the
vertices fil and mapE in Fig. 3.1, it is no longer possible to tell the difference between event mapping or a
filtering. Both vertices are only considered as generic event vertices that process data from an incoming
event node. This also becomes evident when comparing their actual definitions, which are completely
identical for the presented data-flow graph model.

Due to the significant loss of information, the shown model may not be appropriate for many possible
application scenarios, especially when it is used in the context of metaprogramming. Analyses and
transformations such as those we will present in Section 6.2 require semantic information to verify if
nodes are semantically equivalent, replaceable, or to simply transform existing graphs while retaining
the original semantic data used during construction.

3.2 Semantic Reactive Data-Flow Graphs

To overcome the limitations of the data-flow graph model presented in the previous section, it is neces-
sary to store additional semantic information within the graph. A simple idea to achieve this is by adding
information to the graph’s edges, similar to the visualization shown in Fig. 2.3.

Though this approach works as intended for methods like mapping and filtering, it is not sufficient to
fully model the semantics of more complex operations like toggling. Here, a single, semantically atomic
operation requires three edges in the graph to be represented. Further, it is necessary to differentiate
the edges since the order of the provided signals makes an important semantic difference. A more
sophisticated way of storing all the relevant semantic information with the corresponding vertex instead
of the edges is therefore necessary.

The underlying task of building a graph annotated with semantic information from many distinct
vertex types is also commonly found when building compilers. Here, the most commonly found method
of implementing such structures is the construction of Abstract Syntax Trees (ASTs) [15]. Syntax trees
describe programs by modelling their structure as it is defined by the used programming language,
and allow an efficient traversal, analysis and transformation while keeping semantic information easily
accessible.

In compilers, ASTs are often implemented in object-oriented programing environments, where differ-
ent node types are represented by classes using an inheritance hierachy. On a more formal level, they can
also be modelled well through Algebraic Data Types (ADTs), which enable the definition of well-defined
compound structures that can be nested recursively to build trees. Using ADTs similarly for reactive
data-flow graphs, we can create a new definition for semantic reactive data-flow graphs.

Definition 3.4 (Semantic Reactive Data Flow Graph).

A semantic reactive data-flow graph G ⇢ N is a set of vertices that can be constructed from the Algebraic
Data Type N = NS [ NE .

Let Ns
S = {x | x = Varn n 2 N}

Let NS = {x | x =MapS(vS, f ) vS 2 G \ NS}
[ {x | x = Toggle(vS, v 0S, vE) vE 2 G \ NE vS, v 0S 2 G \ NS}
[ Ns

S
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Let Ns
E = {x | x = Evtn n 2 N}

Let NE = {x | x = Changed(vS) vS 2 G \ NS}
[ {x | x =MapE(vE , f ) vE 2 G \ NE}
[ {x | x = Filter(vE , f ) vE 2 G \ NE}
[ {x | x = Or(vE , v 0E) vE , v 0E 2 G \ NE}
[ Ns

E

Def. 3.4 uses ADTs as a sort of generator for the different types of vertices, which are grouped into four
different sets. The set NS is the set of all possible signals that can exist in a data-flow graph, while the set
Ns

S , which is included within NS, exclusively contains signal sources. The sets NE and Ns
E use the same

pattern for defining all possible events. The actual definition of the semantic graph is simply a subset
that contains vertices from all different types of nodes, according to the actually modelled reactive graph.
While most graph elements can be simply identified by their structure, source vertices are a special case.
Here, we use unique number IDs to allow a distinct addressing.

While we have significantly extended the definition of reactive vertices compared to the one introduced
in the previous section, the new semantic graph definition no longer contains an explicit modelling of
edges. The reason for this is that edges are now already defined within the internal ADT structure of each
element. Nested definitions like Toggle(Var1, MapS(Var2, {_⇤2}, Evt3) can fully represent all dependencies
contained within the reactive graph by themselves.

The added semantic information for nodes also allows to verify an already existing graph structure
for semantic soundness. While in our first attempt to define graphs, only the domains of the defined
methods ensured a valid graph construction, now we can decompose a given graph to validated that
it fits the presented ADT generation rules. Yet, we want to also present the updated definitions of the
graph construction methods originally introduced in Defs. 3.2 and 3.3.

Definition 3.5 (Semantic Reactive Data Flow Construction).

Let G be a semantic reactive data-flow graph, vS, v 0S 2 G \NS be existing signal vertices, and n 2 N be an
index that has not used for any vertex in G before.

G.Var() = (Varn, G + Varn)

G.Evt() = (Evtn, G + Varn)

G.changed(vS) = (Changed(vS), G + Changed(vS))

G.mapS(vS, f ) = (MapS(vS, f ), G +MapS(vS, f ))

G.mapE(vE , f ) = (MapE(vE , f ), G +MapE(vE , f ))

G.filter(vE , f ) = (Filter(vE , f ), G + Filter(vE , f ))

G.or(vE , v 0E) = (Or(vE , v 0E), G +Or(vE , v 0E))

G.toggle(vS, v 0S, vE) = (Toggle(vS, v 0S, vE), G + Toggle(vS, v 0S, vE))

The new method definitions implicitly use the given ADT generator sets to create add new vertices to
the reactive graph. Additional parameters like the mapping or filtering functions f can simply be passed
to the new elements. This and the absence of explicit handling for edges makes them more clear than
their previous iterations. Also, when comparing definitions like mapE and filter, they can now be clearly
distinguished by their resulting vertex type.

Since the method’s signatures were not modified, we can use them to apply the same reactive graph
creation process that we have used for illustration in Fig. 3.1. In Fig. 3.2, we show a visualization of
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MapS(_ · 2)

Toggle

MapS(_ · 3)

VarEvt

Filter(_ > 0)

Evt

Or

Changed MapS(_ + 1)MapE(_ - 1)

Figure 3.2: Semantic reactive data-flow graph constructed the same way as in Fig. 3.1.

the resulting graph structure with all newly available semantic information. It is now possible to clearly
identify every node of the reactive structure and track the applied semantics of the flow.

The chosen approach to represent the graph however also adds new complexity to analysis. To extract
the stored information or the implicitly stored data-flow edges, we require a mechanism to decompose
each vertex type individually. One approach to handle Algebraic Data Types in programming are partial
function definitions that implicitly decompose their parameter via pattern matching and one evaluate
further where matching succeeds. We imitate this behavior here in our formal definitions by introducing
a new syntax we call @-notation.

When a function’s parameter is followed by an @X (y, z), the parameter is decomposed and it is
checked if it can be generated from the definition of the ADT X . Only if this is the case, the nested
parameters of the AST are assigned to the variables y and z that are available like additional parameters
in the function’s definition body. Otherwise, the function cannot be applied to the given parameter.

The function dep we define in Def. 3.6 is an example how to apply the @-notation to process semantic
reactive data-flow graphs. It extracts and collects the predecessor vertices that send data-flow to a given
vertex. While it primarily serves as an example for pattern matching here, we will re-use it in later
sections of this thesis. Implementing individual handling for each node can blow up complexity of other
functions that process the graph. Therefore, using helper functions like def can greatly improve clarity.

Definition 3.6 (Dependency Collection in the Semantic Reactive Data Flow Graph).

dep : G 7! P(G)
dep(v @Var) = ;
dep(v @Evt) = ;
dep(v @Changed(vS)) = {vS}
dep(v @MapS(vS, f )) = {vS}
dep(v @MapE(vE , f )) = {vE}
dep(v @filter(vE , f )) = {vS}
dep(v @toggle(vS, v 0S, vE)) = {vS, v 0S, vE}
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3.3 Operational Reactive Data-Flow Graphs

The previously presented semantic representation for reactive data-flow graphs models all statically
available structural information about a reactive program’s data-flow. If we assume a strict two-phase
separation of static graph construction and dynamic graph application, all information from the first
phase is already sufficiently represented. This assumption may however not hold in all generalized
cases, as reactive frameworks typically allow the interleaving of creating new reactive elements and
updating the values of already existing ones.

Examples of possible orders in which reactive operations can be executed are shown in Fig. 3.3. Both
presented programs have the same graph structure. However, the one on the right side interleaves the
graph’s construction with its application by changing the value of the source signal a before adding
additional dependencies. This interleaving can change the resulting semantics of a program, as only the
example on the left fires the event e and therefore triggers printing to the command line.

1 val a = Var(false)
2 val e = a.changed
3 val e += println("Event was fired")
4 a. set(true)

1 val a = Var(false)
2 a. set(true)
3 val e = a.changed
4 val e += println("Event was fired")

Figure 3.3: Semantically di�erent reactive programs with equal data-flow graphs.

The previous semantic graph model does not capture this difference between the programs as it only
contains the graph’s structure without any regard for time and order. Therefore, it cannot be appro-
priately applied to programs like the example on the right side of Fig. 3.3. One way to overcome this
limitation would be to consider a fully dynamic representation of the data-flow graph’s state, including
the results of value propagation and fired events. However, in this section we show an intermediate
solution instead, that also solves the shown issue by utilizing only the statically available from a reactive
program’s code.

To add a representation of time to our graph, we need to transform the previous set of nodes into an
ordered list that contains all operations applied to the graph. Besides vertex creation as it is performed by
the methods defined in the previous sections, it is necessary to consider all possible updating operations.
In our model of data-flow graphs, this is the setting of signal sources and the firing of event sources.
Using these three operation types and the ADTs introduced in the previous section, we can now again
create an operational data-flow graph definition.

Definition 3.7 (Operational Reactive Data Flow Graph).

An operational reactive data-flow graph is a list of operation log entries G ⇢ L that can be generated
from the Algebraic Data Type E. Let Ns

S , Ns
E , NS and NE be defined as for semantic reactive data-flow

graphs in Section 3.2.

Let L = {x | x = Set(v , x) v 2 Ns
S}

[ {x | x = Fire(v , x) v 2 Ns
E}

[ {x | x = Create(v ) v 2 NS [ NE}

The new definition does no longer contain any set of nodes, but instead an ordered list of operations.
Nodes are still represented in the graph as they were in semantic graphs, however embedded within
Create log entries. Accordingly, it is trivial to update our existing methods for graph construction. Instead
of adding new nodes to a set, we simply append a creation entry that contains the node to the graph’s
log.
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Definition 3.8 (Operational Reactive Data Flow Construction).

Let G be an operational reactive data-flow graph, vS, v 0S 2 NS be existing signal vertices, vE , v 0E 2 NE be
existing event vertices, and n 2 N be an index that has not used for any vertex in G before.

G.Var() = (Varn, G :+ Create(Varn)

G.Evt() = (Evtn, G :+ Create(Evtn)

G.changed(vS) = (Changed(vS), G :+ Create(Changed(vS))

G.mapS(vS, f ) = (MapS(vS, f ), G :+ Create(MapS(vS, f ))

G.mapE(vE , f ) = (MapE(vE , f ), G :+ Create(MapE(vE , f ))

G.filter(vE , f ) = (Filter(vE , f ), G :+ Create(Filter(vE , f ))

G.or(vE , v 0E) = (Or(vE , v 0E), G :+ Create(Or(vE , v 0E))

G.toggle(vS, v 0S, vE) = (Toggle(vS, v 0S, vE), L :+ Create(Toggle(vS, v 0S, vE))

After updating our existing definitions, the only step left to fully represent the different reactive pro-
grams in Fig. 3.3 is the addition of new methods that allow the representation of updates. Their definition
is very similar to the previous one, as it simply appends a log entry that represent the applied operation.

Definition 3.9 (Operational Reactive Data Flow Updating).

Let G be an operational reactive data-flow graph, v s
S 2 Ns

S be an existing signal source vertex, v s
E 2 Ns

E be
an existing event source vertex, and n 2 N be an index that has not used for any vertex in G before.

G.Set(vs
S, x) = L :+ Set(v s

S , x)

G.Fire(vs
E, x) = L :+ Fire(v s

E , x)

G.Var(x) = (Varn, L :+ Create(Varn) :+ Set(Varn, x))

In our definition, we also introduce a short form for creating variables and immediately initializing
them with a certain value. This is a more natural way to set-up variables, that is commonly used in
reactive frameworks like REScala and was also used in the code samples from Fig. 3.3. It simply appends
two entries to the log, like a consecutive calling of Var() and Set(v s

S , x) would do.

Changed

VarCreate(Var)

Set(Var, true)

Create(Changed)

Set(Var, false)

Changed

VarCreate(Var)

Create(Changed)

Set(Var, true)

Set(Var, false)

Figure 3.4: Operational data-flow graphs for both of reactive example programs from Fig. 3.3.

Fig. 3.4 shows the operational graphs of the programs from Fig. 3.3 and demonstrates the extended
capabilities of the operational graph definition. The log entries on the left side show the difference
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in operation order, and therefore allow an exact replication of the original program flow. While the
operational graph itself only consists of the log on the left side of both examples, we have added the
contained graph structure as an additional visualization on the right side. This structure is not lost in the
new graph model, but can fully reconstructed from the log entries.

The operational graph definition shown in this section can represent all statically available semantic in-
formation found in reactive programs. It is therefore not only suitable to be transformed and dynamically
applied as we will present in Chapter 4, but is also suitable for all static analyses and transformations as
we will show in detail in Section 6.2. However, for an implementation that enables metaprogramming in
combination with a real reactive framework, some additional modifications are necessary in comparison
the formal model as it is presented here. We will discuss these in Chapter 5.
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4 Dynamic Application of the Reactive Meta Representation

In Chapter 3, we have presented an evolution of data-flow graphs from a very generic model of data-flow
dependencies to a complex model of semantics and operation order. What the representation however
does not model is the computation for updating reactive values along the data-flow graph. This process
leaves the purely static scope we have used in the previous chapter, and instead represents the run-time
semantics of a reactive program.

A purely static representation can already be used for certain types metaprogramming. It is however
only of limited use without the ability to execute the modelled programs. In the context of applications
like optimizations or distributed computation that we will demonstrate in Section 6.2, users typically not
only want a formal model of the computed solution, but also an immediate ability to transfer it into code
they can execute. In many use cases, this goes so far that all applied metaprogramming steps become
transparent to a user writing reactive programs, so they do not have to be involved in them at all.

To make a reactive data-flow graph executable, we have two options that are similar the options when
handling of programming languages. First, we can interpret the static representation directly and the
handle the processing of all applied updates by implementing our own propagation semantics. Second,
we can compile the representation into a form that can be executed directly or with the support of an
external reactive framework. Both approaches have their own advantages and challenges, and many of
them are related to the ones arising in classical programming language design [16].

For our work on dynamically applying data-flow graph as we present it in this Chapter, we have
focussed on defining a process to transform graphs into an internal representation within a reactive
framework that we call reification. This way, we can benefit from the existing propagation mechanisms
provided by reactive frameworks without having to design these components by ourselves. Consequently,
we can treat most implementation details regarding data-flow propagation as a black box.

In reverse, this however also means that we cannot make use of all dynamic information potentially
available to the reactive framework, and require specific interfaces for all data we want to gather. We
call the process of transforming an already reified reactive program back into a data-flow graph form
unreification.

The most simple graph model introduced in Section 3.1 is hardly suitable for being reified, as it
contains none of the necessary semantic information to create a reactive program from it. Therefore,
we start by outlining a generalized reification and unreification process for semantic data-flow graphs in
Section 4.1. We then show in Section 4.2 how to adapt this process to apply it to operational data-flow
graphs.

Section 4.3 gives a brief outline how dynamic dependencies that are supported certain reactive frame-
works can be added to the existing model through reification and unreification. Finally, in Section 4.4 we
present an attempt to replace the explicit reification process by an implicit one that transforms data-flow
vertices on demand and forms the basis for our later implementation as presented in Chapter 5.

4.1 Reification of Semantic Data-Flow Graphs

On a formal level, it is necessary to differentiate between three different operations that translate be-
tween our data-flow graph representation and an executable form. We have already outlined the first
two, reification and unreification in the introduction of this chapter. We need however also a third op-
eration, that describes the repeated transfer of a previously reified and unreified reactive graph into a
reified form. This operation we call re-reification, and it differs from reification as it needs to restore
state information that was previously generated for the reified program.

While all transformations can be defined both on a whole-graph level or individually for each reactive
vertex, we solely define and focus here on the latter approach as it provides a significantly improved
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flexibility and allows us the exploration of partially reified graphs, that contain both reified and non-
reified vertices. A transformation of the full graph can still be realized through this definition by simply
applying it consecutively on all vertices.

Definition 4.1 (Semantic Reactive Data Flow Graph Reification).

Let G, G0 be semantic reactive data-flow graphs with G ✓ G0, and v 2 G be any vertex of both graphs.
Further, let ⇢v be an executable representation of v in the context of G and ⇢0v be the same in the context
of G0. We assume further that ⇢v encapsulates an internal state �v that can be saved and restored to ⇢0v .

reify(v , G) = ⇢v

unreify(⇢v , G) = ((v , G),�v )

rereify((v , G0),�v ) = ⇢0v

The functions in Def. 4.1 are only described in a rather abstract way as the actual process occurring
during reification is highly dependent on the used reactive framework. The required capabilities of the
framework and limitations, especially when considering multiple different framework implementations
for a single reactive graph, are discussed later in Chapter 5 and 6. Then, we will also present a more in-
depth description which steps are required to reify a reactive element and how these can be implemented.
Similar considerations also lead us to not look in detail at the unreified state information, as it depends
on the vertex type and the capabilities of the reactive framework.

MapS(_ · 2)

Toggle

MapS(_ · 3)

VarEvt

Filter(_ > 0)

Evt

Or

Changed MapS(_ + 1)MapE(_ - 1)

Figure 4.1: Example of recursively descending reification, starting from Toggle.

An issue that is independent of the reification process applied to a single vertex is however the ap-
proach used to reify necessary dependencies of each element. Naturally, it is not sufficient to simply
reify a single reactive vertex by itself, as its whole semantics are determined by its embedding within
its graph. This means that reifying a single node must trigger the reification of the nodes it depends on
before it can be reified itself. As the same applies to each of these nodes, a recursive chain that requires
the reification of a whole subgraph may be triggered. An example of this recursive reification process
can be seen in Fig. 4.1 where the reification of the single red Toggle-node requires all nodes marked in
blue to be reified as well.

To achieve the reified graph to represent the behavior modelled in the meta representation, it is nec-
essary to ensure a persistent binding of reified elements to graph vertices. In the example from Fig. 4.1,
this means that after the reification of the Toggle-vertex is complete, calling reify repeatedly on one the
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Var-vertices should not create a fresh, unconnected reactive element but return the same instance that
was already created during the recursive reification. Only this way it can be guaranteed that updates of
the Var-vertex can be propagated properly to Toggle by the used framework.

The recursively descending reification of dependencies is however still not sufficient to ensure a con-
sistent state of the reactive graph. In the given graph for example, an update to Var would be propagated
to Toggle, but as the connected vertices Changed and MapS are not reified yet, they are left out of the
propagation process. Since the event is only triggered momentarily, it does not need to be considered for
reification. The signal vertex however needs to be updated by the propagation to avoid an inconsistent
graph state. Therefore, it also needs to be reified.

MapS(_ · 2)

Toggle

MapS(_ · 3)

VarEvt

Filter(_ > 0)

Evt

Or

Changed MapS(_ + 1)MapE(_ - 1)

Figure 4.2: Example of recursively descending and ascending reification, starting from Toggle.

The required additional reification can be seen in Fig. 4.2, where the result of reifying outgoing vertices
is shown in green color. Of course, not only directly depending signals need to be reified, but also signals
depending on intermediate events. In the shown example, if there was another signal depending on
Toggle, it would also need to be reified. Of course, both directions of the recursion interleave each
other, so further dependencies of MapS in the given example, or Changed if it would have further signal
dependencies, also need to be reified.

In comparison to reification, the unreification of an existing reactive value is rather simple to schedule.
The simplest way to achieve unreification would be to gather all connected vertices, may they either be
reified from the same original graph themselves or added dynamically, and create a snapshot of their
current state and connectivity. An extension to this approach is to get the original graph as an additional
parameter like we do in Def. 4.1, to also add not yet reified or not connected vertices to the graph.

Re-reification of previously unreified vertices allows us to transfer further changes to the data-flow
graph to the reified program. Because state information for the re-reified element already exists, this
is a naturally more complex task than a blank slate reification of a vertex. It however only affects the
implementation level, where it requires the element’s previous state to be restored appropriately, even
though the surrounding graph structure might have been extended in the mean-time. On the scheduling
level we discuss here, re-reification simply requires the same procedure as reification, with the saved
state information inserted into all nodes that already had a reification before.

4.2 Reification of Operational Data-Flow Graphs

Being able to transform semantic data-flow graphs into an executable form is a first step into a dynamic
application of the reactive meta representation. However, we have already discussed the limitations of
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this model in Section 3.3, and the inability to model graph updates in the graph is specifically problematic
in dynamic scenarios as we present them later in this section. Consequently, enabling the reification and
unreification of operational data-flow graphs and the update operations supported by this model is a
significant step in extending the dynamic graph capabilities.

A naive way to implement reification of an operational graph would be to simply copy the reification
process as shown for semantic data-flow graphs and then applying all relevant setting and firing oper-
ations as a separate, second step by simply calling the equivalent operation in the target framework.
Unfortunately, as already outlined in Section 3.3, it is essential to maintain the correct order of vertex
creation and applying operations to them, and this holds for reifying the graph as well. Simply splitting
the reification into two phases would cause a loss of this information and therefore an incorrect final
state of the reified graph.

To avoid the loss of operation ordering, it is necessary to access the log information and schedule the
reification accordingly. Applying the whole log however has the disadvantage of forcing the reification
of potentially irrelevant nodes when only a certain node and its dependencies should be computed. It is
therefore desirable to retain the fine-grained per-vertex approach presented in the previous section.

As an alternative to reifying the whole data-flow graph at once, we need to determine the set of
nodes that need to be reified, similar to the process we have previously illustrated in Fig. 4.2. However,
since applying operations to nodes other than the reified node may also trigger further reifications to be
necessary, an iterative approach to find all relevant nodes is necessary.

Definition 4.2 (Computation of Required Dependency Reifications).

compute-required-reifications(v , G, Vchecked) = {

Vdep = find-all-dependencies(v )

Vop = {v0 2 Vdep | 9x : (Fire(v0, x) 2 G _ Set(v0, x) 2 G)}
V 0checked = Vchecked

foreach (vcheck 2 Vop \ Vchecked) {

V 0checked = V 0checked + vcheck

Vdep = Vdep [ compute-required-reifications(vcheck, G, V 0checked)

}

return Vdep

}

In Def. 4.2, we show an algorithm to iteratively compute all necessary reifications based on the list
of logs that is the operational data-flow graph. As parameters, it takes the node v that is supposed to
be reified, the data-flow graph G and a set of already checked nodes that is initialized as ;. It then
computes the dependencies Vdep of the node v , using a function find-all-dependencies that is not shown
here but is working based on the approach shown for semantic data-flow graphs. Vop collects all of these
dependencies that are the target of update operations. Then, the algorithm iterates through all these
nodes except those already checked before and performs a recursive call to collect further dependencies
for them. Finally, after all nodes with logged operations are checked, the algorithm returns the combined
dependency set of all these nodes.

Eventually, the set of nodes returned by the algorithm needs to be reified in order by filtering the log
for only entries that affect the collected nodes. This way, the structural approach shown for the semantic
graph and the ordered approach for the operational graph can be used in combination to ensure a
correct and minimal reification. It should be noted however that the shown algorithm has a rather high
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complexity itself, and the set of nodes to be reified can become very large. Consequently, it may be
more efficient in many cases to simply apply the full log and reify some potentially unnecessary nodes.
Only for very large graphs with few operations applied to them, using the shown algorithm for selection
would result in an overall computation cost benefit.

Unreifying an existing reactive implementation into an operational data-flow graph is also a more
complex procedure if also operations performed directly through the reactive framework need to be
considered. While all frameworks need some internal representation of the reactive elements and their
dependencies, they typically wouldn’t keep a log of the performed operations as their effects are already
captured within each element’s state information. Consequently, a full unreification would need an
extension of the framework to add the necessary logging or a wrapper that forwards operation calls but
additionally keeps a protocol. The latter solution will be outlined when considering implicit reification
and unreification in Section 4.4.

It could however be argued that the unreified state information is sufficient to keep track of the reactive
graph’s status. Then, an alternative approach would be to mark the splitting point at which logging has
been interrupted through reification and unreification. A later re-reification would then, after normally
reifying nodes and restoring their previous state as for semantic graphs, only need to apply operations
onto nodes that happened after the last unreification, as previous ones are already reflected in the state.

Definition 4.3 (Operational Reactive Data Flow Graph Reification).

Let G, G0 be modified operational reactive data-flow graphs with G ✓ G0 and their list of log entries being
either generated members of the original Algebraic Data type L as defined in Def. 3.7, or Unreify entries.
Let v 2 G be any vertex of both graphs.

Further, let ⇢v be an executable representation of v in the context of G and ⇢0v be the same in the
context of G0. We assume further that ⇢v encapsulates an internal state�v that can be saved and restored
to ⇢0v .

reify(v , G) = ⇢v

unreify(⇢v , G) = ((v , G :+ Unreify),�v )

rereify((v , G0),�v ) = ⇢00v

Def. 4.3 shows the formalized, abstract definition of reification, unreification and re-reification func-
tions. It uses a special Unreify log entry to keep track of the point where the last unreification was
applied, and from which point on updates need to be considered during re-reification. This addition is
the only significant difference to the previous definition for semantic graphs in Def. 4.1, so the context
for the definitions that was given there is still valid.

4.3 Representing Dynamic Dependencies

In Chapter 2.3, we have given a brief introduction into dynamic dependencies in reactive data-flow
graphs. Since the original graph definitions shown in Chapter 3 were purely static, it was unnecessary to
consider such dependencies as no information about them was available at the time of creating the meta
representation graph. This changes when it is possible to unreify already reified and partially executed
reactive programs and create a graph representation for them.

So far, we have assumed that the dependency management applied by the reactive framework was also
purely static and matched the originally generated graph. If dynamic dependencies are supported and
applied for the reifications of nodes, the original static graph may instead be considered to be more of
a conservative over-estimation of dependencies. There are however also types of reactive dependencies
that cannot be represented statically at all. In Chapter 2.3, we gave the example of flattening a nested
signal into a single element that contains the value of the inner original signal. We have illustrated that
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it is not possible to provide a static overestimation of all possible dependencies of the created Flatten
node without considering every single other node of the graph.

When the meta representation graphs are however considered as a snapshot of a certain state during
run-time, it is possible to represent dynamic dependencies within the existing model. In semantic graphs,
this is a rather simple task that may only be limited by the implementation of the unreification process in
combination with the reactive framework. If the gathering of dynamic dependencies between elements
is supported, they can be treated just like static ones would be, and used in the graph representation.

For operational graphs, the same procedure is possible to unreify an existing reactive graph with
dynamic dependencies. Yet, it is important to consider possible dependency changes added by additional
operations. In the case of a Toggle vertex, this means that a dependency is replaced by another one that
is not represented in the current snapshot. For other vertex types like flattening, all known dependency
information needs to be considered as lost.

A solution to retain consistency of the graph model could be to separately maintain static and dynamic
dependencies and cause a fall-back to the purely static model as soon as an operation is applied to a
vertex. Fig. 4.3 shows a sample graph that starts out with only static dependency information but is
extended with dynamic information, marked in red, after it has been reified and unreified.

1 G0 = (;,;,;)
2 (v1, G1) = G0.Var()
3 (v2, G2) = G1.Var()
4 (e, G3) = G2.Evt()
5 (tgl, G4) = G3.toggle(e, v1, v2)
6 ((tgl, G5),�tgl) = unreify(reify(tgl, G4), G4)

Toggle

VarVar

Evt Toggle

VarVar

Evt

Figure 4.3: Reactive program (top), resulting in data-flow graph with static dependencies (left) and un-
reified graph with dynamic dependencies (right).

Using a function as shown in Def. 4.2, a further improvement on this approach is possible by computing
the set of potentially affected nodes and only partially discarding dynamic information. The result is a
mixed graph, that contains dynamic dependencies for some nodes while relying only on static data for
other ones. For metaprograms that use dynamic dependency information, for example to generate run-
time metrics of a reactive program, such an approach may drastically increase the amount of available
run-time data.

While dynamic dependencies in general would also allow node types like the presented Flatten to
be added to the graph representation, they cause additional issues, even when using the described
approaches. The reason for this is that the static fall-back for their dependency set is not defined. To
retain the original idea of over-approximating the potential dependencies, edges to all other vertices of
the graph would need to be considered, which is hardly applicable for larger data-flow graphs. It is
therefore questionable if such a vertex type, even if supported by the used reactive framework, should
even be considered within a static graph model.
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4.4 Implicit Reification and Unreification

In Section 4.2, we have shown ways to convert between the static operational data-flow graph and
an executable program within a reactive framework. This conversion process however required to be
triggered manually by the user. While we have ensured that the conversion process is scheduled in a way
that always guarantees a consistent state of the program, the user still needs to manage the reified and
unreified forms of the reactive program, which causes an undesirable inconvenience.

A much more convenient behavior is an implicit conversion to a reified reactive program. This makes
the meta-representation transparent to the user, and allows them to treat it like a regular reactive pro-
gram if he does not explicitly want to perform manual metaprogramming operations on the graph.

A trivial way to implement an implicit conversion would be to immediately reify all node constructions
or updates that are performed by the methods we have presented. We call this approach eager reification,
was it shares similarities with the program evaluation scheme of the same name. The result would be the
graph acting like an extended interface wrapper between the programmer and the reactive framework.

While this still retains some advantages of having a meta representation, such as a unified interface
and easier access to the full graph layout, it makes other use cases harder to implement. For example,
graph transformations would always require explicit support by the used reactive framework as state
information is immediately created for each vertex of the graph and needs to be considered in the
transformation. Additionally, using this strategy results in a greater overhead of computation as every
operation needs to be mirrored between the both representations, potentially multiple times if dynamic
dependencies as described in Section 4.3 are also considered.

A more efficient attempt to implicit reification is to only enforce it when it is necessary. In contrast to
eager reification, this approach is similar to the program evaluation scheme of lazy evaluation, which is
why we call it lazy reification. As in this scheme, the actual reification of vertices is postponed to until a
certain strict point is reached that requires an immediate, implicit reification of all relevant elements in
the graph.

While we have already presented a way to calculate the set of relevant dependencies based on a
starting node in Def. 4.2, an implicit approach raises the question how to determine the strict point in
an arbitrary sequence of operations. This point is reached in any case when information is required by
non-reactive program elements that are not represented in the reactive data-flow graph. Based on the
representation presented here and common reactive framework design, there exist two situations where
information flows beyond the scope of our graph model:

1. The current value of a reactive signal is queried, for example by an assignment to a non-reactive
variable.

2. A fired event triggers an observer function that may perform arbitrary operations based on the
propagated value.

Although both situations may seem related at first, there is a fundamental difference between them: A
request of a signal’s value occurs on the end of the propagation chain and requires a one-time reification
and computation of connected elements from bottom-up. It is also possible to consider the registration
of an observer for an event as such a request. However, this would require to establish a permanent
dependency that requires a constant need to keep the event reified. Alternatively, we can delay the point
that forces reification to the time when the observed event is fired for the first time after the observer
was added. Only at this point, an actual data-flow is initiated that may trigger the observer and therefore
needs to be instantaneously executed.

Handling the first case is consequently more straight-forward than the second one. For value queries,
it is sufficient to simply reify the requested element as already shown for explicit reification. The method
call then only needs to be forwarded to the appropriate functionality for reading the current value of the
executable element within the used reactive framework. The resulting definition is the following one:
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Definition 4.4 (Implicit Reification for Momentary Value Queries).

Let G be an operational reactive data-flow graph and v be an existing signal vertex of the graph.

G.Now(v) = reify(v , G).Now

The case of registered observer however is more complex to handle appropriately. As explained earlier,
adding an observer to an event node does not need to trigger immediate reification until the event is
fired. Therefore, it is sufficient to simply add an additional logging entry that keeps track of the observer
being registered. Additionally, the existing Set and Fire operations need to be extended to evaluate if a
reification is enforced through existing observers.

Definition 4.5 (Implicit Reification for Observed Events).

Let operational reactive data-flow graphs and the sets NE , Ns
E , Ns

S and L be defined as in Def. 3.7. Let o
be a non-reactive observer function and G be a modified operational reactive data-flow graph that has
its log entries being generated by either the original Algebraic Data Type L or by L0 defined as follows.

L0 = {x | x = Observe(vE , o) vE 2 NE}
Let vE 2 NE be an existing event vertex, v s

S 2 Ns
S be an existing signal source vertex and v s

E be an existing
event source vertex.

G.Observe(vE, o) = G :+ Observe(vE , o)

G.Fire(vs
E, x) = {

G0 = G :+ Fire(v s
E , x)

reify-if-necessary(v s
E , G0)

return G0

}

G.Set(vs
S, x) = {

G0 = G :+ Set(v s
S , x)

reify-if-necessary(v s
S , G0)

return G0

}

Def. 4.5 first shows the extensions required for supporting observer registration and on-demand reifi-
cation when events with registered observers may be fired. The addition of the observer log entry, as well
as the method to register an observer are very similar to the previously introduced methods for updates.
The necessary updates to the methods for firing events and setting signals are also rather minor on a
high-level perspective. The only added functionality is the computation of potentially affected observed
events and their implicit reification.

The actual computations required to determine these affected vertices are however more complex.
First, it is necessary to check the whole chain of vertices depending on the updated reactive element
to see if they are events that have any observers attached to them. If any triggered observer is found,
it is necessary to reify the triggered event node and all nodes returned by the original dependency
computation function from Def. 4.2. This way, it is ensured that the used reactive framework triggers all
observers and updates all affected signals correctly.

Definition 4.6 (Computation of Potentially Triggered Observed Events).
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reify-if-necessary(v , G) = {

if (has-triggered-observers(v , G))

foreach (vdep 2 compute-required-reifications(v , G,;))
reify(vdep, G)

}

has-triggered-observers(v , G) = {

Vobserve = {obs | Observe(v , obs) 2 G}
if (Vobserve 6= ;)

return true

Vdep = {v0 2 V | v 2 dep(v0)}
for (v0 2 Vdep)

if (has-triggered-observers(v0, G))

return true

return false

}

The resulting algorithm that incorporates the previously outlined steps is shown in Def. 4.6. The
function reify-if-necessary uses the helper function has-triggered-observers to recursively iterate through
the outgoing the dependency chain and find event nodes that have a registered observer. If any of them
is found, the helper function immediately returns true. This causes reify-if-necessary to call the function
compute-required-reifications that is defined in Def. 4.2, and reify all nodes returned by it.

MapS(_ · 2)

Toggle

MapS(_ · 3)

VarEvt

Filter(_ > 0)

Evt

Or

Observer

Changed MapS(_ + 1)MapE(_ - 1)

Figure 4.4: Example of implicit reification triggered by firing on indirectly observed event.

Fig. 4.4 shows an example of the presented algorithm applied to a reactive dependency graph. The
fired event vertex from which reification originates is marked in red. To check if a reification is necessary,
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all event nodes along the outgoing data-flow paths need to be recursively checked for observers that may
be triggered by the fired event. In the shown example, all event vertices that need to be checked are
highlighted with an orange background color. The paths followed by the algorithm are also marked in
orange.

The nodes computed to need reification in the second step of the algorithm are marked green and
blue as already introduced in Fig. 4.2. While the fired event itself has no descending dependencies, the
computed ascending vertices require a reification of all nodes marked in blue. In comparison to this
figure, the Changed-vertex now also requires reification as it has a registered observer and firing it may
therefore have a lasting impact.

The graph demonstrates the fact that, while being as selective as possible, reification can only rely
on static information. This means that the actual data-flow may be overestimated, as seen in the given
example on the Filter vertex. The actual propagation semantics of the value are not considered by the al-
gorithm and only evaluated by the actual reactive framework after reification has taken place. Therefore,
even if the fired value would be smaller than zero, the algorithm would still trigger a reification.

When analyzing the outlined lazy reification strategy, an interesting question is how the resulting
behavior fits into the binary classification of push- and pull-based reactive propagation schemes as shown
in Chapter 2.1. Since an unreified graph only stores performed operations without executing them, the
resulting propagation behavior is obviously not a push-based one. In fact, as reification and therefore
value propagation only takes place when a value is queried, the approach shown here is more similar to
a pull-based propagation scheme.

The important difference is however the handling of events which, as described earlier, is problematic
in pull-based frameworks. For them, reification provides a need-based switch from the lazy, pull-based
graph to a typically push-based version within a reactive framework that is more efficient and follows
the more practical event propagation intuition.

The price of this approach of switching between both the lazy unreified and the eager reified form
is however a significant computation overhead when actually implementing the shown algorithms. It
consists of finding affected observers for each fired event, computing the set of vertices that need reifi-
cation and finally performing this reification, potentially resulting in the creation of a full copy of the
existing meta-represented graph within the reactive framework. In Section 6.1, we will evaluate how the
reification overhead affects the overall performance of constructing and updating a reactive data-flow
graph.
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5 Implementation of the REScala Meta Representation

In Chapter 3 and 4, we have presented the formal foundations for a meta representation for reactive
data-flow graphs. To demonstrate the applicability of the outlined concepts, and in preparation for the
evaluation we will present in Chapter 6, we have created an implementation of the meta representation
in the Scala programming language. We have further implemented the reification process presented in
Chapter 4 for a transformation into the REScala framework that we introduced in Section 2.3.

REScala is well-suited framework to combine with our implementation of the meta representation, as
it provides a well-defined interface for creating reactive dependencies on a semantic level. This allowed
us to implement most of the desired transformation features without modifying or extending the internal
implementation of REScala. While we do not support or make use of all of REScala’s features, we were
able to experiment with some of them and examine their relation to the presented meta representation.

We start by discussing our approaches to create a reactive interface, similar to the methods introduced
in Chapter 3, in In Section 5.1. Our design goal for this interface was that it should be supported
by vertices in the data-flow meta representation, and by the reactive elements in the original REScala
framework. Section 5.2 then shows our implementation of the data-flow graph meta representation in
Scala.

In Section 5.3, we focus on implementing a reification process that resembles the one we have intro-
duced in Chapter 4. Subsection 5.3.1 focuses on the general implementation steps necessary for such
a process, independent of the used reactive framework. We then discuss in Subsection 5.3.2 how this
concepts can be implemented on the concrete example of REScala.

By splitting our implementation into individual segments, most of which are independent from the
used reactive framework, we try to demonstrate that our design is not tailored specifically to REScala
but universally applicable. Unfortunately, we did not have the chance to implement further reifications
for other reactive frameworks in the scope of this thesis. We are however confident that our design is
flexible enough to support a wide range of reactive framework alternatives.

5.1 A Common Interface for Typed Reactive Graphs in Scala

When we introduced the semantic data-flow graph representation in Chapter 3, we made use of Algebraic
Data Types in our definitions. This way to model a structural vertex hierarchy is an ideal fit for an imple-
mentation in the programming language Scala, as it supports case classes and pattern matching, which
allow us to transfer our definitions to program code in a very straight-forward way.. Additional features
like object-oriented subtyping and inheritance, as well as an existing first-class representation functions
in Scala further improve the direct transformability of the formal model to a functional implementation.

A feature that was not taken into account in Chapter 3 is type-safety for data that is contained and
propagated by signal and event contents. In a language with a strong static type system that supports
generic types like Scala, it only makes sense to provide full support for reactive content with type pa-
rameters. Another dimension of subtyping that should be taken into regard is the actual implementation
used for internal handling by a reactive framework. Here it is most desirable to provide a unified in-
terface of supported methods for the graph construction or updating as defined in Chapter 3, that is
implemented by both our meta representation and reactive frameworks like REScala.

Figure 5.1 shows three different dimensions of subtyping enabled by an interface definition as orig-
inally shown for REScala in Fig. 2.6. In this example, the base variable can be assigned of all three
following values as all reactive variables are also signals, signals are defined as covariant in their content
type and the common reactive interface is a supertype of all of its implementations, here represented by
a sample implementation SignalImpl.
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1 class B extends A
2 class SignalImpl[+A] extends Signal[A] { ... }
3
4 val base : Signal[A]
5 val sub1 : Var[A]
6 val sub2 : Signal[B]
7 val sub3 : SignalImpl[A]

Figure 5.1: Three dimensions of reactive subtyping in Scala.

Although it seems that the existing interface definition for REScala already supports all these subtyping
dimensions in a reasonable way, it does not take into account an important restriction that is necessary
for practical implementations of signals and events. While all implementations should implement the
same interface, they should still be distinct enough so that their methods don’t allow a mixing of different
implementations within the same data-flow graph. In the concrete example from Fig. 5.1, this means
that vertices of type SignalImpl should not be allowed to be combined with other implementations by
using method calls of the signal interface.

Our goal is therefore to define an interface that is unified and allows an efficient replacement of one
used reactive element implementation by another one, while simultaneously specifying that methods
only accept other vertices of the same type of implementation. Most object-oriented programming lan-
guages don’t provide support for such restrictions when defining class interfaces. Scala’s type system
however has a feature that enables such a feature: F-bounded types allow a class or interface to access
the implemented subtype through a type parameter while higher-order types allow these subtypes to be
parametrized themselves [17]. These two features can be combined to create a type-safe cycle of depen-
dencies that guarantees that only compatible implementations of the signal and event interface can be
mixed when creating a new reactive element.

1 trait Event[+T,SL[+X] <: Signal[X,SL,EV], EV[+Z] <: Event[Z,SL,EV]] {
2 this : EV =>
3
4 def ||[U >: T](other: EV[U])(implicit ticket : Ticket): EV[U]
5 ...
6 }
7 class EventImpl[+T] extends Event[T, SignalImpl, EventImpl] with ImplSpecifics[T] {
8 override def ||[U >: T](other: EventImpl[U])(implicit ticket : Ticket): EventImpl[U]
9 ...

10 }
11 trait Evt[T,SL[+X] <: Signal[X,SL,EV], EV[+Z] <: Event[Z,SL,EV]] extends Event[T,SL,EV] {
12 ...
13 }
14 class EvtImpl[T] extends Evt[T, SignalImpl, EventImpl] with ImplSpecifics[T] {
15 ...
16 }

Figure 5.2: Event interface definition using cyclic F-bounded higher types.

Fig. 5.2 shows the resulting definitions for the generic Event and Evt interfaces, the latter representing
event sources. It also shows the required definitions for implementations for both interfaces. The type
parameter T is the content type of the event, while SL is the supported signal and EV the supported
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event type for mutual combination. In the actual implementation, these type parameters are filled with
the implementation subtypes. The definition of the this-type through the interface ensures that only the
correct subtype may be used in the definition. The Evt-interface mirrors the event interface definition
pattern while also establishing the subtype relationship with generic events.

While the implementation shown above works as intended, it drastically increases the complexity of
the used type definitions and requires far more in-depth knowledge about Scala’s type system than the
original definition that was presented in Fig. 2.6. Furthermore, it reduces the code’s readability by adding
type information that is not directly related to the code’s functionality. Scala’s type inference and direct
usage of implementations instead of the generic interface can hide most of the complexity from the user.
This is however in contrast to the supposed benefit of a unified interface to provide independence from
a concrete implementation. Therefore, the shown implementation is not very suitable for practical usage
by an external programmer.

An alternative way to implement subtyping that is more common in functional languages like Haskell
are type classes. Since Scala as an object-oriented language with functional elements also allows Haskell-
style type declarations and ad-hoc polymorphism, it provides the necessary means for implementing this
approach. The result is an interface that provides a bridge between a functional and an object-oriented
design style and is different in its presentation than the one previously shown.

1 trait Api {
2 type Signal[+A]
3 type Event[+A]
4 type Var[A] <: Signal[A]
5 type Evt[A] <: Event[A]
6
7 def Evt[A](): Evt[A]
8 def Var[A](v: A): Var[A]
9

10 def set[A](vr: Var[A], value: A): Unit
11 def or[A, B >: A](event: Event[A], other: Event[B]): Event[B]
12 ...
13 }
14
15 object ApiImpl extends Api {
16 override type Signal[+A] = SignalImpl[A]
17 override type Event[+A] = EventImpl[A]
18 override type Var[A] = VarImpl[A]
19 override type Evt[A] = EvtImpl[A]
20
21 override def Evt[A](): Evt[A] = new EvtImpl()
22 override def Var[A](v: A): Var[A] = new VarImpl(v)
23
24 override def set[A](vr: Var[A], value: A): Unit = vr.set(value)
25 override def or[A, B >: A](event: Event[A], other: Event[B]): Event[B] = event.or(other)
26 ...
27 }

Figure 5.3: Type class interface for reactive operations.

An excerpt of a type class interface for reactive operations implemented in Scala can be seen in Fig. 5.3.
The abstract Api trait defines the operations that have to be supported by a reactive programming imple-
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mentation while the concrete object ApiImpl provides the necessary binding to the actual functionalities
provided by a reactive graph.

To see the advantage of using type classes over direct inheritance as shown in Fig. 5.2, it is important
to understand that in this version, SignalImpl and all potential other implementations can be completely
independent and don’t need any common superclass or interface. This provides greater flexibility for
each implementation while also implying the limits of interoperability that had to be defined explicitly
and with a high price of complexity in the pure object-oriented interface.

The main drawback of the type class interface is the necessity to mix two syntactically very different
programming styles. Especially when the concrete implementation to be used for a program is know,
this can result in calls as shown in Fig. 5.4, that all construct the same graph but range from a more
functional to a more object-oriented style.

1 val e1 = ApiImpl.mapE(ApiImpl.or(ApiImpl.Evt(), ApiImpl.Evt()), f)
2 val e2 = ApiImpl.mapE(ApiImpl.Evt().or(ApiImpl.Evt()))
3 val e3 = ApiImpl.Evt().or(ApiImpl.Evt()).mapE(f)

Figure 5.4: Three di�erent ways to create the same event chain.

Since this ambiguity is only a minor issue that can be avoided by users by deciding for a consistent
programming style, while the type class implementation achieves a greatly improved interface clarity
and usability, it is the variant we decided for when designing the actual meta representation for reactive
graphs.

5.2 Implementation of the Meta Representation in Scala

With a well-defined common interface for reactive graph nodes as presented, it is possible to create
the structures used by the formal definitions shown in Chapter 3 in Scala. The final version of the
Scala implementation created for this thesis is based on the fully-featured operational reactive data-flow
graph presented in Section 3.3. The other presented representations can be considered subsets of this
implementation that are not explicitly shown here but could be derived from the final expansion stage
presented here without much additional work being required.

Since the operational graph meta representation not only uses a set of nodes to define its graph
structure but also an added log of operations, it makes sense to represent the graph itself as an object
collecting this information and making it accessible in one place. Fig. 5.5 shows the core definition of a
reactive data-flow graph in Scala that is based on the stateful graph definitions from Section 3.3 with a
collection of nodes and a list of log entries.

Fitting the theoretical definitions shown in Chapter 3 into an actual implementation leads to some
adjustments that become apparent in Fig. 5.5. Most significantly, the actual graph implementation is
mutable, so that constructing new elements does not result in an independent copy being generated but
in a modification of the existing graph. To avoid a loss of abstraction by giving the user direct access
to the internally used mutual data structures, accessing members externally generates a version of each
collection that is immutable, while mutations are only possible through interface functions like the ones
for adding elements shown in Fig. 5.5, that provide sanity checks and limit the available operations.

Also related to mutability is the notable extension of the graph by node references as an additional
component as seen in Fig. 5.5. References act as a layer of indirection, similar to object references in
programming languages like Scala. This means that multiple references pointing to the same node can
exist, and it is further possible to redirect an existing reference to another node without replacing the
reference instance.

The rationale behind adding references is that they allow an efficient implementation of graph muta-
tions, like the merging of two reactive nodes into one, or the replacement of existing nodes. This type
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1 class ReactiveGraph {
2 def nodes: Set[ReactiveNode[_]]
3 def refs : Map[ReactiveRef[_], ReactiveNode[_]]
4 def log: List [ReactiveLog[_]]
5
6 def registerNode(ReactiveNode[_]): Unit = ...
7 def registerRef [T](ReactiveRef[T], ReactiveNode[T]): Unit = ...
8 def deref[T](ReactiveRef[T]): ReactiveNode[T] = ...
9 def addLog(ReactiveLog[_]): Unit = ...

10 }

Figure 5.5: Definition of the reactive data-flow graph class in Scala.

of operations is heavily used in our case studies about graph optimization as presented in Section 6.2.1.
With references, it can be ensured that the results of such operations are correctly mirrored into user code
pointing to a specific node. Through the reference count for nodes that also becomes available this way,
it is further possible for optimizations to ensure that no undefined references, similar to null-references
in Scala and other programming languages, are created.

The decision to use a mutable graph representation is mostly motivated by practical reasons, as it
simplifies reification to the REScala framework and enables an easier approach to implicit reification. A
disadvantage of the chosed implementation design is however the loss of internal type-safely because
of the limitations of Scala’s type system: When storing objects with unrestricted type parameters in
collections, this parameter of the individual object is lost. In the shown code example, this means that
especially the refs-map cannot implicitly ensure that keys and values have matching type parameters.
The encapsulating methods can however provide a reasonable compensation for this by ensuring type-
safety for external users and avoid runtime errors that could theoretically occur when using a method
such as deref that internally has to perform an explicit type-cast.

1 trait ReactiveNode[+T]
2
3 trait SignalNode[+A] extends ReactiveNode[A]
4 case class VarSignalNode[A](g: ReactiveGraph) extends SignalNode[A]
5 case class MappedSignalNode[A,+B](g: ReactiveGraph, base: SignalRef[A], m: A => B)
6 extends SignalNode[B]
7 case class ToggledSignalNode[+T,+A](g: ReactiveGraph, base: EventRef[T], a: SignalRef[A],
8 b: SignalRef[A]) extends SignalNode[A]
9

10 trait EventNode[+T] extends ReactiveNode[T]
11 case class EvtEventNode[T](g: ReactiveGraph) extends EventNode[T]
12 case class ChangedEventNode[+T](g: ReactiveGraph, base: SignalRef[T]) extends EventNode[T]
13 case class MappedEventNode[T, +U](g: ReactiveGraph, base: EventRef[T], m: T => U)
14 extends EventNode[U]
15 case class FilteredEventNode[T, +U >: T](g: ReactiveGraph, base: EventRef[T],
16 pred: T => Boolean) extends EventNode[U]

Figure 5.6: Definition of the reactive data-flow vertex structure through case classes in Scala.

After defining the data-flow graph as whole, we need to translate the Algebraic Data Type structures
formally defined in Chapter 3 into Scala code. The code in Fig. 5.6 shows the basic class structure used
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to represent the different node types as case classes. We define base traits that are separate for events
and signals, but shared for all node types. This is the code equivalent for defining two separate sets of
vertices and methods that have only one of them as their domain, as in Def. 3.4 and 3.7. The actual case
class definitions are almost equivalent to the ADT generators introduced in the same definitions, except
that they have the data-flow graph as an additional parameter, which allows them to register themselves
with it.

All references between nodes in the created tree structures are using references instead of direct links
to nodes, which allows them to be redirected by optimizations if necessary, just like external references.
While all node types have in common that they carry a type that describes their represented content,
many of them are actually generic in more than one type parameter. For the MappedEventNode class for
example, both the incoming base node’s content type and the represented mapping function’s parameter
and result type are independent parameters that have to match correctly and are also used to define the
node’s own content type.

The content type is further defined to be covariant, which allows subtyping as shown in the variable
sub2 in Fig. 5.1 and satisfies the type requirements of the type class interface introduced in Fig. 5.3.

1 trait SignalNode[+A] extends ReactiveNode[A] {
2 g.registerNode(this)
3 g.addLog(LoggedCreate(new SignalRef(this)))
4
5 def changed: ChangedEventNode[A] = ChangedEventNode(g, new SignalRef(this))
6 def map[X >: A, B](f: (X) => B): MappedSignalNode[X, B] = MappedSignalNode(g,
7 new SignalRef(this), f)
8 }
9

10 case class VarSignalNode[A](g: ReactiveGraph) extends SignalNode[A] {
11 def set(value : A) : Unit = g.addLog(LoggedSet(new SingalRef(this), value))
12 }

Figure 5.7: Excerpt of the meta representation implementation for signals and signal sources in Scala.

Supplementary to the basic definitions in Fig. 5.6, Fig. 5.7 gives a more in-detail look into the inner
workings of the classes and the methods provided by the signal nodes to allow data-flow graph construc-
tion. The first two operations of registering the node into the graph and adding a log entry are performed
immediately when the node is constructed.

The exemplary interface methods then allow to create new dependent nodes by creating a new node
referencing the one whose interface is called. While the introduction of the additional type parameter
X in this example may seem unnecessary at first, it is required as not both type parameters of MappedE-
ventNode are defined as covariant. In Scala’s type system it is not directly possible to interchange invari-
ant and covariant type variables, which makes in necessary to use an additional intermediate type that
is lower-bounded by the covariant A. Similar workarounds are needed for some other node types and
operations to make them type-safe in the context of the type system provided by Scala.

The class representing signal sources adds an additional method to the interface to allow the source
vertices to be set. This is implemented by adding a log entry to the graph. The class definitions for log
entries are not shown here as they don’t implement special functionality but simply provide a structure
similar to the formal definition in Def. 3.7. Implementation details for references are also not shown
here as they simply provide the ability to be de-referenced through the data-flow graph’s mapping func-
tionality. They however also mirror the same operations to provide further convenience. This allows
the meta-implementation of the type-class interface from Fig. 5.3 to trivially forward all calls to these
operation definitions.
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After implementing all operations formally defined for operational reactive data-flow graphs in Sec-
tion 3.3, the Scala implementation is ready to use for static analysis and transformation as we will
demonstrate in Section 6.2. What remains is however is the implementation of reification and unreifica-
tion to create a link to reactive frameworks and enable dynamic metaprogramming.

5.3 Reification of Meta Representation Graphs in Scala

We have already outlined general reification concerns like reification scheduling and the handling of
partially reified reactive graphs in Section 4.2. These allow a straight-forward implementation of the
shown concepts to reify the previously introduced meta representation structures implemented in Scala
into reactive frameworks.

A major design goal for reification was to prevent coupling between the meta representation and
REScala to retain the independence from actual frameworks that was established for the formal defini-
tions in Chapter 4. For this reason, we have created a generalized reifier trait that the graph’s nodes
are depending on and that defines the reification program flow. The connection to REScala is only
established by a concrete implementation of this interface through a REScala reifier.

5.3.1 The Generalized Reification and Unreification Process in Scala

Fig. 5.8 shows the abstract interface that is implemented by all reifiers for reactive frameworks. The
publicly visible core methods are the ones for reifying each type of reactive node, as well as unreifying
an existing node. Similar to the data-flow graph implementation, we also chose a mutable design for the
reifier that allows it to store the necessary caching and state information needed to achieve a consistent
connection between the graph nodes and the reified elements. The consequences of this can be seen in
the public interface, as no separate methods for re-reification based on an existing state are required,
and no saved state is returned when unreifying a node. Instead, this information is saved and restored
implicitly by the reifier, which allows a high degree of freedom for the reifier’s implementation.

1 trait Reifier {
2 def reifyEvent[T](eventNode: EventNode[T]) : Event[T]
3 def reifySignal [A](signalNode: SignalNode[A]) : Signal[A]
4 def reifyEvt [T](evtNode: EvtEventNode[T]) : Evt[T]
5 def reifyVar [A](varNode: VarSignalNode[A]) : Var[A]
6 def unreify(node : DataFlowNode[_]): Unit
7
8 protected[meta] def evaluateNecessaryReification(graph: DataFlowGraph): Unit
9

10 protected[meta] def doReifyEvent[T](eventNode: EventNode[T]) : Event[T]
11 protected[meta] def doReifySignal[A](signalPointer: SignalNode[A]) : Signal[A]
12 protected[meta] def createEvt[T]() : Evt[T]
13 protected[meta] def createVar[A]() : Var[A]
14 }

Figure 5.8: Abstract interface for reifiers that implement the reification process for data-flow nodes.

Also visible in Fig. 5.8 is the internal interface for reifiers that is used by the meta representation’s
nodes during the reification process. The method evaluateNecessaryReification is a generalized version of
the reify-if-necessary function that was shown in Def. 4.5, and is used to determine if firing an event may
trigger potential observers. Instead of only performing an analyzing this based on a single fired origin
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node, it analyzes the whole graph at once. This allows more complex situations where multiple events
may be fired at once or, as possible in REScala, signals also have observers, which require an immediate
reification and behave differently than event observers shown in Chapter 4.

The remaining methods are used internally to actually perform the reification after necessary depen-
dency checks have been performed by the publicly available ones. While doReifyEvent and doReifySignal
check the reifier’s cache and create elements based on the existing meta representations, createEvt and
createVar are used within them as generators for fresh root nodes without any other dependencies.

While the shown interface does not necessarily require the actual reification implementation to fol-
low a fixed order of processing steps, it was created with a general process in mind that is illustrated
in Fig. 5.9. Calling any of the public reification methods first causes the cache being checked to avoid
multiple reifications of the same node. If the node already has a reification, it is returned immediately
without further actions required. Otherwise, the set of required reifications to satisfy the node’s depen-
dencies is determined in a way as formally defined in Def. 4.2. In a second preparation step, all relevant,
not yet reified log entries of the graph are then gathered in their original order. As long as unreified
entries remain, they are handled according to their logged operation type:

• The reification of node creations uses the already outlined internal interface methods to perform
the necessary node creation within the reactive framework. After reification took place, the result
is added to the cache. Additionally, if an existing state for the node exists that was saved from a
previous reification, it is re-applied to the node. Creating a node and restoring its state may also
take place in a single step depending on the used framework’s interfaces and design.

• Node operations like firing an event or setting a reactive variable can only occur in the log after the
according node has already been created. To retain the original operation order, the node is fired
immediately so that only dependencies that were already existent when the log entry was added
are affected.

• Adding an observer works similar to firing and setting nodes by forwarding the operation to a cor-
responding call on the reified node. For observers however it is also necessary to store themselves
in the cache to allow a later handling of them during unreification.

After a log entry has been handled, it is marked as reified to avoid a duplicate reification of the same
operation. Consequently, it is also removed from the queue of unhandled, relevant nodes for the current
reification. The queue continues to be reified until no unhandled log entries remain. Since the originally
requested node is always part of the scheduled reifications through the log, it must have been processed
by finishing the scheduled reification of the log. Consequently, a simple lookup of the originally requested
node in the cache is sufficient to get its reification.

Unreification takes place similarly as reification, is however slightly simpler than the reification pro-
cess. In Fig. 5.10, the unreification process is outlined. As for reification, it is first checked if the whole
unreification process can be ignored as the node was already unreifiedor has never been reified before.
It unreification cannot be skipped, the set of nodes to unreify is determined, which can be achieved
through the same function as for reification as we proposed in Section 4.2.

As no natural ordering of nodes is available for unreification to ensure a scheduling of nodes before
their dependencies, it must be created manually to determine the unreification schedule. This can be
done by a depth-first search of the nodes that returns them in post-order.

After preparing unreification, the actual process executed for each node is to first delete all existing
observers and mark them as unreified in the log. Observers themselves don’t contain any internal state
and therefore can simply be re-created when a later re-reification is applied. The node itself on the other
hand may contain state information that needs to be extracted and saved in collaboration with the used
reactive framework. Finally, the node can be deleted from the cache and marked as unreified in the log.

Applying this procedure to all nodes computed for unreification ultimately restores a state that is
consistent and safe for a later re-reification. Reified nodes themselves do not need to be manually
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Figure 5.9: Flow diagram for the reification process.
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deleted as the removal of all their observers ensures that even further operations may no longer result
in any externally noticable effects. If available in the reactive framework, they may however even be
disconnected from the remaining graph to avoid unnecessary computations and allow memory to be
freed through mechanisms as garbage collection.

5.3.2 Implementation of REScala Reification and Unreification

In our implementation of the previously described reification process for REScala, we focussed on avoid-
ing internal modifications of the framework. As our original goal was to create an external representation
that is not depending on the internal framework design, reification should also be able to be applied from
a mostly external viewpoint that uses only the interface that is already available for programmersusing
REScala. As we will explain in this section, we have achieved this goal with one exception that required
an extension of the original REScala code.

As we have outlined in Section 2.3, REScala contains several features that go beyond the simple
management and propagation of reactive values. Especially the support for a wide range of different
implementations of concurrency through propagation engines makes up such a strong part of REScala
that it cannot be simply ignored when reifying a reactive graph. When creating or using reactive elements
in REScala, it is necessary to also select an appropriate propagation engine and in some cases also a
concorrency context to schedule a correct internal scheduling of operations.

Since REScala uses implicit parameters to make large parts of the concurrency interface transparent
for the user, it is for most parts sufficient to adapt this design into the reifier’s own implementation, so
that implicit values are simply forwarded to REScala as they would be when directly working with its
original interface. Further, we have decided to adopt this design to also make the reifier itself implicit
when reifying or unreifying a meta representation node.

1 import rescala .engines.CommonEngines.synchron
2 implicit val reifier = new rescala.meta.EngineReifier
3 val metaApi = new Api.metaApi(new ReactiveGraph())
4
5 val v = api.Var(1)
6 val e = api.changed(v)
7 var fired = 0
8 api. set(v, 1)
9 api.observe(e, ((x : Int) => { fired += 1 }))

10 api. set(v, 2)

Figure 5.11: Sample of the data-flow graph interface and the implicit reification to REScala elements.

A simple program using the meta representation as well as the implicit reification to the REScala
framework can be seen in Fig. 5.11. The first two lines define the implicitlyused context for reification by
setting the used REScala engine to a synchronous, non-concurrent implementation and the used reifier
to the one described here that uses REScala as framework. The third line then sets up a fresh graph
of the meta representation that can be accessed through the defined API. The next lines are mostly
self-explanatory as they simply use the API to createreactive elements in the graph. Through the unified
interface, the actual data-flow meta representation that is generated by the API methods becomes almost
indistinguishable from the actual framework.

The defined reifier is actually used implicitly in line 8, as this is the first line that may trigger an actual
reification in case there are already observers registered for the set variable. Since this is not the case, the
first actual reification is triggered in line 10, that makes the already presented reification process trigger
the reification of the whole graph as it exists at this point. The registered observer is reified as well, and
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it is immediately fired, which causes a side-effect that is not handled by the meta representation and
changes the value of the variable fired.

To achieve the shown behavior, all the reifier has to add to the reification process as presented in
Fig. 5.9 is the actual instantiation of REScala reactive elements. This can be performed by simply
calling the appropriate methods for creating a new Var or Evt in the used REScala engine, or the ap-
propriate interface methods in the REScala API. Unreification, while not implemented as an implicitly
triggered process here, can also be achieved by a straight-forward implementation of the Behavior shown
in Fig. 5.10. Additionally to deleting a reification from the cache, REScala also provides a feature to ac-
tually disconnect existing nodes from their dependencies, which is done by the reifier to make sure they
can be handled by the garbage collector of the JVM.

The only feature that is not natively supported by REScala is the saving and restoring of a node’s state.
Adding this feature is unfortunately not easily possible since stateful nodes such as Toggle are internally
converted into folding operations that emulate the desired behavior and only maintain an internal vari-
able containing the current state information. There is no interface for extracting this internal variable
and it is consequently not simply possible to extract this state without replicating the internal behavior
of REScala of splitting nodes and therefore losing significant semantic information when unreifying the
graph.

To solve this issue of saving and restoring state, there exist two possible workaround options:

1. Emulate the calculation state information within the meta representation, even for reified nodes,
for example by keeping track of the amount and values it was fired with. Then re-apply this state
on re-reification.

2. Extend the framework to support such a tracking internally and allow the saving and restoring of
this record as a state value that can be treated as a black box by the meta representation.

Only the first option maintains the design goal of not modifying the used framework’s internal imple-
mentation, and it is also the only one that allows a conversion of existing state of a single node between
different reactive frameworks. it has several significant disadvantages. First, it distracts from the original
idea of the meta representation to be separated from the actual values stored in the reactive graph and
not emulate the propagation process or computations performed by the reactive framework. Second.
it causes a significant overhead as the meta representation needs to replay the whole history of a node
on each re-reification and has not enough information available to optimize redundant or otherwise
irrelevant operations. Consequently we decided for the second option in our implementation.

To extend the framework, we have added an optional internal tracking to REScala that creates a log of
all previous values of a signal, that is updated whenever an internal reevaluation occurs. Using an addi-
tional interface, it is possible to read this log and save it when unreifying a node in the reifier. Similarly,
it is possible to restore the log and therefore the current value of a signal during signalinstantiation.

As already mentioned, the log can be treated as a black box within the reifier, which however also
means that no type safety can be guaranteed for this interface. For this reason, and because the actual
overhead in used memory resulting from the internal log is not covered in our evaluation in Chapter 6,
the feature should be considered experimental and replaced once an actual extended state management
is implemented for REScala.
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6 Evaluation

The implementation of the reactive data-flow graph in Scala and its connection to REScala through
reification and unreification shown in the previous chapter demonstrates that the shown meta represen-
tation concepts not only build a foundation for a theoretical model of reactive data-flow, but can also be
practically implemented to work in connection to an existing reactive framework.

What determines the usability of the model in real-world applications are however its impact on
performance and most importantly its suitability for graph analysis and transformation that were the
motivation to define an external meta representation in the first place. In this chapter, we evaluate these
properties through both benchmarking of graph construction and reification as well as case studies that
exemplify situations where having a meta representation enables new functionality to be implemented.

6.1 Benchmarks

In the previous chapters, we have shown data structures for creating a data-flow meta-representation
for reactive programs, as well as algorithms to transform this representation into executable reactive
programs. We consider the implementation effort for both the construction of data-flow graphs and the
reification process as reasonable, and we have demonstrated its feasibility by giving a sample implemen-
tation that interacts with the REScala framework. However, another factor that is of importance for users
working with the demonstrated meta-representation is the resulting overhead on run-time performance.

To measure the performance impact of our meta-representation, we have conducted benchmarks to
compare its run-time in comparison to pure REScala code. As scenario, we have chosen a graph in
our meta-representation that originates in an event source and onto which we apply a variable num-
ber of consecutively chained mappings. For this graph, we measure two different values of run-time
performance: First, we measure the time required to construct construct the program in both the meta-
representation and the REScala framework. Then, we consider the throughput of fired event propaga-
tions in an already constructed graph.

To further analyze the impact of certain factors on the performance of both the pure reactive im-
plementation and our meta-representation, we have selected two additional variables for both bench-
marks: First, we consider the size of the reactive program, which is determined by the number of
consecutive mappings applied to the original event. Second, we differentiate if a reification of the
meta-representation is triggered in the scenario.

For all our measurements, we used the Java Microbenchmark Harness [18], which is already deployed
in a ready-to-use state with the REScala framework. We did not use specific hardware to run the tests
as we were only interested in relative performance values and not the exact runtimes. To avoid artifacts
through JVM start-up or initialization, for each test we ran five warmup iterations and five iterations for
our measurements, each counting the number of complete executions of our test program per millisecond
over one second. The calculated 99.9% confidence interval for our measurements lies within a 15% range
around our measured average for all measurements. We selected the non-concurrent synchronous engine
of REScala for all our benchmarks as we did not support any concurrency with our own implementation
and therefore only want to consider single-threaded performance.

The resulting measurements for the first benchmarked scenario are shown in Fig. 6.1. The chart is
split into four different sizes of benchmarked data-flow chains. The grey bars represent the run-time of
pure code of the REScala framework, while the blue ones visualize the pure construction run-time of the
data-flow graph meta-representation. The yellow bars show the run-time required to both construct a
meta-representation graph and reify it into REScala code.

For all results, the necessary run-time is expectably closely related to the size of graph and grows
approximately linearly with its size. More of a surprise might be that the construction of the meta-

53



0

5

10

15

20

25

30

35

2 10 50 250

Av
er

ag
e 

Ru
nt

im
e 

(m
s)

Reactive data-flow chain size

Pure REScala Meta-Representation Reified Meta-Representation

Figure 6.1:Measured run-time for construction of pure REScala programs and when using the meta-
representation (lower = better).

representation graphs is significantly more cost-efficient than the creation of REScala programs. Our
implementation needs to retain more semantic information about the graph layout than an internal
representation like the one used in REScala requires. However, the set-up of structures and informa-
tion required for the propagation of data-flow within REScala may cause this significant performance
difference.

When also considering reification within our benchmarks, as this would be a prerequisite for exe-
cuting propagation on the reactive graph, results change significantly: The reification appears to add an
approximately constant factor of overhead to the pure construction of the graph that results in a run-time
significantly larger than both constructions.

One reason for this is the fact that reifying the data-flow graph also includes constructing the resulting
REScala graph. However, the measured run-time is also larger than the sum of both constructions. A
possible reason for the caused overhead is the requirement to compute the graph dependencies that
actually require reification. In our measurements, we triggered the reification of the last event node in
the chain, which means that a recursive analysis of all incoming nodes is necessary to determine those
that need to be reified. This process causes a significant computational overhead.

Our second benchmark evaluated the performance of update propagation in an already constructed
graph. Fig. 6.2 shows the results of these measurements. As in our previous chart, we have executed
the benchmarks for four different graph sizes. This time however we compare pure REScala code with
a graph created using our meta-representation that has already been reified before our benchmark is
executed. Additionally, we also performed measurements for a graph that is still unreified and does not
contain any event observers. Due to the lazy reification semantics discussed in Section 4.4, no value
propagation has to be performed in this case as the fired events can be ignored.
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Figure 6.2:Measured run-time for firing a single event in pure REScala code and when using the meta-
representation (lower = better).

When comparing the measured values from Fig. 6.2 to the ones from 6.1, our first observation is
that the time required for propagating values is significantly lower than the time used for dependency
construction. While construction times varied in an order of milliseconds, the bars in Fig. 6.2 show that
asingle fired event can be propagated throughout our whole reactive sample program in a fraction of a
millisecond, even for our largest tested graphs.

The general tendency of larger graph sizes requiring more computation time can be also observed
in our second benchmark. However, when comparing pure REScala code with our reified meta-
representation, the measured overhead varies significantly depending on the tested graph size. Firing a
reified node in the data-flow graph triggers the REScala propagation process for underlying reified node
and is therefore limited by the performance achieved by REScala. But while REScala shows significant
performance increases even for very small graph sizes, our meta-representation seems to be limited by a
hard performance cap that is not size-dependent.

This limit is most likely once again related the semantics of reification, as even for reified nodes,
updates are first added to the graph log, the cache of reified nodes is checked and then the actual
propagation is triggered. While this process becomes a less significant overhead for larger graphs as the
required run-time barely increases with the graph size, it creates a strict constant performance limit for
smaller graphs.

Also remarkable is the performance of the unreified meta-representation graph which achieves a dras-
tically better performance than any other propagation. The reason for this is that for unreified graphs,
no propagation process is necessary at all. As we are using scheme there that shows a behavior closely
related to that of lazy evaluation, the fired event can simply be stored for later propagation during the
reification process. In this specific case, it may even be discarded entirely as no lasting changes could
have been triggered by it.
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In Section 4.4 when we presented the semantics of implicit reification and unreification as they are
used in our benchmarked implementation, we stated that it is an open question to determine an op-
timal strategy of targeted unreification of previously reified graph elements. Looking at the results
obtained in our benchmarks confirms this as an important factor for creating a performance-efficient
meta-representation. The impact of the reification process itself is signicant, while the overhead of
propagating updates on the reified graph becomes negligible for larger graphs. Non-reified graphs can
however save important computation time if the propagated values are irrelevant and their computa-
tion can be skipped. Yet, as the time scale for construction operations is much larger than that for
propagation, these savings may rarely outweigh the required time for unreification and re-reification.

Even when not considering such implementation decision, the benchmarking results shown in this
section also allowed us to analyze how the processes of creating, reifying and re-evaluating the meta-
representation of a reactive program affect the resulting run-time performance in general. The actual
performance in comparison to a pure implementation in REScala is highly dependent on the program’s
structure and the required amount of implicit reification. We havehowever demonstrated that the overall
performance impact is not harming the feasibility of implementing even large-scale reactive data-flow
chains.

6.2 Case Studies

The graph meta representation can be used for both purely non-destructive analysis operations as well
as transformations that provide a benefit for programmers using a reactive framework. To show these
capabilities, we have chosen two case studies demonstrating such scenarios: In Section 6.2.1 we show
how the meta representation can enable optimizations of the data-flow structure created by a reactive
program. Section 6.2.2 then shows how the representation can benefit the implementation of distributed
reactive programs by allowing data-flow analysis and providing additional abstraction over a node’s
location for the user.

6.2.1 Data-flow Optimization

Achieving a high run-time performance is a common top-priority goal in programming. As mentioned
in Section 2.2, the management of data-flow in reactive frameworks causes overhead and is therefore
harmful when trying to maximize a program’s performance. Modelling data-flow as a graph as we
have presented in Chapter 3 however allows several possible optimizations that have been extensively
researched in the domain of streaming [19, 20], compilation [21, 22] and hardware circuit design [23].

While optimizations of the data-flow may also be performed by reactive frameworks itself, their in-
ternal representation may not be sufficient for the necessary analysis and transformation steps, and
adding the necessary capabilities may complicate the existing design and even increase the existing per-
formance overhead. As an alternative, we propose the application of data-flow optimizations on the
presented external representation, which can then be reified as shown in Chapter 4.

When running a reactive program, there are two sources of potential overhead: The necessary or
potentially unnecessary recomputation of reactive elements themselves and the management of propa-
gation by determining a glitch-free order of recomputation. To minimize these overheads, we propose
the reduction of either the number of nodes or the number of edges in the reactive data-flow graph.
Using the survey of data-flow stream optimizations conducted by Hirzel et al. [19], we chose two sample
optimizations that are easy to implement and result in easily predictable benefits that are independent
of the actual implementation:

1. Fusion merges a linear sequence of reactive elements into a single element that behaves semanti-
cally equivalent to the last element in the sequence. Linear and therefore fusible reactive operations
are sequences of mapping and filtering of signals or events, where the used functions can easily be
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applied sequentially and treated as a single operation without additional need for propagation or
dependency computation.

A challenge when determining fusible elements is the consideration of external references. If a
user-accessible reference exists for one of the inner fused nodes, it cannot be guaranteed that no
additional dependencies are added or value queries are executed at a later point in time. The
simplest approach is to only fuse nodes where no external references to inner nodes exist. It is
however also possible to retain such references by duplication of the referenced node. While this
may not result in a further decrease of the size of the optimized graph, unused duplicated nodes
may be skipped during reification if their references are never used to add further dependencies.
A sample of both fusion approaches applied to a data-flow graph with sequential mappings can be
seen in Fig. 6.3.

2. Redundancy elimination replaces multiple reactive elements that share the same semantics by a sin-
gle element. Consecutive application of this approach may even result in the step-wise elimination
of subgraphs within a larger reactive program. Since reactive nodes that are not source elements
are free of side-effects, semantic equivalency can be determined by a simple structural comparison
of the graph. While different source elements are independent and therefore never semantically
equivalent, all dependent reactive elements are semantically equivalent if all their dependencies
are semantically equivalent and they apply the same operation.

Fig. 6.4 shows an example where both branches of a data-flow graph apply equivalent operations
on the same source variable. They can therefore be merged into a single linear graph by step-wise
removal of the redundant nodes. References and dependencies onto any of the removed nodes
need to be redirected to the retained equivalent node. In the shown example, this ultimately
results in a toggle-node that is redundant itself as it only toggles between two references to the
same signal node. Another optimization not shown in detail here which performs simple sanity-
checks for situations like this one might remove the useless toggle-node in a later optimization
step.
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Figure 6.3: Fusion optimization applied to a data-flow graph with sequential mappings.

Both outlined optimizations can be applied to the semantic data-flow graphs as shown in Section 3.2
as well as the operational graphs as shown in Section 3.3. The availability of semantic information about
each node and the traversal of the graph, similar to an AST, make the implementation of these and
similar optimizations very efficient and straight-forward.
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Figure 6.4: Redundancy elimination applied to a data-flow graph with redundant branches.

For the operational model, it is however important to also consider the timing of node creation when
fusing or replacing nodes. If one node was added before applying a firing or setting operation while
another was added afterwards, they may not be considered semantically equivalent and also not be
fused. When using an implicit reification approach as shown in Section 4.4, it is further necessary to
ensure that the nodes and all affected dependencies are unreified before any optimization is performed
to avoid discrepancies between the graph and its reification.

To demonstrate the practical applicability of the shown optimizations, we have implemented them in
Scala based on the implementation shown in Chapter 5. Especially the additional level of indirection
through mutable references introduced in Chapter 5 turned out to be very useful for implementing node
replacement as performed during redundancy optimization.

Further optimizations and clean-up transformations like the mentioned check for redundant combina-
tions of references to the same node are possible. Some useful optimizations like operator reordering how-
ever must be treated cautiously as they may alter the semantics of nodes like fold that have side-effects
and therefore carry state information themselves. We will further discuss some of the optimizations as
presented by Hirzel et al. that are not graph- but network-based in the next subsection.

58



6.2.2 Distributed Reactive Programming

Modern software development commonly involves the requirement to distribute software over more
than one physical machine. This may be an inherent consequence of the software’s use-case that could
require a central server to manage data-flow between multiple client computes, or it may be simply
the result of fulfilling a need of resources or processing power that is not available within a single
computer. Efficiently handling the necessary communication between different processes over network
while ensuring the intended program and data flow requires a careful software design that accounts for
the resulting challenges [24].

An area of current research is to combine distributed computing concepts with reactive programming
in the area of Distributed Reactive Programming (DRP) [1, 14]. When distributing reactive programs
over a network of connected computers, well-known issues from distributed computing like unreliability,
latency and highly dynamic network partitioning can affect core guarantees of reactive frameworks like
glitch-freedom or the preservation of operation order.

The actual implementation of networking functionality and finding practical solutions for the arising
issues are tasks that need to be solved by the actual reactive frameworks. Therefore, they do not fall
into the high-level structural level that is covered by the graph representation presented in this thesis.
To create efficient distributed programs and minimize the overhead resulting from costly network oper-
ations, it is however highly beneficial to analyze the data-flow within a program before and during its
execution. We propose that the data-flow graph meta representation we have presented can be used
to conduct analysis of this type and therefore provide a framework-independent insight into potentially
beneficial networking layouts and optimizations.

In distributed environments where the actual network layout can be chosen dynamically, it is beneficial
to use clustering techniques that try to minimize the proportion of costly data-flow over the network to
more efficient internal flow on a single machine. When a data-flow graph is available, this can be
achieved by finding groups of nodes with a high degree of connectivity. Assuming a uniform distribution
of data-flow in the graph, these nodes are more likely to exchange data with each other than other nodes.
Therefore, it is beneficial to consider them as a cluster and move them to the same physical computer.

While a variety of different problem statements and approaches to graph clustering exist and exten-
sive research has been conducted on their properties and relation [25], we have decided to apply the
Markov Clustering (MCL) algorithm [26] to our data-flow graph representation. This algorithm uses a
stochastic model to iteratively approximate node sets that are most likely to be connected by data-flow.
It has a polynomial runtime, works effectively for many different graph layouts, and an open-source
implementation in Java is available as part of the Java Machine Learning Library [27].

The MCL algorithm can be used in combination with any of the graph models we have presented
in Chapter 3 as the minimum requirement to apply it is an adjacency matrix of the graph to be clus-
tered. Since the average number of incoming data-flow edges for a single reactive node is usually
not scaling with the graph size, reactive graphs tend to be sparse. Therefore, a map-based spare matrix
representation can drastically reduce the required memory size compared to an array-like matrix storage.

While the MCL algorithm supports both undirected and directed graphs, it is recommended by its
original authors to be used with undirected or mostly undirected graphs. This fits with our observation
of its results being significantly better when ignoring the direction of data-flow edges during adjacency
matrix generation. While the algorithm also supports weighted edges, we initially consider the same
weight for all edges here.

Applying the MCL algorithm to the generated adjacency matrix causes it to iteratively increase the
weight of edges between strongly connected nodes and then normalize the matrix. Through this process,
inter-cluster edges are weighted down until they are abandoned by falling below a cut-off threshold. The
resulting matrix only has the edges within each cluster remaining, which can then be extracted to convert
the matrix back into sets of the clustered nodes.

59



MapS(_ · 2)

Toggle

MapS(_ · 3)

Changed

VarEvt

Filter(_ > 0)

Evt

Or

MapE(_ + 1)

(a) Coarse grained clustering (i = 1.5)

MapS(_ · 2)

Toggle

MapS(_ · 3)

Changed

VarEvt

Filter(_ > 0)

Evt

Or

MapE(_ + 1)

(b) Medium grained clustering with overlaps (i = 2)

MapS(_ · 2)

Toggle

MapS(_ · 3)

Changed

VarEvt

Filter(_ > 0)

Evt

Or

MapE(_ + 1)

(c) Fine grained clustering (i = 3.2)

Figure 6.5: Sample clusterings after applying the MCL algorithm with di�erent inflation factors i.

Fig. 6.5 shows sample results of applying the MCL algorithm with different inflation parameters i to a
small data-flow graph with ignored edge directions. The colored boxes indicate the clusters determined
by the algorithm. The results indicate two drawbacks of this algorithm, the first one being the difficulty to
control the number and size of the resulting clusterings. Unfortunately, it is not possible to directly relate
the used inflation factor to the number of resulting clusters or their sizes, as these may vary drastically
depending on the graph’s layout. The second drawback of the MCL algorithm is that in rare cases it
may produce overlapping clusters as in Fig. 6.5b. These can typically be avoided by selecting another
inflation factor as in Fig. 6.5c, but still need to be considered when using the algorithm as part of an
automatized toolchain.

Typically, an algorithm like MCL would require multiple runs with different inflation factors to find the
desired clustering result for a given data-flow graph. The meta representation we have presented may
help reduce the cost or amount of overhead necessary for each run as it allows a very straight-forward
and potentially more efficient generation of a graph’s adjacency matrix than internal representations
used in reactive frameworks. This benefit becomes even more significant when considering reactive
programs that are already in used within a distributed setting, where full layout information may not be
directly available within a reactive framework itself.

The shown example of applying the MCL algorithm is just one example of an analysis that could allow
or optimize distributed reactive environments. Even considering MCL, there is potential for further opti-
mizations like using different initial edge weights for different types of nodes when using the algorithm
on semantic or operational graphs. Another extension that may lead to significantly improved results is
the measurement of actual flow data created during runtime as a more realistic edge weight. We will
give a general outline about dynamic analyses that may be relevant for future research in Chapter 8.
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7 Related Work

While no comparable attempts are known to us to create a meta representation specifically for reactive
programs, the work presented in this thesis combines two branches that each have been the subject to
diverse research in the past. The first one is the modelling of non-reactive data-flow for usage in pro-
gram analysis and optimization. The second one is metaprogramming on a different semantic level that
involves both meta representations and transformations of programs at compile-time and the dynamic
access and modification of a program through itself as part of the meta-object protocol

7.1 Modeling of Data-Flow

The idea to model the data-flow of programs using graphs dates to the 1970s when they were applied to
analyze programs written in the PL/I programming language [28]. Since then, they have been used in a
wide array of areas, from networking [19, 20] to program analysis [11, 28], compilation and optimiza-
tion [21, 29, 30] as well as hardware circuit design [23]. Due to the different requirements of each of
these problem domains, specific specializations and extensions have been established for each of them.

Especially the task of analyzing data-flow in non-reactive programs bears resemblance to the models
presented in this thesis. The fundamental difference between both tasks is however that in non-reactive
graphs, data-flow from a node to another is bound to a specific point in time. This leads to typical analy-
ses like required variable and object life-times [31] that are used as part of common compiler strategies
and in register allocation. Such analyses don’t are usually not applicable to reactive programs where
signals and events can be updated implicitly by changes to their dependencies that are not determinable
at compile-time.

An extension to the classic data-flow graph structure that is commonly used in compiler frameworks
are Control Data Flow Graphs (CDFG), which model flow of data and the control-flow of the represented
program simultaneously [32]. They typically do this by using a two-level representation that models
data-flow within basic blocks not interrupted by control-flow operations, and control-flow between these
blocks that are then considered as atomic elements [28]. Since reactive programs typically don’t have
control-flow within the reactive flow network, this model is not applicable to reactive programs. An
exception are however frameworks that support the nesting of higher-order program structures within
signals like REScala. For these, a two-level representation of data-flow may be useful, which would
however need to be reversed in comparison to existing models as it requires consideration of data-
flow on a global and control-flow on a local level. We have not considered representing this type of
higher-order embedding within our graph representation, which may be a topic of future research.

More closely related to reactive programming when representing actual data-flow structures are rep-
resentations of data streams, for example in networks or when modelling data pipelines. As we have
shown in Section 6.2, most use cases of modelling data-flow for streams, like optimization and placement
of operators within a network are also applicable to reactive programs [19, 20]. Unfortunately, existing
work in this area did not actually try to formally define the used models and usually assumes the applied
data-flow structures to be manually set-up as a graph and then rolled out. Therefore, no meta-access to
the resulting network of streams has been considered up to this point.

7.2 Metaprogramming

Two of the fundamental benefits of high-level programming languages over low-level machine code
representation are the provided level of abstraction as well as a certain level of correctness validation
resulting from a voluntary restriction of the programmer’s capabilities. There are however situations

61



when it can be desirable to get access to a program from an external view-point that considers the
program code itself as viewable or even modifiable data. The common term for all variations of this type
of programming is metaprogramming.

Metaprogramming can be divided on a general level into two subtypes: Static metaprogramming ac-
cesses program code before it is executed, for example during the compilation process or between com-
pilation and execution. It can only rely on the code itself and may not make any assumptions about
the runtime environment or user input. Dynamic metaprogramming is more powerful as it can access or
even modify the program at run-time, and access concrete information about its state and environment.
A subtype of dynamic metaprogramming is when a program gets access to itself by modifying its own
structure or the semantics of its execution.

In this section, we will outline work in both of these areas and show their relation to the reactive meta
representation we have presented in this thesis.

7.2.1 Static Metaprogramming

As all programs accessing code after or even while it is written up to the point when it starts being
executed can be considered as static metaprogramming, a wide range of different research areas fall
into this category. Even compilers themselves can be considered metaprograms, as they analyze and
often also optimize program code while lowering it into another representation which is often assembly
language or machine-independent bytecode.

In this section we will however focus on static metaprogramming in a more narrow definition that
considers already finished program code and analyzes or transforms it in ways that do not result in a
low-level form like it would be the case after compilation. Especially areas like recommender systems or
refactorings could also be considered from a reactive perspective, but have too little in common with the
type of meta representation presented in this thesis, which assumes an already functional reactive graph
that can be analyzed.

The idea of enable access to a static representation of a program that is not simply code as plain
text but a form that is already enriched with syntactic and semantic information have been established
for decades [33, 34]. For program code, representation through an Abstract Syntax Tree (AST) that is
often decorated with additional semantic information is wide-spread and has proven useful for for a
wide array of usages. Two areas that highly benefit from this form of representation are hygienic macro
expansion [35] and multi-staged compilation [36], which both use ASTs to partially lower parts of a
program into a form that itself is still represented within the AST and therefore can be further analyzed
or transformed.

Using ASTs as a meta representation for reactive programs is not a very applicable solution as they
cannot connect the representation of reactive elements as objects or variables to the resulting permanent
data-flow connections that are the core principle of reactive programming. These semantics are only es-
tablished through the used reactive framework which is a dynamic process that cannot be reconstructed
by pure analysis of the program’s or the framework’s AST.

The reactive meta representation we have presented uses a design inspired by that of ASTs, and can
therefore share some of the same benefits. As we have demonstrated in this thesis, the representation
of operations by different node types that each can carry parameters specific to their use is as useful in
reactive data-flow graphs as it is in classical program transformations. Especially the ability to efficiently
traverse the graph while applying directed transformations to specific nodes or node groups has proven
useful in our case study about optimizations in Section 6.2.1.

Another representation of programs found in metaprogramming, especially in the context of optimiza-
tion is Control Data Flow Graphs that we have already presented and compared to our representation
in Section 7.1. The optimizations for reactive data-flow that we have presented in Section 6.2.1 are
typically also executed using this representation when applied to non-reactive program data-flow. The
same applies for static analysis, which uses similar techniques as optimizations and can be applied to
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both ASTs and a variety of data-flow graphs. We have only outlined some examples for static analysis in
the context of distributed programming in Section 6.2.2, while other usage scenarios are thinkable.

7.2.2 Dynamic Metaprogramming

While static metaprogramming mostly varies in the time of application but in almost all cases targets
preparing a program for execution, dynamic metaprogramming is applied with a wider array of goals.
An example type of dynamic metaprogramming that is intuitively applied but almost all programmers in
daily use is debugging, which allows to inspect the runtime behavior of programs. More sophisticated
tools and methods exist that even allow modification to programs while they are executed, or even the
way interpretation through a virtual machine or a runtime environment takes place.

Similar to static metaprogramming as outlined in the previous section, one of the main problems to
solve for dynamic approaches is to find a well-suited representation of the program. A specific challenge
is the connection of run-time information and static program structures like the AST. Before execution,
programs usually are compiled to assembly language or at least a low-level representation that is opti-
mized for efficient interpretation at the price of less easily available semantic information. This means
that dynamic information like the current state of a partially executed program needs to be explicitly
connected to the original, static program representation that carries high-level semantic information.

An approach to avoid the necessity of establishing such a connection between high-level and low-level
semantics is symbolic execution [37]. In this analysis technique that bridges static and dynamic metapro-
gramming, a program is statically analyzed and assumptions about the dynamic behavior for specific
input value ranges are made. A common application for this is formal verification of programs [38]. We
could not identify existing research that attempts to apply such techniques specifically to reactive pro-
grams. We assume however that by analyzing reactive data-flow models like the one we have presented,
similar attempts can be made that allow a better formal analysis of reactive programs.

For actual run-time analysis, relating the static and dynamic information about a program is consid-
erably simplified when a program is directly interpreted instead of compiled. Consequently, functional
programming languages like Lisp that are interpreted instead of compiled have been one of the earliest
and thriving domains of dynamic metaprogramming. Ground-breaking work has been done with the
definition of the Meta Object Protocol (MOP) for the Common Lisp Object System [39]. With this protocol,
the semantics of object-oriented language constructs cannot only be represented and implemented in
Lisp itself, but even be accessed, modified or re-defined through the programmer at run-time.

While having MOP-support would theoretically be a desirable property for all object-oriented lan-
guages as it enables a whole new level of flexibility, it comes with several restrictions and disadvan-
tages [40]. For languages like LISP, having an MOP that also acts as a constant proxy for all internal
interpretation of object-oriented code means a significant reduction of performance. Even more prob-
lematic is however the application to compiled languages, which would require the emulation of any
object-oriented code execution by an interpreter executed at run-time, which removes almost all perfor-
mance benefits of compilation. As very few programs require MOP capabilities and only programmers
with a deep understanding of object-oriented semantics are able to utilize them, such an overhead is not
acceptable for most real-world software

This dilemma when creating MOPs can also be identified when considering the data-flow meta repre-
sentation in this paper: The ideal goal for reactive programming would be to have a meta representation
like the presented one that allows a full meta-definition of the propagation process which can then be ap-
plied directly without even requiring any additional reactive framework. Such an implementation would
allow a maximum of flexibility and enable the user to change the reactive semantics of his program on-
the-fly and even during the propagation process. It would however also mean that a full emulation of
the user-sided representation of the reactive graph needs to be employed for all procedures within the
reactive data-flow processing.
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The data-flow graph model we have shown employs a trade-off by mixing a high-level meta represen-
tation with a dynamic reification of its components into a lower-level representation through a reactive
framework. This solution resembles the concepts of reflection and just-in-time compilation (JIT) found in
dynamic metaprogramming for compiled but managed languages like Java [41, 42] and those based on
the .NET framework [43].

While reflection is often used as an umbrella term for all features that allow programs self-inspection
and self-modification including MOP, we will use the term explicitly to describe the ability to programs
to access and modify their own structure but not to modify the fundamental semantics of their program-
ming language. Compared with MOP, reflection is typically easier to realize as it does not require the
programming language’s semantics themselves to be accessible at run-time. Instead, it is only necessary
to retain a mapping of the original, object-oriented structure after compilation that can then be modified
on-the-fly. This is a feature that is typically already available in languages managed by a virtual machine
to allow support for debugging or just-in-time compilation. Reflection is commonly employed in middle-
ware like testing environments and has been used to efficiently implement programming paradigms like
aspect-oriented programming [41, 44, 45].

The meta representation we have presented shares a conceptual similarity with reflection as it allows
reactive programs to access and modify their own structure, while not giving direct access to the im-
plementation of their reactive data-flow. This means a trade-off that lowers this degree of operational
flexibility for a more efficient processing during run-time. Noticeably, the REScala framework used in
our research already employs a certain degree of meta-access of its implementation through its sup-
port for interchangeable propagation engines that allow different implementation styles in the context
of concurrency. Future research on lifting this support into an abstract form into the data-flow graph
meta representation could result in more reflective access without sacrificing significant amounts of
performance.

Like reflection, just-in-time compilation is another feature that is supported by modern programming
language virtual machines [46] and even for interpreted languages [47]. It allows the analysis of code
that would normally be interpreted and its optimization and compilation during run-time utilizing dy-
namic information. While the main target of this process is typically the optimization of run-time perfor-
mance, the necessary analysis and transformation steps come at the price of a computational overhead
that has a negative performance impact. Therefore, a benefit-cost ratio of the ideally non-recurring com-
pilation process and the long-term performance increase when recurrently executing the optimized code
needs to be considered.

A process similar to just-in-time compilation has been presented in Chapter 4 through reification and
unreification of the reactive graph meta representation. In the presented model for reactive graphs, a
similar benefit-cost analysis is necessary when considering the reification and unreification of reactive
elements. While, in contrast to just-in-time compilation, at least a one-time lowering of nodes into a
reified form is necessary, it is up to future evaluation to determine strategies to recurrently unreify and
re-reify elements to apply optimizations onto them during run-time.
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8 Conclusion and Future Work

In this thesis, we have presented a meta representation for reactive data-flow graphs that can be used as
both a theoretical foundation for modelling reactive data-flow and to implement, analyze and transform
reactive programs through metaprogramming. We have demonstrated how a reification into and from
an actual reactive framework can be realized both explicitly and implicitly, and what impact an implicit
reification has onto a program’s propagation semantics. Further, we have outlined how to decorate the
meta-representation graph with dynamic information gathered at run-time.

We have demonstrated the applicability of our models and evaluated them through an implemen-
tation in the Scala programming language that can be implicitly reified into a representation in the
REScala reactive framework. Our benchmarks have shown that the performance impact of this process
is measureable but not excessive, and may in certain cases even be beneficial. In our case studies, we
have further demonstrated how our meta-representation enables dynamic optimization and data-flow
analysis that may be particularly useful for the research area of distributed reactive programming.

Finally, we have shown relations between the presented approaches and other previous and ongoing
research in metaprogramming. Based on these, we want to summarize possible directions of future work
in reactive metaprogramming that can be founded on this thesis:

• While we have presented some examples of potential uses of a data-flow graph meta-
representation, the provided list of examples was certainly not exhaustive. More transformations
that are specific for certain use-cases of reactive programs may be found and tried, as well as anal-
yses that affect other areas than distributed programming. Especially the field of code verification
may be of additional research interest since having access to semantic data-flow information can
enable new higher-level insights into program’s run-time behavior. We also didn’t consider any
data-flow optimizations that may provide specific benefits for concurrent reactive programs, for
example by facilitating pipelining.

• As we have illustrated in the discussion of our benchmarking results, it is difficult to determine the
ideal time and quantity of implicit unreification to take place. While unreification can be necessary
to perform transformations on the data-flow graph, it may also bring performance benefits to give
up an existing reification to achieve a lazier propagation of values. Finding an optimized implicit
unreification strategy is a task that is still open for research, especially when the shown concepts
may be applied in performance-critical scenarios.

• Similarly, we also have not evaluated the efficiency of reification and unreification to other reactive
frameworks than REScala. While we tried not to tailor our code to a specific framework, other re-
active implementations can deviate from the underlying definitions we have used as the foundation
for our design [1]. Especially a reification using frameworks a smaller feature-set than REScala,
such as those supporting only either signals or events, may be challenging to fit with the presented
models.

• The presented meta-representation considers each element in a reactive graph to have statically
defined semantics and cannot explicitly represent higher-order control-flow within a single node,
as it is enabled by certain reactive frameworks, including REScala. To allow the modelling of this
control-flow embedded within the reactive graph, a hybrid representation similar to those used
in compiler analyses and optimizations [28, 32] may be beneficial. This and similar extensions
to our meta-representation could enable a bridge between the reactive semantics modelled by the
data-flow graphs we have presented and regular program flow that they are merged into.
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• A metaprogramming extension that potentially requires significantly more design and implementa-
tion effort but looks very promising is the addition of formalized propagation semantics to the data-
flow graph model. This would increase the representation capabilities of the meta-representation
onto the level of an autonomously working meta object protocol [39]. The result of this would be
the ability to not only access and transform reactive data-flow but also every step of its propaga-
tion semantics dynamically from within the reactive program itself without any framework support
or necessary reification process. This would enable new types of dynamic metaprograms as out-
lined in Section 7.2.2, and additionally, also benefit the general understanding of the fundamental
semantics of data propagation in reactive graphs.
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