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Appendix B

Sampling discrete processes

Frequently computer simulations generate synthetic Brownian motion via a simple

random walk at discrete intervals. Sampling of such a process to get the distribution

of increments p(x) can be problematic because of introduced artifacts which bias

the statistics.

One often-used statistic is the (excess) kurtosis, defined as

Kurt[x] =
µ4

µ2
2

− 3 (B.1)

where µk is the k’th (centered) moment of the distribution

µk =
〈

[x− 〈x〉]k
〉
. (B.2)

The kurtosis is useful because it quantifies the “weight” of the distribution tail (far

from the mean). For the Gaussian the excess kurtosis is zero (because µ4 = 3µ2
2)

compared to which a negative kurtosis indicates less weight in the tails and a positive

indicates more.

Difficulties arise, however, if the Brownian motion is generated by a discrete

process as will be demonstrated in two examples below. Unless great care is taken,

the kurtosis may be artificially inflated by regular sampling.

B.1 Simple random walk

Consider a discrete Brownian process with normally-distributed (zero mean, unit

variance) jumps at regular intervals of τ = 1 (without loss of generality). If this

process is sampled at regular intervals of ∆ 6= τ , as demonstrated in Fig. B.1, some

intervals will have more “jumps” than others so the distribution of increments will

not be Gaussian.

186



∆

Time

R
an

d
om

w
al

k

Figure B.1: When a random walk is generated at some regular interval and sampled
at another, ∆, the number of jumps between samples will vary.

To be precise, let ∆ ≡ n+ r where n ≡ b∆c is the largest integer not greater

than ∆ (the floor of ∆) and 0 ≤ r < 1 is the remainder. Then each interval will

span at least n jumps, spanning n+ 1 with the probability r. Since each jump x is

normally distributed N(x; 0, 1) with zero mean and unit variance, j jumps are also

normally distributed with zero mean and variance j, denoted by N(x; 0, j). The

distribution of increments of the random walk, sampled at intervals of ∆ = n+ r is

then given by

RW (x; 0,∆) = (1− r)N(x; 0, n) + rN(x; 0, n+ 1). (B.3)

Calculating the first four moments of the increment distribution is very

straight-forward since

µk[RW (x; 0,∆)] = (1− r)µk[N(x; 0, n)] + rµk[N(x; 0, n+ 1)] (B.4)

and the normal distribution has moments µ1 = 0, µ2[N(x; 0, j)] = j, µ3 = 0, and

µ4 = 3µ2
2. Therefore, the moments of RW are

µ1 = 0 (B.5)

µ2 = (1− r)n+ r(n+ 1) = n+ r = ∆ (B.6)

µ3 = 0 (B.7)

µ4 = 3(1− r)n2 + 3r(n+ 1)2 = 3(∆2 + r(1− r)). (B.8)
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Figure B.2: The kurtosis is only zero at integer values of the sampling interval ∆
and diverges as the sampling interval approaches zero.

Notice that the variance of the distribution is simply ∆, exactly the same as for

continuous Brownian motion sampled at intervals of ∆.

In fact, all three of the lowest moments are identical to Brownian motion,

lulling us into a false sense of security. However, the fourth moment differs and the

excess kurtosis, which is zero for Brownian motion, is now

Kurt[RW (x; 0,∆)] = 3
r(1− r)

∆2
(B.9)

which, on the surface, would seem to indicate the distribution has fat tails. The

kurtosis is only zero at integer values of ∆ (r = 0) and is a maximum for any n

when r = n/(1 + 2n) as shown in Fig. B.2.

In particular, the kurtosis diverges as the sampling rate accelerates

Kurt[RW ]→ 3

∆
as ∆→ 0, (B.10)

a result of the Dirac delta function N(x; 0, 0) dominating the distribution, scaling

the variance down faster than the fourth moment.

Even though all the evidence presented suggests that the distribution of

increments in the random walk truly does have fat tails when sampled at non-integer

intervals ∆, it is actually just an artifact of sampling.

Since we are getting an overlap of two Gaussian distributions, with variances

n and n + 1, the center of the distribution is dominated by the smaller variance
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Figure B.3: The distribution of increments for the random walk appears to have
fatter tails than a normal distribution with the same variance when sampled at
intervals of ∆ = 1.05. However, the tails still drop off as e−x2

.

contribution and the tails are dominated by the larger variance. Hence, the second

moment of the random walk is scaled down by the smaller variance but the fourth

moment is scaled up by the larger. The net effect is the illusion of fat tails in the

distribution.

However, the tails of the distribution still fall off as e−x2
, as demonstrated

in Fig. B.3, so the term “fat tails” is misleading, usually being reserved for simple

exponential or power law tails.

Notice that the center of the distribution behaves as a normal with variance

∆ and the tail also behaves as a normal, with variance n + 1, but weighted by r.

The crossover between the two regimes, after some algebra, is found to be

xc =

√√√√
[
ln(n+ 1)− 2 ln(r

√
∆)
]

∆(n+ 1)

1− r . (B.11)

This indicates the scale of increments, x ≈ ±xc, for which the distribution will

appear most strongly non-Gaussian.

Next we consider a process generated at Poisson intervals rather than regular.
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B.2 Poisson Brownian motion

In this section we again consider a discrete Brownian motion but, in this case, the

intervals between the jumps are Poisson-distributed instead of regular. The Poisson

distribution gives the probability of j events within a time interval t given an average

event rate τ ≡ 1 (without loss of generality),

P (j, t) = e−t t
j

j!
. (B.12)

Given normally-distributed jump sizes the distribution of j jumps is N(x; 0, j) so

the distribution of increments of the Poisson Gaussian process at intervals of ∆ is

PG(x; 0,∆) =
∞∑

j=0

P (j,∆)N(x; 0, j). (B.13)

The analytic solution for the distribution of increments is challenging but

the moments of the distribution are relatively easy to compute,

µk[PG(x; 0,∆)] =

∫
dx

∞∑

j=0

P (j,∆)N(x; 0, j)xk (B.14)

=
∞∑

j=0

P (j,∆)

∫
dxN(x; 0, j)xk (B.15)

=
∞∑

j=0

P (j,∆)µk[N(x; 0, j)], (B.16)

depending directly on the moments of the normal distribution (which were presented

in the last section).

From the identity ex ≡ ∑
j x

j/j!, the first four moments of the Poisson

Gaussian are

µ1 = 0 (B.17)

µ2 = ∆ (B.18)

µ3 = 0 (B.19)

µ4 = 3∆(∆ + 1). (B.20)

Again, the first three moments are unchanged from the normal distribution

but the kurtosis becomes

Kurt[PG(x; 0,∆)] =
3

∆
(B.21)

for all ∆. (This form was also observed for the random walk in the limit ∆ → 0.)

So, again the kurtosis diverges as the sampling interval drops towards zero.
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Figure B.4: Discrete Brownian motion with Poisson-distributed jump intervals has
tails which fall off exponentially (with a decay constant of 0.72), instead of as e−x2

,
when sampled at regular intervals (∆ = 1).

In the case of the random walk we found the excess kurtosis arose from the

overlap of two Gaussians but the tails still fell off as e−x2
. However, for Poisson

Brownian motion the distribution tails are much heavier. A synthetic dataset gen-

erated from a Poisson Brownian motion sampled at intervals of ∆ = 1 (Fig. B.4)

shows that the tails fall off only exponentially,

B.3 Sampling

Evidently, by generating a synthetic Brownian motion at non-uniform intervals,

the illusion of fat tails can be achieved by simply sampling the process regularly.

However, the underlying process is still generated by Gaussian-distributed jumps

and, over long timescales, still looks like Brownian motion.

The easiest way to avoid these artifacts is to not sample the process in “real

time” but in “event time.” That is, take a single sample after each event. Then,

the underlying jump process will be revealed without any complications from zero

or multiple events per sample.

Unfortunately, in some cases the available data do not allow for the de-

termination of individual events. In this case, a very high frequency sampling is

recommended and all intervals with zero increment should be discarded. High fre-
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quency sampling minimizes the likelihood that multiple jumps could occur in any

one interval but increases the likelihood of zero increments. By discarding these null

events only the intervals with a single increment remain. (This also discards actual

jump events of size zero but this should have a minimal bias on the statistics since

a jump size of identically zero has a negligible probability measure.)
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