UBC Physics 102 Lecture 15

Rik Blok

Outline

- \triangleright AC source
- ⊳ R circuits
- ▷ L circuits
- ⊳ C circuits
- ▷ LRC circuits
- ⊳ Resonance
- \triangleright End

Definition: AC source

 Generates an alternating (sinusoidal unless otherwise stated) current,

 $I = I_0 \sin \omega t.$

Definition: AC source

 Generates an alternating (sinusoidal unless otherwise stated) current,

 $I = I_0 \sin \omega t.$

• Angular frequency ω related to frequency f and period T by

$$\omega = 2\pi f = \frac{2\pi}{T}.$$

Definition: AC source

 Generates an alternating (sinusoidal unless otherwise stated) current,

 $I = I_0 \sin \omega t.$

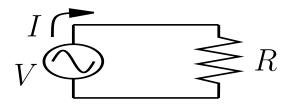
• Angular frequency ω related to frequency f and period T by

$$\omega = 2\pi f = \frac{2\pi}{T}.$$

Definition: AC source

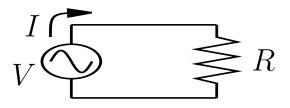
 Generates an alternating (sinusoidal unless otherwise stated) current,

 $I = I_0 \sin \omega t.$

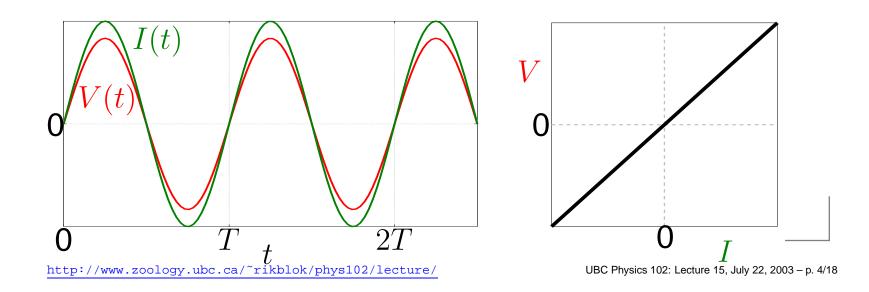

• Angular frequency ω related to frequency f and period T by

$$\omega = 2\pi f = \frac{2\pi}{T}.$$

- Circuit symbol: ⁻⁽⁾
- Note: multimeters read RMS values, not peak.



Discussion: R circuits



Discussion: R circuits

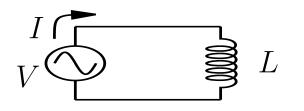
• Voltage drop across resistor, $V = IR = I_0R\sin\omega t$ so voltage amplitude is $V_0 = I_0R$.

Discussion: R circuits, contd

Discussion: R circuits, contd

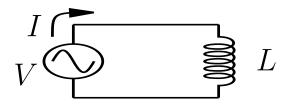
• RMS voltage, $V_{\rm RMS} = I_{\rm RMS}R$.

Discussion: R circuits, contd


• RMS voltage, $V_{\rm RMS} = I_{\rm RMS}R$.

Interactive Quiz: PRS 15a

Discussion: R circuits, contd

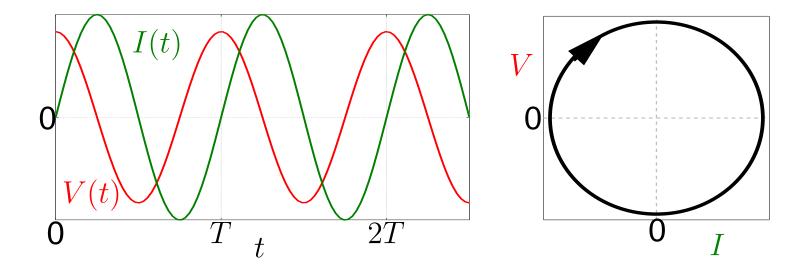

- RMS voltage, $V_{\rm RMS} = I_{\rm RMS} R$.
- Interactive Quiz: PRS 15a
- Discussion: L circuits

Discussion: R circuits, contd

- RMS voltage, $V_{\rm RMS} = I_{\rm RMS} R$.
- Interactive Quiz: PRS 15a
- Discussion: L circuits

By Kirchhoff's loop rule,

$$V = L\frac{dI}{dt} = L\frac{d}{dt}I_0\sin\omega t$$
$$= \omega LI_0\cos\omega t.$$



Discussion: L circuits, contd

Discussion: L circuits, contd

• Current lags voltage by 90° .

Definition: Inductive reactance, X_L

• Definition: Inductive reactance, X_L

• Voltage amplitude is $V_0 = \omega L I_0$.

• Definition: Inductive reactance, X_L

- Voltage amplitude is $V_0 = \omega L I_0$.
- Multimeter will give readings $V_{RMS} = I_{RMS}X_L$ where

$$X_L = \omega L.$$

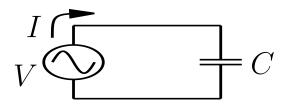
• **Definition:** Inductive reactance, X_L

- Voltage amplitude is $V_0 = \omega L I_0$.
- Multimeter will give readings $V_{RMS} = I_{RMS}X_L$ where

$$X_L = \omega L.$$

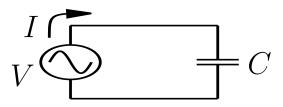
• X_L called inductive *reactance*.

• **Definition:** Inductive reactance, X_L

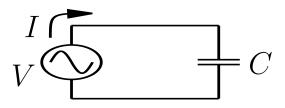

- Voltage amplitude is $V_0 = \omega L I_0$.
- Multimeter will give readings $V_{RMS} = I_{RMS}X_L$ where

$$X_L = \omega L.$$

- X_L called inductive *reactance*.
- Like resistance except current out of phase with voltage.



Discussion: C circuits


Discussion: C circuits

• By Kirchhoff's loop rule, $V = \frac{Q}{C}$.

Discussion: C circuits

- By Kirchhoff's loop rule, $V = \frac{Q}{C}$.
- How does this relate to current? $I = \frac{dQ}{dt}$ so

$$\frac{dV}{dt} = \frac{I}{C} = \frac{I_0}{C}\sin\omega t.$$

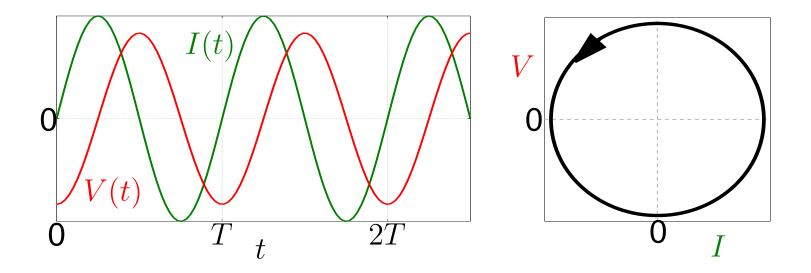
Discussion: C circuits

- By Kirchhoff's loop rule, $V = \frac{Q}{C}$.
- How does this relate to current? $I = \frac{dQ}{dt}$ so

$$\frac{dV}{dt} = \frac{I}{C} = \frac{I_0}{C}\sin\omega t.$$

Solution is

$$V = -\frac{I_0}{\omega C} \cos \omega t.$$



Discussion: C circuits, contd

Discussion: C circuits, contd

• Current *leads* voltage by 90° .

Definition: Capacitive reactance, X_C

Definition: Capacitive reactance, X_C

• Voltage amplitude is $V_0 = \frac{I_0}{\omega C}$.

Definition: Capacitive reactance, X_C

- Voltage amplitude is $V_0 = \frac{I_0}{\omega C}$.
- Multimeter will give readings $V_{RMS} = I_{RMS}X_C$ where

$$X_C = \frac{1}{\omega C}.$$

Definition: Capacitive reactance, X_C

- Voltage amplitude is $V_0 = \frac{I_0}{\omega C}$.
- Multimeter will give readings $V_{RMS} = I_{RMS}X_C$ where

$$X_C = \frac{1}{\omega C}.$$

• X_C called inductive *reactance*.

Definition: Capacitive reactance, X_C

- Voltage amplitude is $V_0 = \frac{I_0}{\omega C}$.
- Multimeter will give readings $V_{RMS} = I_{RMS}X_C$ where

$$X_C = \frac{1}{\omega C}.$$

- X_C called inductive *reactance*.
- Discussion: CIVIL memory aid

Definition: Capacitive reactance, X_C

- Voltage amplitude is $V_0 = \frac{I_0}{\omega C}$.
- Multimeter will give readings $V_{RMS} = I_{RMS}X_C$ where

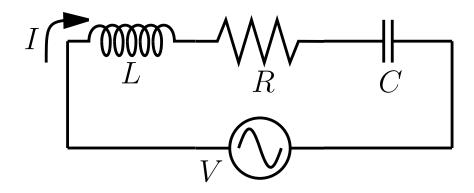
$$X_C = \frac{1}{\omega C}.$$

- X_C called inductive *reactance*.
- Discussion: CIVIL memory aid
 - $\underline{CIV}|L = in \underline{C}apacitors \underline{I} comes before \underline{V}$.

• Definition: Capacitive reactance, X_C

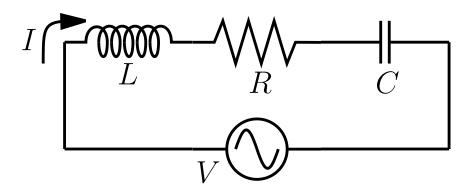
- Voltage amplitude is $V_0 = \frac{I_0}{\omega C}$.
- Multimeter will give readings $V_{RMS} = I_{RMS}X_C$ where

$$X_C = \frac{1}{\omega C}.$$

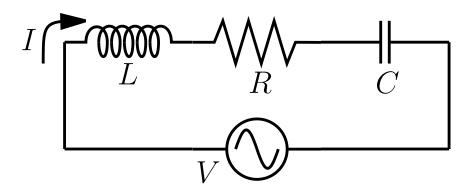

• X_C called inductive *reactance*.

Discussion: CIVIL memory aid

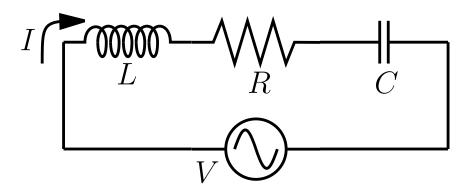
- $\underline{CIV} | L = in \underline{C} a pacitors \underline{I} comes before \underline{V}.$
- $C|\underline{VIL} = \underline{V}$ comes before <u>I</u> in inductors (<u>L</u>).

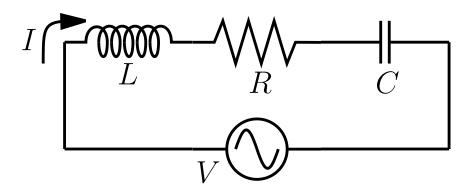


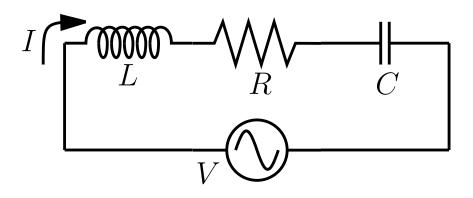
Discussion: LRC circuits



Discussion: LRC circuits


What if circuit contains all three components in series?


- What if circuit contains all three components in series?
- Same current $I = I_0 \sin \omega t$ goes through each.


- What if circuit contains all three components in series?
- Same current $I = I_0 \sin \omega t$ goes through each.
- Expect total voltage drop to be $V = V_0 \sin(\omega t + \phi)$.

- What if circuit contains all three components in series?
- Same current $I = I_0 \sin \omega t$ goes through each.
- Expect total voltage drop to be $V = V_0 \sin(\omega t + \phi)$.
- But which ϕ ? 0°, \pm 90° or something else?

- What if circuit contains all three components in series?
- Same current $I = I_0 \sin \omega t$ goes through each.
- Expect total voltage drop to be $V = V_0 \sin(\omega t + \phi)$.
- But which ϕ ? 0°, \pm 90° or something else?
- And what is V_0 ?

Discussion: LRC circuits, contd

Discussion: LRC circuits, contd

From Kirchhoff's loop rule,

$$V = V_R + V_L + V_C$$

= $I_0 R \sin \omega t + I_0 (X_L - X_C) \cos \omega t.$

Discussion: LRC circuits, contd

From Kirchhoff's loop rule,

$$V = V_R + V_L + V_C$$

= $I_0 R \sin \omega t + I_0 (X_L - X_C) \cos \omega t.$

Definition: Impedance

Discussion: LRC circuits, contd

From Kirchhoff's loop rule,

$$V = V_R + V_L + V_C$$

= $I_0 R \sin \omega t + I_0 (X_L - X_C) \cos \omega t.$

- Definition: Impedance
 - After some geometry (hand waving) we find $V_0 = I_0 Z$.

Discussion: LRC circuits, contd

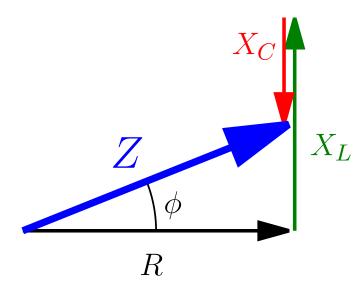
From Kirchhoff's loop rule,

$$V = V_R + V_L + V_C$$

= $I_0 R \sin \omega t + I_0 (X_L - X_C) \cos \omega t.$

- Definition: Impedance
 - After some geometry (hand waving) we find $V_0 = I_0 Z$.
 - Likewise, multimeters will read $V_{RMS} = I_{RMS}Z$ where

$$Z = \sqrt{R^2 + (X_L - X_C)^2}.$$


Definition: Impedance, contd

- Z called impedance of circuit.
- "Impedes" current flow like resistance but also phase-shifts it by ϕ .

- Z called impedance of circuit.
- "Impedes" current flow like resistance but also phase-shifts it by ϕ .
- Vector representation:

Definition: Impedance, contd

Summary:

Name	Symbol	Phase shift
Resistance	R	0°
Reactance	X	$\pm 90^{\circ}$
Impedance	Z	$\phi \ (\phi \le 90^\circ)$

Definition: Impedance, contd

Summary:

Name	Symbol	Phase shift
Resistance	R	0°
Reactance	X	$\pm 90^{\circ}$
Impedance	Z	$\phi \ (\phi \le 90^\circ)$

Interactive Quiz: PRS 15b

Definition: Impedance, contd

Summary:

Name	Symbol	Phase shift
Resistance	R	0°
Reactance	X	$\pm 90^{\circ}$
Impedance	Z	$\phi \ (\phi \le 90^\circ)$

- Interactive Quiz: PRS 15b
- Derivation: Power

Definition: Impedance, contd

Summary:

Name	Symbol	Phase shift
Resistance	R	0°
Reactance	X	$\pm 90^{\circ}$
Impedance	Z	$\phi \ (\phi \le 90^\circ)$

Interactive Quiz: PRS 15b

Derivation: Power

L and C don't lose energy, they just swap it back and forth.

Definition: Impedance, contd

Summary:

Name	Symbol	Phase shift
Resistance	R	0°
Reactance	X	$\pm 90^{\circ}$
Impedance	Z	$\phi \ (\phi \le 90^\circ)$

Interactive Quiz: PRS 15b

Derivation: Power

- L and C don't lose energy, they just swap it back and forth.
- Only R loses energy, as heat.

Derivation: Power, contd

Derivation: Power, contd

• Average rate of power consumption is $|\overline{P} = I_{RMS}^2 R|$.

Derivation: Power, contd

- Average rate of power consumption is $|\overline{P} = I_{RMS}^2 R|$.
- From vector representation we see $R = Z \cos \phi$ so

$$\overline{P} = I_{\rm RMS}^2 Z \cos \phi = I_{\rm RMS} V_{\rm RMS} \cos \phi.$$

Derivation: Power, contd

- Average rate of power consumption is $\left|\overline{P} = I_{\text{RMS}}^2 R\right|$
- From vector representation we see $R = Z \cos \phi$ so

$$\overline{P} = I_{\rm RMS}^2 Z \cos \phi = I_{\rm RMS} V_{\rm RMS} \cos \phi.$$

• $\cos \phi$ called **power factor**.

Discussion: Resonance

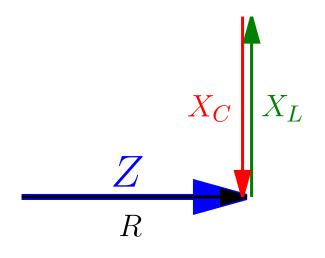
• Already saw a LC circuit (without any voltage source) oscillates at frequency $\omega_0 = \frac{1}{\sqrt{LC}}$.

- Already saw a LC circuit (without any voltage source) oscillates at frequency $\omega_0 = \frac{1}{\sqrt{LC}}$.
- What is so special about that frequency?

- Already saw a LC circuit (without any voltage source) oscillates at frequency $\omega_0 = \frac{1}{\sqrt{LC}}$.
- What is so special about that frequency?
- If we "push" an LRC circuit with an AC source at frequency ω_0 ,

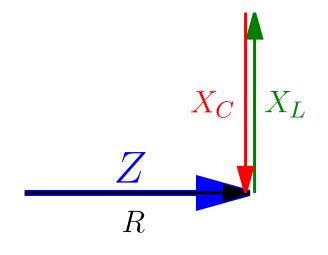
$$X_L = \omega_0 L = \sqrt{\frac{L}{C}},$$
$$X_C = \frac{1}{\omega_0 C} = \sqrt{\frac{L}{C}}.$$

- Already saw a LC circuit (without any voltage source) oscillates at frequency $\omega_0 = \frac{1}{\sqrt{LC}}$.
- What is so special about that frequency?
- If we "push" an LRC circuit with an AC source at frequency ω_0 ,


$$X_L = \omega_0 L = \sqrt{\frac{L}{C}},$$
$$X_C = \frac{1}{\omega_0 C} = \sqrt{\frac{L}{C}}.$$

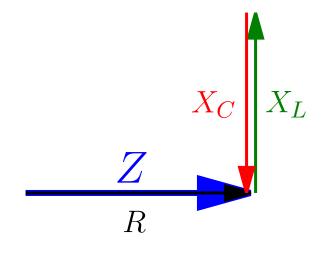
• So
$$X_L = X_C$$

Resonance, contd


Discussion: Resonance, contd

Resonance, contd

Discussion: Resonance, contd



• So $\phi = 0$ and Z = R. Changing ω can only make Z bigger.

Resonance, contd

Discussion: Resonance, contd

- So $\phi = 0$ and Z = R. Changing ω can only make Z bigger.
- Interactive Quiz: PRS 15c

End

Practice Problems:

- Ch. 31: Q. 1, 3, 5, 7, 9, 11, 13, 15.
- Ch. 31: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 51, 53.

End

Practice Problems:

- Ch. 31: Q. 1, 3, 5, 7, 9, 11, 13, 15.
- Ch. 31: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 51, 53.
- Interactive Quiz: Feedback

End

Practice Problems:

- Ch. 31: Q. 1, 3, 5, 7, 9, 11, 13, 15.
- Ch. 31: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 51, 53.
- Interactive Quiz: Feedback
- Tutorial Question: tut15

