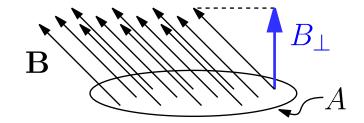
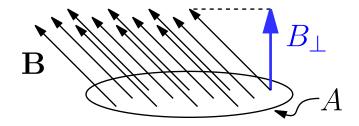
UBC Physics 102 Lecture 13

Rik Blok



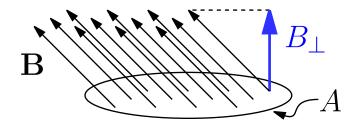
Outline

- ▷ Faraday's law and Lenz's law
- ⊳ Emf in a moving conductor
- ▷ Transformers
- Self-inductance
- Energy storage
- ⊳ End



Definition: *Magnetic flux*

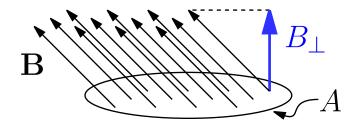
Definition: *Magnetic flux*



Quantity of *B*-field passing through area *A*.

$$\Phi_B = B_\perp A.$$

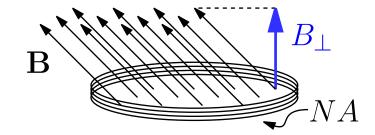
Definition: *Magnetic flux*


Quantity of *B*-field passing through area *A*.

$$\Phi_B = B_\perp A.$$

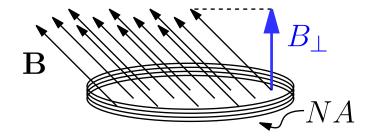
• Like Φ_E used in Gauss's law but don't need closed surface.

Definition: *Magnetic flux*


• Quantity of B-field passing through area A.

$$\Phi_B = B_\perp A.$$

- Like Φ_E used in Gauss's law but don't need closed surface.
- Don't get to choose surface, is defined by a loop of wire.



Definition: Magnetic flux, contd

Definition: *Magnetic flux, contd*

 If we have a coil with N loops then same B goes through all so

$$\Phi_B = NB_{\perp}A.$$

Junit: Weber, Wb

• Unit: Weber, Wb

Unit of *B*-flux,

1 Wb = 1 T
$$\cdot$$
 m².

- **Unit: Weber,** Wb
 - Unit of *B*-flux,

$$1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2.$$

- **Unit: Weber,** Wb
 - Unit of *B*-flux,

$$1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2.$$

Discussion: Induced emf

● Have seen current produce *B*-fields.

Junit: Weber, Wb

Unit of *B*-flux,

$$1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2.$$

- Have seen current produce B-fields.
- Can B-fields produce currents?

Junit: Weber, Wb

Unit of *B*-flux,

$$1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2.$$

- Have seen current produce B-fields.
- Can B-fields produce currents?
- Steady B-fields cannot but changing B-fields can.

Junit: Weber, Wb

Unit of *B*-flux,

$$1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2.$$

- Have seen current produce B-fields.
- Can B-fields produce currents?
- Steady *B*-fields *cannot* but changing *B*-fields *can*.
- Definition: Induced current/emf

Junit: Weber, Wb

Unit of *B*-flux,

$$1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2.$$

- Have seen current produce *B*-fields.
- Can B-fields produce currents?
- Steady *B*-fields *cannot* but changing *B*-fields *can*.
- Definition: Induced current/emf
 - The current or voltage produced by a changing B-field.

Definition: Faraday's law

Definition: Faraday's law

$$\mathscr{E} = -\frac{d\Phi_B}{dt}.$$

Definition: Faraday's law

Changing flux induces emf equal to rate of change,

$$\mathscr{E} = -\frac{d\Phi_B}{dt}.$$

Third of Maxwell's equations.

Definition: Faraday's law

$$\mathscr{E} = -\frac{d\Phi_B}{dt}.$$

- Third of Maxwell's equations.
- Minus sign indicates direction of emf, or can use Lenz's law.

Definition: Faraday's law

$$\mathscr{E} = -\frac{d\Phi_B}{dt}.$$

- Third of Maxwell's equations.
- Minus sign indicates direction of emf, or can use Lenz's law.
- Definition: Lenz's law

Definition: Faraday's law

$$\mathscr{E} = -\frac{d\Phi_B}{dt}.$$

- Third of Maxwell's equations.
- Minus sign indicates direction of emf, or can use Lenz's law.
- Definition: Lenz's law
 - Induced emf (and current) in direction that opposes change in flux.

Discussion: Induced magnetic field

Changing flux induces emf.

- Changing flux induces emf.
- Emf produces current.

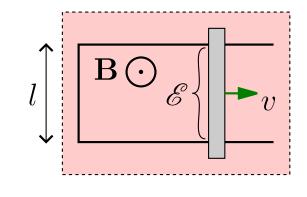
- Changing flux induces emf.
- Emf produces current.
- Current generates B-field.

- Changing flux induces emf.
- Emf produces current.
- Current generates *B*-field.
- Generated *B*-field "tries" to compensate for change in flux.

- Changing flux induces emf.
- Emf produces current.
- Current generates *B*-field.
- Generated *B*-field "tries" to compensate for change in flux.
- Use RH-field rule to determine direction of current.

- Changing flux induces emf.
- Emf produces current.
- Current generates *B*-field.
- Generated *B*-field "tries" to compensate for change in flux.
- Use RH-field rule to determine direction of current.
- Interactive Quiz: PRS 13a

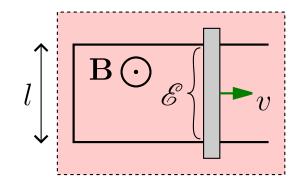
Discussion: Moving conductor


Discussion: Moving conductor

■ Can induce emf by changing *B*-field or area.

Discussion: Moving conductor

- Can induce emf by changing B-field or area.
- Consider circuit: moving rod on conducting rails.



$$\frac{dA}{dt} = lv.$$

Discussion: Moving conductor

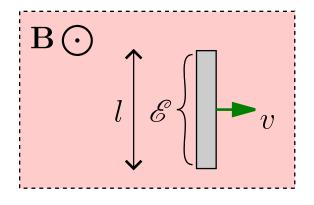
- Can induce emf by changing B-field or area.
- Consider circuit: moving rod on conducting rails.

$$\frac{dA}{dt} = lv.$$

Emf is (ignoring sign)

$$\mathscr{E} = \frac{d}{dt} \Phi_B = B \frac{dA}{dt} = B l v.$$

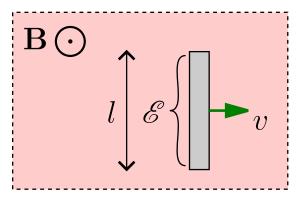
Emf in a moving conductor, contd


Discussion: Moving conductor, contd

Emf in a moving conductor, contd

Discussion: Moving conductor, contd

Compare to isolated moving rod.



Emf in a moving conductor, contd

Discussion: Moving conductor, contd

Compare to isolated moving rod.

• Force on electrons, F = qvB (up). So *E*-field in rod (down) is

$$E = \frac{F}{q} = vB.$$

Discussion: Moving conductor, contd

Discussion: Moving conductor, contd

• E uniform so emf (voltage, $V = -E_l l$, ignoring sign)

$$\mathscr{E} = El = Blv.$$

Discussion: Moving conductor, contd

• E uniform so emf (voltage, $V = -E_l l$, ignoring sign)

$$\mathscr{E} = El = Blv.$$

Same as before!

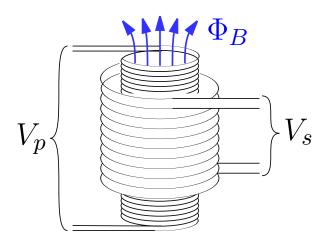
Discussion: Moving conductor, contd

• E uniform so emf (voltage, $V = -E_l l$, ignoring sign)

$$\mathscr{E} = El = Blv.$$

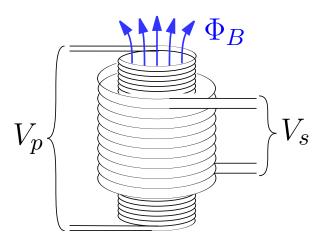
- Same as before!
- Interactive Quiz: PRS 13b

Derivation: Transformers


Derivation: Transformers

Faraday's law works both ways: source emf creates change in *B*-field flux.

Derivation: Transformers


- Faraday's law works both ways: source emf creates change in *B*-field flux.
- Can be used to "couple" 2 isolated circuits:

Derivation: Transformers

- Faraday's law works both ways: source emf creates change in *B*-field flux.
- Can be used to "couple" 2 isolated circuits:

• Primary coil with voltage V_p generates flux:

$$V_p = N_p \frac{d\Phi_B}{dt}.$$

Derivation: Transformers, contd

Derivation: Transformers, contd

• Flux induces voltage V_s in secondary coil:

$$V_s = N_s \frac{d\Phi_B}{dt}.$$

Derivation: Transformers, contd

• Flux induces voltage V_s in secondary coil:

$$V_s = N_s \frac{d\Phi_B}{dt}.$$

 Flux (per loop) same through both so voltages related by

$$\frac{V_p}{N_p} = \frac{V_s}{N_s}.$$

Derivation: Transformers, contd

• Flux induces voltage V_s in secondary coil:

$$V_s = N_s \frac{d\Phi_B}{dt}.$$

 Flux (per loop) same through both so voltages related by

$$\frac{V_p}{N_p} = \frac{V_s}{N_s}.$$

• If transformer efficient then power transferred from primary to secondary, $P_p = P_s$ or $I_pV_p = I_sV_s$.

Derivation: Self-inductance

Derivation: Self-inductance

Current in a coil creates flux through own loops.

Derivation: Self-inductance

- Current in a coil creates flux through own loops.
- *B*-field given by $B = \mu_0 \frac{N}{l}I$ so total flux is

$$\Phi_B = NBA = \frac{\mu_0 N^2 A}{l} I.$$

Derivation: Self-inductance

- Current in a coil creates flux through own loops.
- *B*-field given by $B = \mu_0 \frac{N}{l}I$ so total flux is

$$\Phi_B = NBA = \frac{\mu_0 N^2 A}{l} I.$$

Faraday's law says if flux changes then emf induced:

$$\mathscr{E} = -\frac{d\Phi_B}{dt} = -\left(\frac{\mu_0 N^2 A}{l}\right) \frac{dI}{dt}$$

Derivation: Self-inductance

- Current in a coil creates flux through own loops.
- *B*-field given by $B = \mu_0 \frac{N}{l}I$ so total flux is

$$\Phi_B = NBA = \frac{\mu_0 N^2 A}{l} I.$$

Faraday's law says if flux changes then emf induced:

$$\mathscr{E} = -\frac{d\Phi_B}{dt} = -\left(\frac{\mu_0 N^2 A}{l}\right) \frac{dI}{dt}$$

So changing current induces emf.

Derivation: Self-inductance

- Current in a coil creates flux through own loops.
- *B*-field given by $B = \mu_0 \frac{N}{l}I$ so total flux is

$$\Phi_B = NBA = \frac{\mu_0 N^2 A}{l} I.$$

Faraday's law says if flux changes then emf induced:

$$\mathscr{E} = -\frac{d\Phi_B}{dt} = -\left(\frac{\mu_0 N^2 A}{l}\right) \frac{dI}{dt}.$$

- So changing current induces emf.
- Emf "impedes" change in current.

Definition: Self-inductance, L

Definition: Self-inductance, L

Magnitude of voltage "response" to changing current,

$$\mathscr{E} = -L\frac{dI}{dt}.$$

Definition: Self-inductance, L

Magnitude of voltage "response" to changing current,

$$\mathscr{E} = -L\frac{dI}{dt}.$$

Self-inductance is proportionality constant, L.

Definition: Self-inductance, L

Magnitude of voltage "response" to changing current,

$$\mathscr{E} = -L\frac{dI}{dt}.$$

- Self-inductance is proportionality constant, L.
- Property of object: depends on shape, size, etc. For solenoid,

$$L = \frac{\mu_0 N^2 A}{l}.$$

Definition: Self-inductance, contd

Definition: Self-inductance, contd

• $\mathscr{E} = 0$ if current constant. $\mathscr{E} > 0$ means voltage drop (first end at "higher" potential).

Definition: Self-inductance, contd

• $\mathscr{E} = 0$ if current constant. $\mathscr{E} > 0$ means voltage drop (first end at "higher" potential).

Unit: Henry, H

Definition: Self-inductance, contd

• $\mathscr{E} = 0$ if current constant. $\mathscr{E} > 0$ means voltage drop (first end at "higher" potential).

$\, {\scriptstyle {\color{black} \hbox{\scriptsize \emph{9}}}} \,$ Unit: Henry, H

Unit of inductance,

$$1 \mathrm{H} = 1 \Omega \cdot \mathrm{s}.$$

Definition: Self-inductance, contd

• $\mathscr{E} = 0$ if current constant. $\mathscr{E} > 0$ means voltage drop (first end at "higher" potential).

$\, {\scriptstyle {\color{black} \hbox{\scriptsize \textit{9}}}} \,$ Unit: Henry, ${\color{black} {\color{black} H}}$

Unit of inductance,

$$1 \text{ H} = 1 \Omega \cdot \text{s.}$$

Definition: Self-inductance, contd

• $\mathscr{E} = 0$ if current constant. $\mathscr{E} > 0$ means voltage drop (first end at "higher" potential).

Unit: Henry, H

Unit of inductance,

$$1 H = 1 \Omega \cdot s.$$

A circuit component with self-inductance.

Definition: Self-inductance, contd

• $\mathscr{E} = 0$ if current constant. $\mathscr{E} > 0$ means voltage drop (first end at "higher" potential).

$\, {\scriptstyle {\color{black} \hbox{\scriptsize \textit{9}}}} \,$ Unit: Henry, H

Unit of inductance,

$$1 \text{ H} = 1 \Omega \cdot \text{s.}$$

- A circuit component with self-inductance.
- Circuit symbol:

http://www.zoology.ubc.ca/~rikblok/phys102/lecture/

Interactive Quiz: PRS 13c

- Interactive Quiz: PRS 13c
- Derivation: Energy storage

- Interactive Quiz: PRS 13c
- Derivation: Energy storage
 - Saw (Lecture 8) capacitors store energy $U = \frac{1}{2}CV^2$ in *E*-field.

- Interactive Quiz: PRS 13c
- Derivation: Energy storage
 - Saw (Lecture 8) capacitors store energy $U = \frac{1}{2}CV^2$ in *E*-field.
 - Similarly, inductors store energy in B-field.

- Interactive Quiz: PRS 13c
- Derivation: Energy storage
 - Saw (Lecture 8) capacitors store energy $U = \frac{1}{2}CV^2$ in *E*-field.
 - Similarly, inductors store energy in B-field.
 - Consider gradually ramping up current \hat{I} through inductor from zero to I.

- Interactive Quiz: PRS 13c
- Derivation: Energy storage
 - Saw (Lecture 8) capacitors store energy $U = \frac{1}{2}CV^2$ in *E*-field.
 - Similarly, inductors store energy in B-field.
 - Consider gradually ramping up current \hat{I} through inductor from zero to I.
 - Emf induced $\mathscr{E} = -L\frac{d\hat{I}}{dt}$. Power used by inductor,

$$P = \left| \hat{I}\mathscr{E} \right| = L\hat{I}\frac{d\hat{I}}{dt}.$$

Energy storage, contd

Derivation: Energy storage, contd

Energy storage, contd

Derivation: Energy storage, contd

Power not lost to heat, but stored as potential energy,

$$U = \int P \, dt = \int L \widehat{I} \frac{d\widehat{I}}{dt} dt$$
$$= L \int_0^I \widehat{I} \, d\widehat{I}$$

$$U = \frac{1}{2}LI^2.$$

Practice Problems:

- Ch. 29: Q. 1, 3, 5, 7, 9, 11, 19.
- Ch. 29: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 37, 39, 41, 43, 45, 55, 57, 59, 63, 65.

Practice Problems:

- Ch. 29: Q. 1, 3, 5, 7, 9, 11, 19.
- Ch. 29: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 37, 39, 41, 43, 45, 55, 57, 59, 63, 65.
- Midterm Test: #3

Practice Problems:

- Ch. 29: Q. 1, 3, 5, 7, 9, 11, 19.
- Ch. 29: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 37, 39, 41, 43, 45, 55, 57, 59, 63, 65.

Midterm Test: #3

Third 60 min. test at start of class on Mon (Jul 21).

Practice Problems:

- Ch. 29: Q. 1, 3, 5, 7, 9, 11, 19.
- Ch. 29: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 37, 39, 41, 43, 45, 55, 57, 59, 63, 65.

Midterm Test: #3

- Third 60 min. test at start of class on Mon (Jul 21).
- Will cover all material in Lectures 9–13 (except Ch. 30) and Ch. 25 from Lecture 8.

Practice Problems:

- Ch. 29: Q. 1, 3, 5, 7, 9, 11, 19.
- Ch. 29: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 37, 39, 41, 43, 45, 55, 57, 59, 63, 65.

Midterm Test: #3

- Third 60 min. test at start of class on Mon (Jul 21).
- Will cover all material in Lectures 9–13 (except Ch. 30) and Ch. 25 from Lecture 8.
- Interactive Quiz: Feedback

Practice Problems:

- Ch. 29: Q. 1, 3, 5, 7, 9, 11, 19.
- Ch. 29: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 37, 39, 41, 43, 45, 55, 57, 59, 63, 65.

Midterm Test: #3

- Third 60 min. test at start of class on Mon (Jul 21).
- Will cover all material in Lectures 9–13 (except Ch. 30) and Ch. 25 from Lecture 8.
- Interactive Quiz: Feedback
- Tutorial Question: tut13

