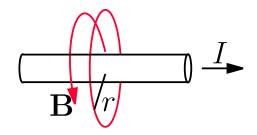
UBC Physics 102

Lecture 12

Rik Blok

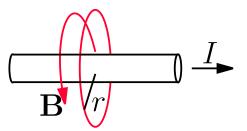
Outline

- ▷ Straight wire
- ▷ Force between wires
- ▷ Ampere's law
- Solenoids and toroids
- ⊳ End



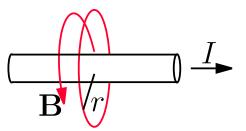
Discussion: Straight wire

Discussion: Straight wire


Magnetic field due to current in a long straight wire.

Discussion: Straight wire

Magnetic field due to current in a long straight wire.



• Stronger closer to wire, $B \propto \frac{1}{r}$, and with stronger current, $B \propto I$.

Discussion: Straight wire

Magnetic field due to current in a long straight wire.

- Stronger closer to wire, $B \propto \frac{1}{r}$, and with stronger current, $B \propto I$.
- Will derive later that

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}.$$

• **Definition:** Permeability of free space, μ_0

$$\mu_0 = 4\pi \times 10^{-7} \mathrm{T} \cdot \mathrm{m/A}.$$

• **Definition:** Permeability of free space, μ_0

$$\mu_0 = 4\pi \times 10^{-7} \mathrm{T} \cdot \mathrm{m/A}.$$

Discussion: Force between wires

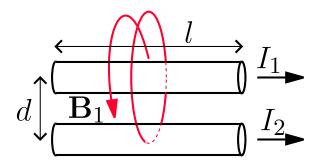
http://www.zoology.ubc.ca/~rikblok/phys102/lecture/

• **Definition:** Permeability of free space, μ_0

$$\mu_0 = 4\pi \times 10^{-7} \mathrm{T} \cdot \mathrm{m/A}.$$

Discussion: Force between wires

▲ Already saw B-field produces force on wire.



Definition: Permeability of free space, μ_0

$$\mu_0 = 4\pi \times 10^{-7} \mathrm{T} \cdot \mathrm{m/A}.$$

Discussion: Force between wires

- Already saw *B*-field produces force on wire.
- If wires also produce *B*-fields then 2 parallel wires will have force on each other.

Discussion: Force between wires, contd

Discussion: Force between wires, contd

 \bullet B-field due to wire 1 at distance d is

$$B_1 = \frac{\mu_0 I_1}{2\pi d}.$$

Discussion: Force between wires, contd

 \bullet B-field due to wire 1 at distance d is

$$B_1 = \frac{\mu_0 I_1}{2\pi d}.$$

• Force on wire 2 in B_1 given by $F_{2/1} = I_2 lB$ so force is

$$F_{2/1} = \frac{\mu_0 I_1 I_2}{2\pi d} l.$$

Discussion: Force between wires, contd

• B-field due to wire 1 at distance d is

$$B_1 = \frac{\mu_0 I_1}{2\pi d}.$$

• Force on wire 2 in B_1 given by $F_{2/1} = I_2 lB$ so force is

$$F_{2/1} = \frac{\mu_0 I_1 I_2}{2\pi d} l.$$

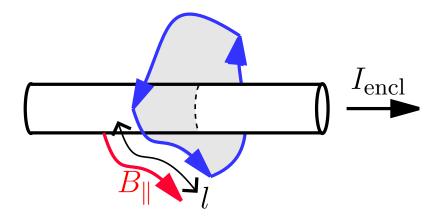
Increases with length l.

Discussion: Force between wires, contd

• B-field due to wire 1 at distance d is

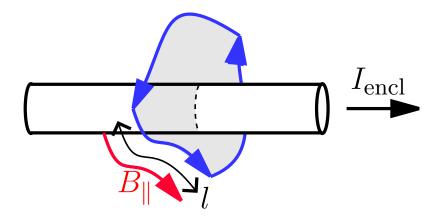
$$B_1 = \frac{\mu_0 I_1}{2\pi d}.$$

• Force on wire 2 in B_1 given by $F_{2/1} = I_2 l B$ so force is


$$F_{2/1} = \frac{\mu_0 I_1 I_2}{2\pi d} l.$$

- Increases with length l.
- Interactive Quiz: PRS 12a

Ampère's law [Text: Sect. 28-4]


Definition: Ampère's law

Ampère's law [Text: Sect. 28-4]

Definition: Ampère's law

• If a current I_{encl} passes through a closed loop then

$$\sum B_{\parallel} l = \mu_0 I_{\text{encl}}.$$

segments

Definition: Ampère's law, contd

• I_{encl} is sum of of all current going through loop in same direction (subtract if reversed).

- I_{encl} is sum of of all current going through loop in same direction (subtract if reversed).
- \sum_{segments} is sum over all segments of loop.

- I_{encl} is sum of of all current going through loop in same direction (subtract if reversed).
- \sum_{segments} is sum over all segments of loop.
- *I* is length of segment.

- *I*_{encl} is sum of of all current going through loop in same direction (subtract if reversed).
- \sum_{segments} is sum over all segments of loop.
- *l* is length of segment.
- B_{\parallel} is field parallel to segment.

- *I*_{encl} is sum of of all current going through loop in same direction (subtract if reversed).
- \sum_{segments} is sum over all segments of loop.
- *l* is length of segment.
- B_{\parallel} is field parallel to segment.
- Use right-hand field rule to choose direction of path.

- I_{encl} is sum of of all current going through loop in same direction (subtract if reversed).
- \sum_{segments} is sum over all segments of loop.
- *l* is length of segment.
- B_{\parallel} is field parallel to segment.
- Use right-hand field rule to choose direction of path.
- Discussion: Ampère's law

- *I*_{encl} is sum of of all current going through loop in same direction (subtract if reversed).
- \sum_{segments} is sum over all segments of loop.
- *l* is length of segment.
- B_{\parallel} is field parallel to segment.
- Use right-hand field rule to choose direction of path.
- Discussion: Ampère's law
 - Parallels Gauss's law but deals with loops instead of surfaces.

- *I*_{encl} is sum of of all current going through loop in same direction (subtract if reversed).
- \sum_{segments} is sum over all segments of loop.
- *l* is length of segment.
- B_{\parallel} is field parallel to segment.
- Use right-hand field rule to choose direction of path.
- Discussion: Ampère's law
 - Parallels Gauss's law but deals with loops instead of surfaces.
 - Second of Maxwell's 4 equations.

Discussion: Ampère's law, contd

Discussion: Ampère's law, contd

You get to choose "Amperian" loop. Use symmetry.

Discussion: Ampère's law, contd

- You get to choose "Amperian" loop. Use symmetry.
- Want $\mathbf{B} \perp$ or \parallel to each segment.

Discussion: Ampère's law, contd

- You get to choose "Amperian" loop. Use symmetry.
- \checkmark Want $\mathbf{B}\perp$ or \parallel to each segment.
- \perp segments can be dropped.

Discussion: Ampère's law, contd

- You get to choose "Amperian" loop. Use symmetry.
- Want $\mathbf{B} \perp$ or \parallel to each segment.
- \perp segments can be dropped.

Discussion: Ampère's law, contd

- You get to choose "Amperian" loop. Use symmetry.
- Want $\mathbf{B} \perp$ or \parallel to each segment.
- \perp segments can be dropped.

Derivation: Long, straight wire

Infinitely long straight wire.

Discussion: Ampère's law, contd

- You get to choose "Amperian" loop. Use symmetry.
- Want $\mathbf{B} \perp$ or \parallel to each segment.
- \perp segments can be dropped.

- Infinitely long straight wire.
- From Right-hand field rule *B*-field wraps around wire.

Discussion: Ampère's law, contd

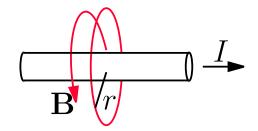
- You get to choose "Amperian" loop. Use symmetry.
- Want $\mathbf{B} \perp$ or \parallel to each segment.
- \perp segments can be dropped.

- Infinitely long straight wire.
- From Right-hand field rule B-field wraps around wire.
- From symmetry must be a circle (has to look the same no matter how you rotate the system).

Discussion: Ampère's law, contd

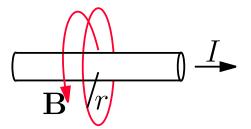
- You get to choose "Amperian" loop. Use symmetry.
- Want $\mathbf{B} \perp$ or \parallel to each segment.
- \perp segments can be dropped.

- Infinitely long straight wire.
- From Right-hand field rule B-field wraps around wire.
- From symmetry must be a circle (has to look the same no matter how you rotate the system).
- So we pick circular Amperian loop (1 continuous segment).



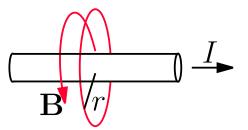
Derivation: Long, straight wire, contd

Derivation: Long, straight wire, contd


• $B_{\parallel} = B$ everywhere on circle.

Derivation: Long, straight wire, contd

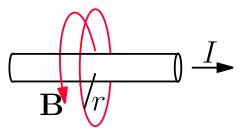
• $B_{\parallel} = B$ everywhere on circle.



• Length of segment (circumference) is $l = 2\pi r$.

Derivation: Long, straight wire, contd

• $B_{\parallel} = B$ everywhere on circle.



- Length of segment (circumference) is $l = 2\pi r$.
- Enclosed current is just $I_{encl} = I$.

Derivation: Long, straight wire, contd

• $B_{\parallel} = B$ everywhere on circle.

- Length of segment (circumference) is $l = 2\pi r$.
- Enclosed current is just $I_{encl} = I$.
- Ampère's law:

$$\sum B_{\parallel} l = \mu_0 I_{\text{encl}}$$

segments

$$B(2\pi r) = \mu_0 I$$

Derivation: Long, straight wire, contd

Derivation: Long, straight wire, contd

So we find

$$B = \frac{\mu_0 I}{2\pi r}.$$

Derivation: Long, straight wire, contd

So we find

$$B = \frac{\mu_0 I}{2\pi r}.$$

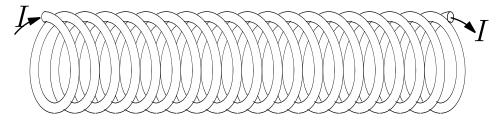
Is magnetic field around a long, straight wire.

Derivation: Long, straight wire, contd

So we find

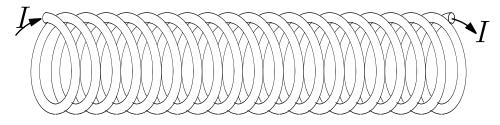
$$B = \frac{\mu_0 I}{2\pi r}.$$

- Is magnetic field around a long, straight wire.
- Interactive Quiz: PRS 12b



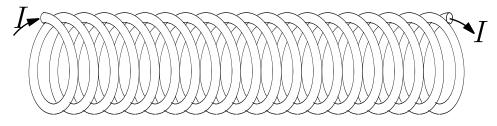
Definition: Solenoid

Definition: Solenoid


Long coil of wire, consisting of many turns.

Definition: Solenoid

Long coil of wire, consisting of many turns.



Definition: Toroid

Definition: Solenoid

Long coil of wire, consisting of many turns.

Definition: Toroid

Solenoid bent into the shape of a donut (torus).

Principle: Superposition

Principle: Superposition

Like *E*-field, can find net *B*-field by adding up *B*'s due to each wire.

Principle: Superposition

- Like *E*-field, can find net *B*-field by adding up *B*'s due to each wire.
- Derivation: Toroid magnetic field

Principle: Superposition

Like *E*-field, can find net *B*-field by adding up *B*'s due to each wire.

Derivation: Toroid magnetic field

Can use Ampère's law to find *B*-field in/around toroid.

Principle: Superposition

Like E-field, can find net B-field by adding up B's due to each wire.

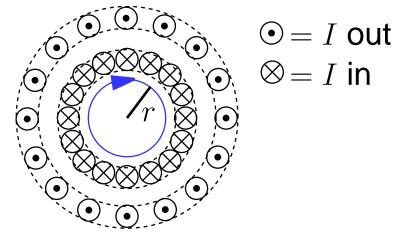
Derivation: Toroid magnetic field

- Can use Ampère's law to find *B*-field in/around toroid.
- By symmetry loop should be circle of radius r.

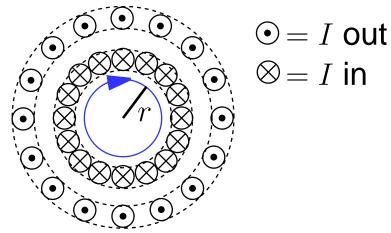
Principle: Superposition

Like *E*-field, can find net *B*-field by adding up *B*'s due to each wire.

Derivation: Toroid magnetic field


- Can use Ampère's law to find *B*-field in/around toroid.
- By symmetry loop should be circle of radius r.
- 3 cases: (1) loop smaller than toroid, (2) loop inside toroid, (3) loop bigger than toroid.

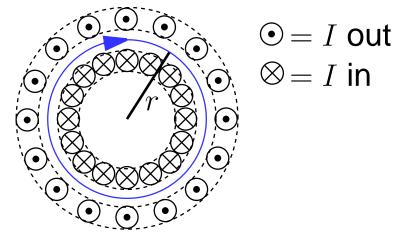
Derivation: Toroid magnetic field, contd


Case 1: Cross-sectional view of toroid:

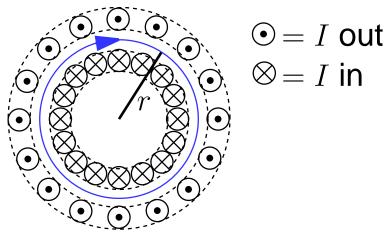
Derivation: Toroid magnetic field, contd

Case 1: Cross-sectional view of toroid:

• $I_{\text{encl}} = 0$ and $B = B_{\parallel}$ so for any r we find

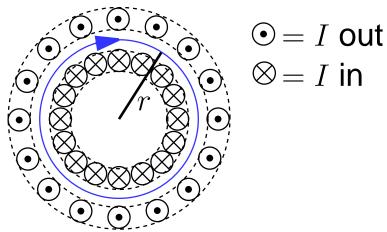

B = 0.

Derivation: Toroid magnetic field, contd


Case 2: Cross-section:

Derivation: Toroid magnetic field, contd

Case 2: Cross-section:


• If there are N turns then $I_{encl} = NI$ so

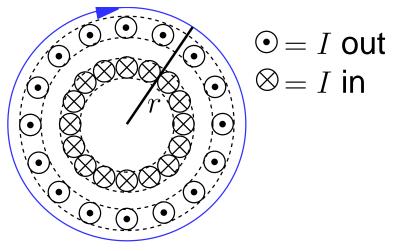
$$B = \mu_0 \frac{N}{l} I.$$

Derivation: Toroid magnetic field, contd

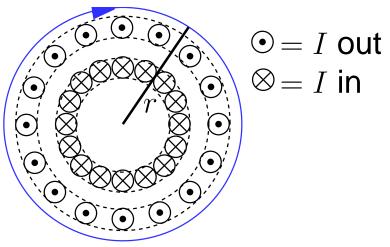
Case 2: Cross-section:

• If there are N turns then $I_{encl} = NI$ so

$$B = \mu_0 \frac{N}{l} I.$$

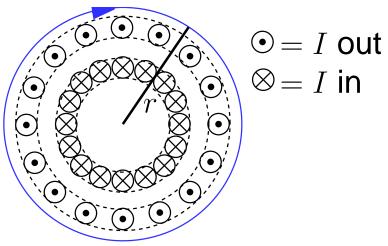

• ($l = 2\pi r$ but it's handy to leave it as l.)

Derivation: Toroid magnetic field, contd


Case 3: Cross-section:

Derivation: Toroid magnetic field, contd

Case 3: Cross-section:



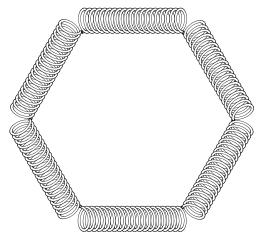
- Again, $I_{encl} = 0$ (they all cancel) so
 - B = 0.

Derivation: Toroid magnetic field, contd

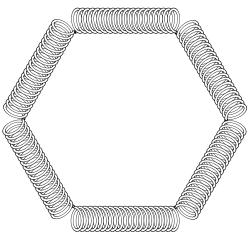
Case 3: Cross-section:

• Again, $I_{encl} = 0$ (they all cancel) so

$$B=0.$$


• So B = 0 everywhere outside toroid and $B = \mu_0 \frac{N}{l}I$ inside.

Derivation: Solenoid magnetic field


 We can construct a toroid from many solenoids laid in a circle.

Derivation: Solenoid magnetic field

 We can construct a toroid from many solenoids laid in a circle.

So each solenoid must have same field,

$$B = \mu_0 \frac{N}{l} I.$$

Derivation: Solenoid magnetic field, contd

• And B = 0 (roughly) outside solenoid.

- And B = 0 (roughly) outside solenoid.
- $\frac{N}{l}$ is # turns per unit length, often written n (eg. $B = \mu_0 nI$).

- And B = 0 (roughly) outside solenoid.
- $\frac{N}{l}$ is # turns per unit length, often written n (eg. $B = \mu_0 nI$).
- Use RH field rule to determine direction.

- And B = 0 (roughly) outside solenoid.
- $\frac{N}{l}$ is # turns per unit length, often written n (eg. $B = \mu_0 nI$).
- Use RH field rule to determine direction.
- Discussion: Solenoid

Derivation: Solenoid magnetic field, contd

- And B = 0 (roughly) outside solenoid.
- $\frac{N}{l}$ is # turns per unit length, often written n (eg. $B = \mu_0 nI$).
- Use RH field rule to determine direction.

Discussion: Solenoid

• B very uniform inside solenoid (far from ends).

Derivation: Solenoid magnetic field, contd

- And B = 0 (roughly) outside solenoid.
- $\frac{N}{l}$ is # turns per unit length, often written n (eg. $B = \mu_0 nI$).
- Use RH field rule to determine direction.

Discussion: Solenoid

- B very uniform inside solenoid (far from ends).
- B gets weaker and starts to spread near ends.

Derivation: Solenoid magnetic field, contd

- And B = 0 (roughly) outside solenoid.
- $\frac{N}{l}$ is # turns per unit length, often written n (eg. $B = \mu_0 nI$).
- Use RH field rule to determine direction.

Discussion: Solenoid

- B very uniform inside solenoid (far from ends).
- B gets weaker and starts to spread near ends.
- Behaves like bar magnet (*B* comes out of N, goes into S end.)

Derivation: Solenoid magnetic field, contd

- And B = 0 (roughly) outside solenoid.
- $\frac{N}{l}$ is # turns per unit length, often written n (eg. $B = \mu_0 nI$).
- Use RH field rule to determine direction.

Discussion: Solenoid

- B very uniform inside solenoid (far from ends).
- B gets weaker and starts to spread near ends.
- Behaves like bar magnet (*B* comes out of N, goes into S end.)

Interactive Quiz: PRS 12c

End

Practice Problems:

- Ch. 28: Q. 1, 3, 5, 7, 9, 11, 21, 23.
- Ch. 28: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 47, 49, 55, 59, 61, 63.

End

Practice Problems:

- Ch. 28: Q. 1, 3, 5, 7, 9, 11, 21, 23.
- Ch. 28: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 47, 49, 55, 59, 61, 63.
- Interactive Quiz: Feedback

End

Practice Problems:

- Ch. 28: Q. 1, 3, 5, 7, 9, 11, 21, 23.
- Ch. 28: Pr. 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 47, 49, 55, 59, 61, 63.
- Interactive Quiz: Feedback
- Tutorial Question: tut12

