UBC Physics 102

Lecture 7

Rik Blok

Outline

- ▷ Electric potential
- Relation to electric field
- ▷ Point charges
- Potential energy
- ▷ Cathode ray tube
- ⊳ End

Definition: electric potential energy, U

 Potential energy of a charge q due to presence of external electric field.

- Potential energy of a charge q due to presence of external electric field.
- Like gravitational P.E. (charge \leftrightarrow mass, *E*-field \leftrightarrow gravity).

- Potential energy of a charge q due to presence of external electric field.
- Like gravitational P.E. (charge \leftrightarrow mass, *E*-field \leftrightarrow gravity).
- **Definition:** *electric potential*, V

- Potential energy of a charge q due to presence of external electric field.
- Like gravitational P.E. (charge \leftrightarrow mass, *E*-field \leftrightarrow gravity).
- **Definition:** *electric potential,* V
 - Potential energy per unit charge so that

$$U = qV.$$

Definition: electric potential energy, U

- Potential energy of a charge q due to presence of external electric field.
- Like gravitational P.E. (charge \leftrightarrow mass, *E*-field \leftrightarrow gravity).
- **Definition:** *electric potential,* V
 - Potential energy per unit charge so that

$$U = qV.$$

• Depends only on external E-field, not test charge q.

- Potential energy of a charge q due to presence of external electric field.
- Like gravitational P.E. (charge \leftrightarrow mass, *E*-field \leftrightarrow gravity).
- **Definition:** *electric potential,* V
 - Potential energy per unit charge so that

$$U = qV.$$

- Depends only on external E-field, not test charge q.
- Analogy: potential, $V \leftrightarrow$ height.

Definition: electric potential, V, contd

• **Definition:** electric potential, V, contd

Potential is relative because there is no absolute zero (like height).

• **Definition:** electric potential, V, contd

- Potential is relative because there is no absolute zero (like height).
- Only differences in V matter.

• **Definition:** *electric potential*, V, *contd*

- Potential is relative because there is no absolute zero (like height).
- Only differences in V matter.
- Like height, difference doesn't depend on path taken.

• **Definition:** electric potential, V, contd

- Potential is relative because there is no absolute zero (like height).
- Only differences in V matter.
- Like height, difference doesn't depend on path taken.

$\, {}_{m{s}} \,$ Unit: Volt, $\, V$

1 V = 1 J/C.

Definition: *electric potential*, V, *contd*

- Potential is relative because there is no absolute zero (like height).
- Only differences in V matter.
- Like height, difference doesn't depend on path taken.

$\, {}_{m{s}} \,$ Unit: Volt, $\, V$

$$1 V = 1 J/C.$$

Unit of electric potential.

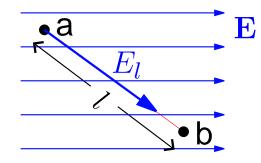
Definition: electric potential, V, contd

- Potential is relative because there is no absolute zero (like height).
- Only differences in V matter.
- Like height, difference doesn't depend on path taken.

$\, {}_{m{s}} \,$ Unit: Volt, $\, V$

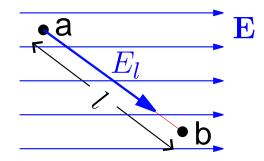
$$1 V = 1 J/C.$$

- Unit of electric potential.
- Electric potential also called voltage.



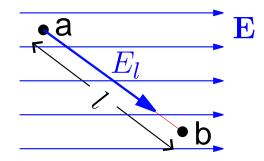
Discussion: Uniform field

Discussion: Uniform field


■ Motion through E-field produces change in potential.

Discussion: Uniform field

■ Motion through E-field produces change in potential.

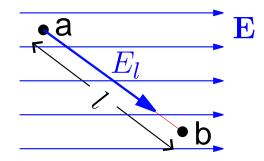

 \checkmark If $\mathbf E$ uniform and path straight then

$$V_{ba} = V_b - V_a = -E_l l.$$

Discussion: Uniform field

■ Motion through E-field produces change in potential.

 \checkmark If $\mathbf E$ uniform and path straight then


$$V_{ba} = V_b - V_a = -E_l l.$$

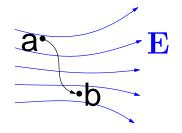
• E_l is component of E parallel to path (a to b).

Discussion: Uniform field

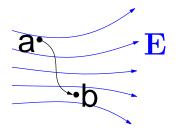
Motion through E-field produces change in potential.

• If \mathbf{E} uniform and path straight then

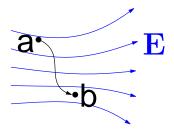
$$V_{ba} = V_b - V_a = -E_l l.$$


- E_l is component of E parallel to path (a to b).
- V decreases when travelling along direction of E.

Interactive Quiz: PRS 07a



- Interactive Quiz: PRS 07a
- Discussion: Non-uniform field


- Interactive Quiz: PRS 07a
- Discussion: Non-uniform field

• If **E** or path not uniform then $V = -E_l l$ meaningless.

- Interactive Quiz: PRS 07a
- Discussion: Non-uniform field

- If **E** or path not uniform then $V = -E_l l$ meaningless.
- But $dV = -E_l dl$ must still hold over small enough segment dl so

$$E_l = -\frac{dV}{dl}.$$

Discussion: Non-uniform field, contd

Discussion: Non-uniform field, contd

● Gives magnitude of electric field in direction of *l*.

Discussion: Non-uniform field, contd

- Gives magnitude of electric field in direction of l.
- Analogy: $V \leftrightarrow$ height, $E_l \leftrightarrow$ downslope in *l*-direction.

Discussion: Non-uniform field, contd

- Gives magnitude of electric field in direction of l.
- Analogy: $V \leftrightarrow$ height, $E_l \leftrightarrow$ downslope in *l*-direction.
- Can use to find electric field vector from potential, eg.

$$\mathbf{E} = E_x \mathbf{\hat{i}} + E_y \mathbf{\hat{j}} + E_z \mathbf{\hat{k}}$$
$$= -\frac{dV}{dx} \mathbf{\hat{i}} - \frac{dV}{dy} \mathbf{\hat{j}} - \frac{dV}{dz} \mathbf{\hat{k}}.$$

Discussion: Non-uniform field, contd

- Gives magnitude of electric field in direction of l.
- Analogy: $V \leftrightarrow$ height, $E_l \leftrightarrow$ downslope in *l*-direction.
- Can use to find electric field vector from potential, eg.

$$\mathbf{E} = E_x \mathbf{\hat{i}} + E_y \mathbf{\hat{j}} + E_z \mathbf{\hat{k}}$$
$$= -\frac{dV}{dx} \mathbf{\hat{i}} - \frac{dV}{dy} \mathbf{\hat{j}} - \frac{dV}{dz} \mathbf{\hat{k}}.$$

Interactive Quiz: PRS 07b

Discussion: Coulomb's law

Discussion: Coulomb's law

• If
$$V = \frac{kQ}{r} + \text{constant}$$
 then $E = -\frac{dV}{dr} = \frac{kQ}{r^2}$, Coulomb's law.

Discussion: Coulomb's law

- If $V = \frac{kQ}{r} + \text{constant}$ then $E = -\frac{dV}{dr} = \frac{kQ}{r^2}$, Coulomb's law.
- Convention is to drop constant so potential for a point charge is

$$V = \frac{kQ}{r}.$$

Discussion: Coulomb's law

- If $V = \frac{kQ}{r} + \text{constant}$ then $E = -\frac{dV}{dr} = \frac{kQ}{r^2}$, Coulomb's law.
- Convention is to drop constant so potential for a point charge is

$$V = \frac{kQ}{r}.$$

• So potential is defined as zero far away from Q.

Point charges, contd

Discussion: Superposition

Point charges, contd

Discussion: Superposition

 If dealing with multiple charges can just add them to get overall potential at some point

$$V = V_1 + V_2 + \cdots.$$

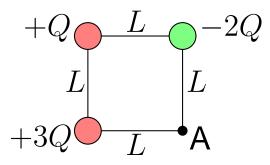
Discussion: Superposition

 If dealing with multiple charges can just add them to get overall potential at some point

$$V = V_1 + V_2 + \cdots.$$

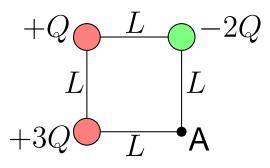
• Superposition similar to rule for E but easier because V a scalar, so don't need to do vector addition.

Discussion: Superposition

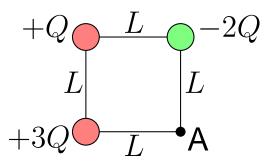

 If dealing with multiple charges can just add them to get overall potential at some point

 $V = V_1 + V_2 + \cdots.$

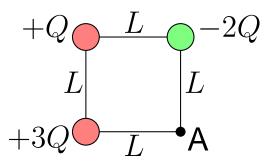
- Superposition similar to rule for E but easier because V a scalar, so don't need to do vector addition.
- Some cases easier to work with V, others E.



Example: Pr. 30


Example: Pr. 30

Three point charges are arranged at the corners of a square of side L as shown above. What is the potential at the fourth corner (point A)?


Example: Pr. 30

Three point charges are arranged at the corners of a square of side L as shown above. What is the potential at the fourth corner (point A)?

Example: Pr. 30

Three point charges are arranged at the corners of a square of side L as shown above. What is the potential at the fourth corner (point A)?

Solution: Pr. 30

First we need to calculate the potential from each charge, individually.

Solution: Pr. 30, contd

Solution: Pr. 30, contd

• Starting with the +3Q charge, $V_3 = \frac{3kQ}{L}$.

Solution: Pr. 30, contd

• Starting with the +3Q charge, $V_3 = \frac{3kQ}{L}$.

• And for the -2Q charge, $V_2 = -\frac{2kQ}{L}$.

Solution: Pr. 30, contd

- Starting with the +3Q charge, $V_3 = \frac{3kQ}{L}$.
- And for the -2Q charge, $V_2 = -\frac{2kQ}{L}$.
- The +Q charge is at a distance $\sqrt{2}L$ so $V_1 = \frac{kQ}{\sqrt{2}L}$.

Solution: Pr. 30, contd

- Starting with the +3Q charge, $V_3 = \frac{3kQ}{L}$.
- And for the -2Q charge, $V_2 = -\frac{2kQ}{L}$.
- The +Q charge is at a distance $\sqrt{2}L$ so $V_1 = \frac{kQ}{\sqrt{2}L}$.
- Superposing these gives the total potential at A,

$$V = V_1 + V_2 + V_3$$
$$= \left(\frac{1}{\sqrt{2}} - 2 + 3\right) \frac{kQ}{L}$$
$$= \left(1 + \frac{1}{\sqrt{2}}\right) \frac{kQ}{L}.$$

Solution: Pr. 30, contd

- Starting with the +3Q charge, $V_3 = \frac{3kQ}{L}$.
- And for the -2Q charge, $V_2 = -\frac{2kQ}{L}$.
- The +Q charge is at a distance $\sqrt{2}L$ so $V_1 = \frac{kQ}{\sqrt{2}L}$.
- Superposing these gives the total potential at A,

$$V = V_1 + V_2 + V_3$$
$$= \left(\frac{1}{\sqrt{2}} - 2 + 3\right) \frac{kQ}{L}$$
$$= \left(1 + \frac{1}{\sqrt{2}}\right) \frac{kQ}{L}.$$

Much easier than calculating E at A!

http://www.zoology.ubc.ca/~rikblok/phys102/lecture/

Discussion: Energy conservation

Discussion: Energy conservation

• Electric potential energy, U = qV so when you move a charge q through a potential V its potential energy changes by

$$\Delta U = qV.$$

Discussion: Energy conservation

• Electric potential energy, U = qV so when you move a charge q through a potential V its potential energy changes by

$$\Delta U = qV.$$

• To increase potential energy ($\Delta U > 0$) need to do work,

 $W = \Delta U.$

Discussion: Energy conservation

• Electric potential energy, U = qV so when you move a charge q through a potential V its potential energy changes by

$$\Delta U = qV.$$

• To increase potential energy ($\Delta U > 0$) need to do work,

$$W = \Delta U.$$

• A free particle will convert its potential energy to kinetic, K, ($\Delta U < 0$)

$$\Delta K = -\Delta U.$$

Discussion: Energy conservation

• Electric potential energy, U = qV so when you move a charge q through a potential V its potential energy changes by

$$\Delta U = qV.$$

• To increase potential energy ($\Delta U > 0$) need to do work,

$$W = \Delta U.$$

• A free particle will convert its potential energy to kinetic, K, ($\Delta U < 0$)

$$\Delta K = -\Delta U.$$

Interactive Quiz: PRS 07c

• Example: Pr. 4

http://www.zoology.ubc.ca/~rikblok/phys102/lecture/

Example: Pr. 4

• An electron acquires 16.4×10^{-16} J of kinetic energy when it is accelerated by an electric field from plate A to plate B. What is the potential difference between the plates, and which plate is at the higher potential?

Example: Pr. 4

• An electron acquires 16.4×10^{-16} J of kinetic energy when it is accelerated by an electric field from plate A to plate B. What is the potential difference between the plates, and which plate is at the higher potential?

• Example: Pr. 4

• An electron acquires 16.4×10^{-16} J of kinetic energy when it is accelerated by an electric field from plate A to plate B. What is the potential difference between the plates, and which plate is at the higher potential?

Solution: Pr. 4

Let's turn this around and answer the second question first: which plate is at the higher potential?

• Example: Pr. 4

• An electron acquires 16.4×10^{-16} J of kinetic energy when it is accelerated by an electric field from plate A to plate B. What is the potential difference between the plates, and which plate is at the higher potential?

- Let's turn this around and answer the second question first: which plate is at the higher potential?
- The electron is free so it reduces its potential energy, $\Delta U < 0$.

Example: Pr. 4

• An electron acquires 16.4×10^{-16} J of kinetic energy when it is accelerated by an electric field from plate A to plate B. What is the potential difference between the plates, and which plate is at the higher potential?

- Let's turn this around and answer the second question first: which plate is at the higher potential?
- The electron is free so it reduces its potential energy, $\Delta U < 0$.
- Since it's a negative charge it goes "up" the potential landscape, $V = \frac{\Delta U}{q}$.

Example: Pr. 4

• An electron acquires 16.4×10^{-16} J of kinetic energy when it is accelerated by an electric field from plate A to plate B. What is the potential difference between the plates, and which plate is at the higher potential?

- Let's turn this around and answer the second question first: which plate is at the higher potential?
- The electron is free so it reduces its potential energy, $\Delta U < 0$.
- Since it's a negative charge it goes "up" the potential landscape, $V = \frac{\Delta U}{q}$.
- So plate B must be at a higher potential.

Solution: Pr. 4, contd

Solution: Pr. 4, contd

Now, what is the potential difference between the plates?

Solution: Pr. 4, contd

- Now, what is the potential difference between the plates?
- The change in potential energy is

 $\Delta U = -\Delta K = -16.4 \times 10^{-16} \text{ J.}$

Solution: Pr. 4, contd

- Now, what is the potential difference between the plates?
- The change in potential energy is $\Delta U = -\Delta K = -16.4 \times 10^{-16} \text{ J.}$
- Voltage change from A to B is

$$V_{BA} = \frac{\Delta U}{q} = \frac{-16.4 \times 10^{-16} \text{ J}}{-1.60 \times 10^{-19} \text{ C}}$$
$$= 10,300 \text{ V}.$$

Solution: Pr. 4, contd

- Now, what is the potential difference between the plates?
- The change in potential energy is $\Delta U = -\Delta K = -16.4 \times 10^{-16} \text{ J.}$
- Voltage change from A to B is

$$V_{BA} = \frac{\Delta U}{q} = \frac{-16.4 \times 10^{-16} \text{ J}}{-1.60 \times 10^{-19} \text{ C}}$$
$$= 10,300 \text{ V}.$$

So B is at a potential 10, 300 V higher than A.

Discussion: Multiple charges

Discussion: Multiple charges

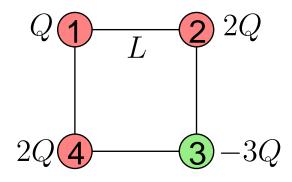
 Potential energy of a system of multiple point charges is sum of potential energies between each pair.

Discussion: Multiple charges

- Potential energy of a system of multiple point charges is sum of potential energies between each pair.
- Use U = qV and $V = \frac{kQ}{r}$ to get energy held between each pair q and Q.

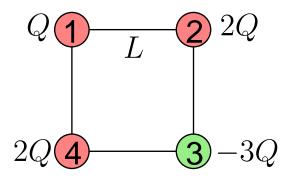
Discussion: Multiple charges

- Potential energy of a system of multiple point charges is sum of potential energies between each pair.
- Use U = qV and $V = \frac{kQ}{r}$ to get energy held between each pair q and Q.
- Be careful not to double-count.

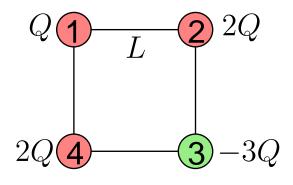

Example: Pr. 70

http://www.zoology.ubc.ca/~rikblok/phys102/lecture/

Example: Pr. 70


Four point charges are located at the corners of a square with side L, as shown. What is the total electric potential energy stored in the system?

Example: Pr. 70


Four point charges are located at the corners of a square with side L, as shown. What is the total electric potential energy stored in the system?

Example: Pr. 70

Four point charges are located at the corners of a square with side L, as shown. What is the total electric potential energy stored in the system?

Solution: Pr. 70

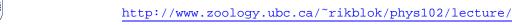
There are 6 pairs of charges. For each pair we need to calculate the potential energy stored between them.

Solution: Pr. 70, contd

Solution: Pr. 70, contd

Pairs:

Pair, <i>ij</i>	U_{ij}	Pair, <i>ij</i>	U_{ij}
12	$2\frac{kQ^2}{L}$	23	$-6\frac{kQ^2}{L}$
13	$-\frac{3}{\sqrt{2}}\frac{kQ^2}{L}$	24	$\frac{4}{\sqrt{2}}\frac{kQ^2}{L}$
14	$2\frac{kQ^2}{L}$	34	$-6\frac{kQ^2}{L}$


Solution: Pr. 70, contd

Pairs:

Pair, <i>ij</i>	U_{ij}	Pair, <i>ij</i>	U_{ij}
12	$2\frac{kQ^2}{L}$	23	$-6\frac{kQ^2}{L}$
13	$-\frac{3}{\sqrt{2}}\frac{kQ^2}{L}$	24	$\frac{4}{\sqrt{2}}\frac{kQ^2}{L}$
14	$2\frac{kQ^2}{L}$	34	$-6\frac{kQ^2}{L}$

So the total potential energy is

$$U = \sum_{\text{Pairs}, ij} U_{ij} = \left(2 - \frac{3}{\sqrt{2}} + 2 - 6 + \frac{4}{\sqrt{2}} - 6\right) \frac{kQ^2}{L}$$
$$= \left(\frac{1}{\sqrt{2}} - 8\right) \frac{kQ^2}{L}. \quad \Box$$

\bullet Unit: electron Volt, eV

\checkmark Unit: electron Volt, eV

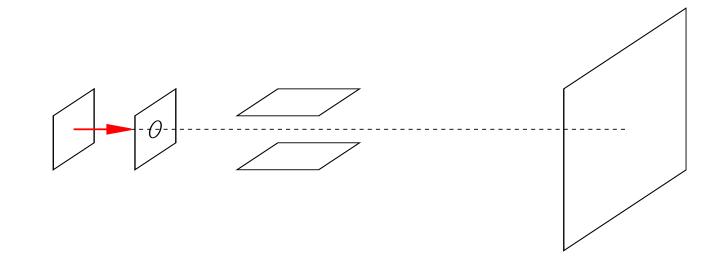
 Energy acquired by an electron when it moves through a potential difference of 1 V.

$$1 \text{ eV} = qV = (1.60 \times 10^{-19} \text{ C})(1 \text{ V})$$

= $1.60 \times 10^{-19} \text{ J}.$

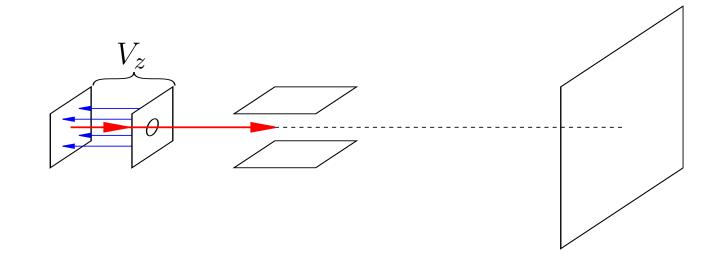
\checkmark Unit: electron Volt, eV

 Energy acquired by an electron when it moves through a potential difference of 1 V.

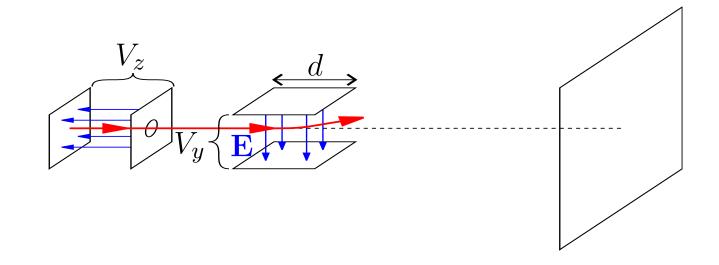

$$1 \text{ eV} = qV = (1.60 \times 10^{-19} \text{ C})(1 \text{ V})$$

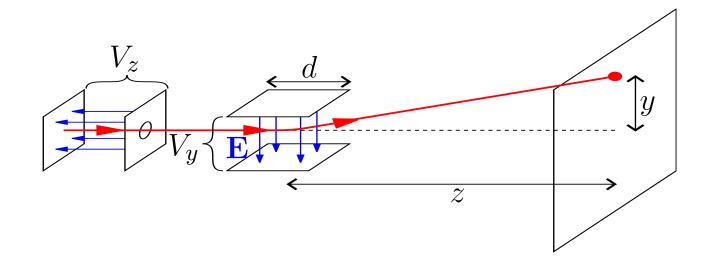
= $1.60 \times 10^{-19} \text{ J}.$

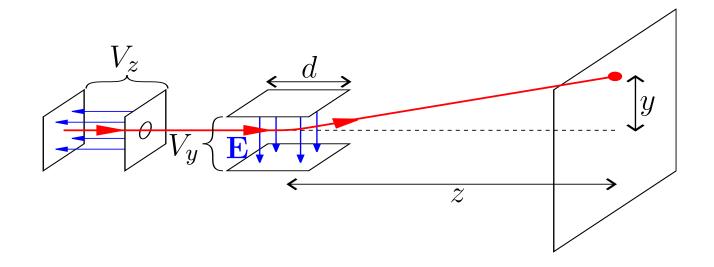
 More convenient unit than J when dealing with individual particles.



Discussion: Cathode ray tube


When cathode heated up it "boils" off electrons.


- When cathode heated up it "boils" off electrons.
- CRTs use anode, V_z , to accelerate electrons.


- When cathode heated up it "boils" off electrons.
- CRTs use anode, V_z , to accelerate electrons.
- Voltage V_y applied to plates to deflect electron.

- When cathode heated up it "boils" off electrons.
- CRTs use anode, V_z , to accelerate electrons.
- Voltage V_y applied to plates to deflect electron.
- Can position precisely where electron will hit screen.

- When cathode heated up it "boils" off electrons.
- CRTs use anode, V_z , to accelerate electrons.
- Voltage V_y applied to plates to deflect electron.
- Can position precisely where electron will hit screen.
- Screen glows at point where hit. <u>http://www.zoology.ubc.ca/~rikblok/phys102/lecture/</u>

End

Practice Problems:

- Ch. 23: Q. 1, 3, 5, 7, 11, 15, 17, 19.
- Ch. 23: Pr. 1, 3, 5, 7, 11, 15, 21, 23, 25, 27, 29, 45, 47, 49, 51, 55, 61, 65, 57, 71, 73, 75, 77.

End

Practice Problems:

- Ch. 23: Q. 1, 3, 5, 7, 11, 15, 17, 19.
- Ch. 23: Pr. 1, 3, 5, 7, 11, 15, 21, 23, 25, 27, 29, 45, 47, 49, 51, 55, 61, 65, 57, 71, 73, 75, 77.
- Interactive Quiz: Feedback

End

Practice Problems:

- Ch. 23: Q. 1, 3, 5, 7, 11, 15, 17, 19.
- Ch. 23: Pr. 1, 3, 5, 7, 11, 15, 21, 23, 25, 27, 29, 45, 47, 49, 51, 55, 61, 65, 57, 71, 73, 75, 77.
- Interactive Quiz: Feedback
- Tutorial Question: tut07

