UBC Physics 102

Lecture 3

Rik Blok

Outline

- ▷ Nuclear reactions
- ▷ Radiation damage
- Dosimetry
- \triangleright End

Definition: nuclear reaction

Definition: *nuclear reaction*

 When a nucleus interacts with a particle or another nucleus.

Definition: *nuclear reaction*

- When a nucleus interacts with a particle or another nucleus.
- (Nuclear reactions often produce unstable isotopes.)

Definition: *nuclear reaction*

- When a nucleus interacts with a particle or another nucleus.
- (Nuclear reactions often produce unstable isotopes.)

Discussion: Energy minimization

Reactions occur spontaneously if they reduce the system's potential energy.

Definition: *nuclear reaction*

- When a nucleus interacts with a particle or another nucleus.
- (Nuclear reactions often produce unstable isotopes.)

Discussion: Energy minimization

Reactions occur spontaneously if they reduce the system's potential energy.

Discussion: Conservation

Remember: mass and charge must be conserved in reaction.

Definition: *nuclear reaction*

- When a nucleus interacts with a particle or another nucleus.
- (Nuclear reactions often produce unstable isotopes.)

Discussion: Energy minimization

Reactions occur spontaneously if they reduce the system's potential energy.

Discussion: Conservation

Remember: mass and charge must be conserved in reaction.

Interactive Quiz: PRS 03a

Nuclear reactions, contd

Definition: *nuclear fission*

 The splitting of a nucleus into two or more smaller nuclei.

Nuclear reactions, contd

Definition: *nuclear fission*

The splitting of a nucleus into two or more smaller nuclei.

Definition: *nuclear fusion*

The joining of several nuclei into a single, larger nucleus.

Discussion: Radiation damage

Discussion: Radiation damage

 Radiation often causes ionization of particles it encounters.

Discussion: Radiation damage

- Radiation often causes ionization of particles it encounters.
- Ions in cells interfere with normal cell processes.

Discussion: Radiation damage

- Radiation often causes ionization of particles it encounters.
- Ions in cells interfere with normal cell processes.
- Cell may cease to function or perform harmful function (eg. unregulated reproduction).

Dosimetry [Text: Sect. 43-6]

Definition: Curie, Ci

Unit of activity.

 $1 \text{ Ci} = 3.70 \times 10^{10} \text{ decays/s.}$

Dosimetry [Text: Sect. 43-6]

Definition: Curie, Ci

Unit of activity.

 $1 \text{ Ci} = 3.70 \times 10^{10} \text{ decays/s.}$

Definition: Absorbed dose

Dosimetry [Text: Sect. 43-6]

Definition: Curie, Ci

Unit of activity.

 $1 \text{ Ci} = 3.70 \times 10^{10} \text{ decays/s.}$

Definition: Absorbed dose

 Radiation energy deposited, E, per unit mass of absorbing material, m.

$$dose_{abs} = \frac{E}{m}.$$

Discussion: Quality Factor, QF

 Different types of radiation have more or less effect on biological tissue.

- Different types of radiation have more or less effect on biological tissue.
- Absorbed dose does not take type of radiation into account.

- Different types of radiation have more or less effect on biological tissue.
- Absorbed dose does not take type of radiation into account.
- Quality Factor, QF (no units), gives scale of effectiveness for radiation type.

- Different types of radiation have more or less effect on biological tissue.
- Absorbed dose does not take type of radiation into account.
- Quality Factor, QF (no units), gives scale of effectiveness for radiation type.
- (Quality factor (QF) will be provided on tests if needed.)

Definition: Effective dose

 Absorbed dose rescaled by QF to reflect biological damage.

$$dose_{eff} = dose_{abs} \times QF.$$

Definition: Effective dose

 Absorbed dose rescaled by QF to reflect biological damage.

 $dose_{eff} = dose_{abs} \times QF.$

- **Definition:** rem and Sievert, Sv
 - Units of effective dose.

Definition: Effective dose

 Absorbed dose rescaled by QF to reflect biological damage.

$$\operatorname{dose_{eff}} = \operatorname{dose_{abs}} \times \operatorname{QF}.$$

- **Definition:** rem and Sievert, Sv
 - Units of effective dose.

$$1 \text{ rem} = 1 \text{ rad} \times 1 \text{ QF}$$

 $1 \text{ Sv} = 100 \text{ rem.}$

• Example: Ch. 43 Pr. 42

- Fifty rads of α-particle radiation is equivalent to how many rads of X-rays in terms of biological damage?
- $QF(\alpha) = 20$, QF(X-rays) = 1.

• Example: Ch. 43 Pr. 42

- Fifty rads of α-particle radiation is equivalent to how many rads of X-rays in terms of biological damage?
- $QF(\alpha) = 20$, QF(X-rays) = 1.

Solution:

• Example: Ch. 43 Pr. 42

- Fifty rads of α-particle radiation is equivalent to how many rads of X-rays in terms of biological damage?
- $QF(\alpha) = 20$, QF(X-rays) = 1.

Solution:

• First let's calculate the effective dose of the alpha radiation, ${\rm dose_{eff}},$

 $dose_{eff} = 50 \text{ rad} \times 20 \text{ QF} = 1000 \text{ rem}.$

• Example: Ch. 43 Pr. 42

- Fifty rads of α-particle radiation is equivalent to how many rads of X-rays in terms of biological damage?
- $QF(\alpha) = 20$, QF(X-rays) = 1.

Solution:

• First let's calculate the effective dose of the alpha radiation, ${\rm dose_{eff}},$

 $dose_{eff} = 50 \text{ rad} \times 20 \text{ QF} = 1000 \text{ rem}.$

 Now we want to find x, the absorbed (real) dose of X-rays that produces the same effective dosage,

$$x = \frac{\text{dose}_{\text{eff}}}{\text{QF}(X\text{-rays})} = \frac{1000 \text{ rem}}{1 \text{ QF}} = 1000 \text{ rad.} \quad \Box \qquad _$$

Interactive Quiz: PRS 03b

- Interactive Quiz: PRS 03b
- Practice Problems:
 - Ch. 43: Q. 9, 19, 21 27
 - Ch. 43: Pr. 49, 51, 59, 61, 71

- Interactive Quiz: PRS 03b
- Practice Problems:
 - Ch. 43: Q. 9, 19, 21 27
 - Ch. 43: Pr. 49, 51, 59, 61, 71
- Midterm Test: #1

- Interactive Quiz: PRS 03b
- Practice Problems:
 - Ch. 43: Q. 9, 19, 21 27
 - Ch. 43: Pr. 49, 51, 59, 61, 71
- Midterm Test: #1
 - ✓ First 60 min. test at start of class on Mon (July 7).

- Interactive Quiz: PRS 03b
- Practice Problems:
 - Ch. 43: Q. 9, 19, 21 27
 - Ch. 43: Pr. 49, 51, 59, 61, 71

Midterm Test: #1

- ✓ First 60 min. test at start of class on Mon (July 7).
- Will cover all material in Lectures 1–3.

- Interactive Quiz: PRS 03b
- Practice Problems:
 - Ch. 43: Q. 9, 19, 21 27
 - Ch. 43: Pr. 49, 51, 59, 61, 71

Midterm Test: #1

- ✓ First 60 min. test at start of class on Mon (July 7).
- Will cover all material in Lectures 1–3.
- Recommend you study by doing practice problems.

- Interactive Quiz: PRS 03b
- Practice Problems:
 - Ch. 43: Q. 9, 19, 21 27
 - Ch. 43: Pr. 49, 51, 59, 61, 71

Midterm Test: #1

- ✓ First 60 min. test at start of class on Mon (July 7).
- Will cover all material in Lectures 1–3.
- Recommend you study by doing practice problems.
- No notes allowed. Formula sheet will be attached to test.

- Interactive Quiz: PRS 03b
- Practice Problems:
 - Ch. 43: Q. 9, 19, 21 27
 - Ch. 43: Pr. 49, 51, 59, 61, 71

Midterm Test: #1

- ✓ First 60 min. test at start of class on Mon (July 7).
- Will cover all material in Lectures 1–3.
- Recommend you study by doing practice problems.
- No notes allowed. Formula sheet will be attached to test.

Interactive Quiz: Feedback

