UBC Physics 102

Lecture 2

Rik Blok

Outline

- ⊳ Radioactivity
- ▷ Alpha decay
- ⊳ Beta decay
- ▷ Gamma decay
- ▷ Rate of decay
- ▷ Half-life
- ⊳ Activity
- Radioactive dating
- ⊳ End

- **Definition:** Radioactivity
 - Decay of an unstable nucleus.

Definition: Radioactivity

Decay of an unstable nucleus.

Discussion: 3 common types of decay

Туре	Particle emitted	Charge	Mass
lpha (alpha)	⁴ He (2 p + 2 n)	+2	heavy

Definition: Radioactivity

Decay of an unstable nucleus.

Discussion: 3 common types of decay

Туре	Particle emitted	Charge	Mass
α (alpha)	⁴ He (2 p + 2 n)	+2	heavy
eta (beta)	electron	-1	light

Definition: Radioactivity

Decay of an unstable nucleus.

Discussion: 3 common types of decay

Туре	Particle emitted	Charge	Mass
α (alpha)	⁴ He (2 p + 2 n)	+2	heavy
eta (beta)	electron	-1	light
γ (gamma)	photon	none	<u>very</u> light

Definition: α decay

$${}^{A}_{Z}X \to {}^{A-4}_{Z-2}X' + {}^{4}_{2}\text{He}$$

Definition: α decay

$${}^{A}_{Z}X \to {}^{A-4}_{Z-2}X' + {}^{4}_{2}\text{He}$$

•
$$\alpha = \frac{4}{2}$$
He (helium nucleus).

• **Definition:** α decay

$${}^{A}_{Z}X \to {}^{A-4}_{Z-2}X' + {}^{4}_{2}\text{He}$$

- $\alpha = \frac{4}{2}$ He (helium nucleus).
- Mass (A) and charge (Z) conserved.

• **Definition:** α decay

$$^A_Z X \rightarrow^{A-4}_{Z-2} X' +^4_2 \operatorname{He}$$

- $\alpha = \frac{4}{2}$ He (helium nucleus).
- Mass (A) and charge (Z) conserved.
- Example: Smoke detectors

$$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He}$$

• **Definition:** α decay

$$^A_Z X \rightarrow^{A-4}_{Z-2} X' +^4_2 \operatorname{He}$$

- $\alpha = \frac{4}{2}$ He (helium nucleus).
- Mass (A) and charge (Z) conserved.
- Example: Smoke detectors

$$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He}$$

• Emitted α particle used to generate current between two plates.

Definition: α decay

$$^A_Z X \rightarrow^{A-4}_{Z-2} X' +^4_2 \operatorname{He}$$

- $\alpha = \frac{4}{2}$ He (helium nucleus).
- Mass (A) and charge (Z) conserved.
- Example: Smoke detectors

$$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He}$$

- Emitted α particle used to generate current between two plates.
- Smoke interrupts current to trip alarm.

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-}(+ \text{ neutrino})$$

Definition:
$$\beta$$
 decay

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-}(+ \text{ neutrino})$$

• $\beta = e^-$ (electron).

Definition:
$$\beta$$
 decay

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-}(+ \text{ neutrino})$$

- $\beta = e^-$ (electron).
- Mass (A) and charge (Z) conserved.

• Definition: β decay

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-}(+ \text{ neutrino})$$

• $\beta = e^-$ (electron).

- Mass (A) and charge (Z) conserved.
- Electron comes from nucleus, not orbit.

• Definition: β decay

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-}(+ \text{ neutrino})$$

• $\beta = e^-$ (electron).

- Mass (A) and charge (Z) conserved.
- Electron comes from nucleus, not orbit.
- Produced by decay of neutron:

$$n \to p^+ + e^- (+ \text{neutrino})$$

Definition: Excited state

- Nucleus with surplus energy (often result of α or β decay).
- Denoted by *, as in ${}^{A}_{Z}X*$.

Definition: Excited state

- Nucleus with surplus energy (often result of α or β decay).
- Denoted by *, as in ${}^{A}_{Z}X*$.

Definition: γ decay

$${}^{A}_{Z}X* \to^{A}_{Z}X + \gamma$$

Definition: Excited state

- Nucleus with surplus energy (often result of α or β decay).
- Denoted by *, as in ${}^{A}_{Z}X*$.

• Definition: γ decay

$${}^{A}_{Z}X* \to^{A}_{Z}X+\gamma$$

• Produces photon (γ particle).

Definition: Excited state

- Nucleus with surplus energy (often result of α or β decay).
- Denoted by *, as in ${}^{A}_{Z}X*$.

• Definition: γ decay

$$^{A}_{Z}X* \rightarrow^{A}_{Z}X + \gamma$$

- Produces photon (γ particle).
- Mass (A) and charge (Z) conserved.

Definition: Excited state

- Nucleus with surplus energy (often result of α or β decay).
- Denoted by *, as in ${}^{A}_{Z}X*$.
- **• Definition:** γ decay

$$^{A}_{Z}X* \rightarrow^{A}_{Z}X + \gamma$$

- Produces photon (γ particle).
- Mass (A) and charge (Z) conserved.

Interactive Quiz: PRS 02a

Derivation: Radioactive decay law

Radioactive decay is unpredictable, quantum process.

Derivation: Radioactive decay law

- Radioactive decay is unpredictable, quantum process.
- Average rate of decay is proportional to amount present,

$$\frac{dN}{dt} = -\lambda N.$$

Derivation: Radioactive decay law

- Radioactive decay is unpredictable, quantum process.
- Average rate of decay is proportional to amount present,

$$\frac{dN}{dt} = -\lambda N.$$

• λ (lambda) is proportionality constant that sets rate.

Derivation: Radioactive decay law

- Radioactive decay is unpredictable, quantum process.
- Average rate of decay is proportional to amount present,

$$\frac{dN}{dt} = -\lambda N.$$

- λ (lambda) is proportionality constant that sets rate.
- Can integrate to find how much material remains after time t,

$$N(t) = N_0 e^{-\lambda t}.$$

Half-life [Text: Sect. 42-8]

• Derivation: Half-life, $T_{1/2}$

The time it takes for half the original amount of isotope to decay. Is solution to

$$\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}$$

Half-life [Text: Sect. 42-8]

• Derivation: Half-life, $T_{1/2}$

The time it takes for half the original amount of isotope to decay. Is solution to

$$\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}.$$

Interactive Quiz: PRS 02b

Half-life [Text: Sect. 42-8]

• Derivation: Half-life, $T_{1/2}$

The time it takes for half the original amount of isotope to decay. Is solution to

$$\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}.$$

Interactive Quiz: PRS 02b
 Definition: Half-life, $T_{1/2}$

$$T_{1/2} = \frac{\ln 2}{\lambda}$$

Activity [Text: Sect. 42-8]

- **Definition:** Activity, $\left|\frac{dN}{dt}\right|$
 - Rate of decay, or number of decays per second of a sample.

$$\left. \frac{dN}{dt} \right| = \lambda N.$$

Activity [Text: Sect. 42-8]

- **Definition:** Activity, $\left|\frac{dN}{dt}\right|$
 - Rate of decay, or number of decays per second of a sample.

$$\left. \frac{dN}{dt} \right| = \lambda N.$$

• ${}^{31}Si$ has a half-life of of 2.62 hr. What will the activity of a 1 g sample be after 1 week?

Solution:

• We know
$$N(t) = N_0 e^{-\lambda t}$$
. Then

$$\left|\frac{dN}{dt}\right| = \lambda N_0 e^{-\lambda t}.$$

Solution:

• We know
$$N(t) = N_0 e^{-\lambda t}$$
. Then

$$\left|\frac{dN}{dt}\right| = \lambda N_0 e^{-\lambda t}.$$

• Need to calculate N_0 , λ , and t. First, t (in hours) is t = 1 wk = 168 hr.

Solution:

• We know
$$N(t) = N_0 e^{-\lambda t}$$
. Then

$$\left|\frac{dN}{dt}\right| = \lambda N_0 e^{-\lambda t}.$$

• Need to calculate N_0 , λ , and t. First, t (in hours) is t = 1 wk = 168 hr.

• Now, use half-life,
$$T_{1/2} = \frac{\ln 2}{\lambda}$$
 to get λ ,

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{2.62 \text{ hr}}$$
$$= 0.265 \text{ hr}^{-1}.$$

Solution: contd

• Finally, need to find number of particles, N_0 .

Solution: contd

- Finally, need to find number of particles, N_0 .
- Use atomic mass, 1 particle = 31 u,

$$N_0 = 10^{-3} \text{ kg} \times \frac{1 \text{ u}}{1.66 \times 10^{-27} \text{ kg}} \times \frac{1 \text{ particle}}{31 \text{ u}}$$

= 1.94×10²² particles.

Activity, contd

Solution: contd

- Finally, need to find number of particles, N_0 .
- Use atomic mass, 1 particle = 31 u,

$$N_0 = 10^{-3} \text{ kg} \times \frac{1 \text{ u}}{1.66 \times 10^{-27} \text{ kg}} \times \frac{1 \text{ particle}}{31 \text{ u}}$$

= 1.94×10^{22} particles.

So activity is

$$\left| \frac{dN}{dt} \right| = \lambda N_0 e^{-\lambda t}$$

$$= (0.265 \text{ hr}^{-1})(1.94 \times 10^{22} \text{ part.}) e^{-(0.265 \text{ hr}^{-1})(168 \text{ hr})}$$

$$= 238 \text{ particles/hr.} \Box -$$

Discussion: Carbon dating

■ Unstable ¹⁴C isotope occurs naturally.

- Unstable ^{14}C isotope occurs naturally.
- About $1.3{\times}10^{-10}\%$ of carbon in the environment is ${\rm ^{14}C}.$

- Unstable ^{14}C isotope occurs naturally.
- About $1.3 \times 10^{-10}\%$ of carbon in the environment is ${
 m ^{14}C}$.
- Absorbed during life (eating, breathing, etc.).

- Unstable ^{14}C isotope occurs naturally.
- About $1.3 \times 10^{-10}\%$ of carbon in the environment is ${
 m ^{14}C}$.
- Absorbed during life (eating, breathing, etc.).
- No longer absorbed after death so ^{14}C decays.

- Unstable ^{14}C isotope occurs naturally.
- About $1.3{\times}10^{-10}\%$ of carbon in the environment is ${\rm ^{14}C}.$
- Absorbed during life (eating, breathing, etc.).
- No longer absorbed after death so ^{14}C decays.
- Can estimate how long ago specimen died by using $N(t) = N_0 e^{-\lambda t}$ to determine time needed to get N down to current value,

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N}.$$

Discussion: Carbon dating

- Unstable ^{14}C isotope occurs naturally.
- About $1.3{\times}10^{-10}\%$ of carbon in the environment is ${\rm ^{14}C}.$
- Absorbed during life (eating, breathing, etc.).
- No longer absorbed after death so ^{14}C decays.
- Can estimate how long ago specimen died by using $N(t) = N_0 e^{-\lambda t}$ to determine time needed to get N down to current value,

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N}.$$

• Need to know λ , N_0 , and current N.

http://www.zoology.ubc.ca/~rikblok/phys102/lecture/

Discussion: Carbon dating, contd

Discussion: Carbon dating, contd

• λ can be calculated from half-life, $T_{1/2} = 5730$ yr.

Discussion: Carbon dating, contd

- λ can be calculated from half-life, $T_{1/2} = 5730$ yr.
- N_0 can be determined from total number of carbon atoms in sample.

Discussion: Carbon dating, contd

- λ can be calculated from half-life, $T_{1/2} = 5730$ yr.
- N_0 can be determined from total number of carbon atoms in sample.
- Measure activity to get current N, from $\left| \left| \frac{dN}{dt} \right| = \lambda N \right|$.

End

Practice Problems:

- Ch. 42: Q. 7, 13, 19, 21, 25
- Ch. 42: Pr. 35, 37, 39, 43, 45, 47, 49, 55, 63, 65

End

Practice Problems:

- Ch. 42: Q. 7, 13, 19, 21, 25
- Ch. 42: Pr. 35, 37, 39, 43, 45, 47, 49, 55, 63, 65
- Interactive Quiz: Feedback

End

Practice Problems:

- Ch. 42: Q. 7, 13, 19, 21, 25
- Ch. 42: Pr. 35, 37, 39, 43, 45, 47, 49, 55, 63, 65
- Interactive Quiz: Feedback
- Tutorial Question: tut02

