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Abstract

People can distinguish and categorize a wide range objdgical variations in
speech into distinctive categories of words. Howea®the speech sound becomes more
degraded (with noise or with differential attention apdech production), it becomes
harder to hear and takes longer for us to recognize (Angiisknstein, & Burton,
1994, Hoff, 2001, Aydelotte & Bates, 2004, & Blumstein, 2004). phjser will
propose a mathematical model of processes that comttibtihe increased processing
time for ambiguous sounds. Using Microsoft Excel and dmstcuction of an artificial
language, the model will use a probabilistic approach to idessounds. This study will
explore the frequency effect and the contextual (lexeffcts of sounds on word
recognition. The number of steps taken to achieve woodyngtton is compared to
quality of sound input. Results and predictions made bynteel are found to be
comparable to observations of reaction times over acotmttinua constructed with
varying voice onset time. Suggestions of future improvemewtdving the Bayesian

Probability Theory and Neural Networks are also suggested.
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1 Introduction

One of the unique features and mysteries of the humaah isits ability to obtain and use
language to communicate. People speak in different tasibsdifferent accents, and
pronounce words differently, yet we learn to generalizkigimore these differences in order to
distinguish the wide range of speech sounds produced. eCutiter hand, we can easily
distinguish between two similar sounding words such aat*@nd “goat”, which only differ
from each other in milliseconds of the time of @lease in speech production. It seems that
people have the ability to be extremely tolerant taevmns and degradations in speech signal
while at the same time are extremely sensitive taliffierences in these sounds. The
phenomenon where we perceive sounds as distinctivgozas is also known as categorical
perception (Hoff, 2001). How do we differentiate such @ewange of speech sounds into
limited categories of sounds? Do we process all soundsathe way? Would ambiguous
sounds take more cognitive power to process?

The question of language perception is a complex one lmyetrsimplify it, the problem
can essentially be broken down into three parts: the,itipeiblack box mechanism, and the
output. As expected, researches tackling the problerheaategorized into through these
three approaches: the characteristics of sounds werhiagaguage (the input), the mechanism
that our brain employs (the black box), or our perceftio® output).

Extensive research has been done in the past to yddwiflifferent phonetic features of
language such as voice onset time (VOT), glottal etmitaburst amplitude, and vowel length
(e.g. Pisoni & Luce, 1987, Blumstein, 2004). Blumstein (2004) stgtes phonetic
categories are characterized by a set of acoustic pexptrat are time varying, relative, and

graded. More importantly, acoustic properties have percepinakquences — graded acoustic
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stimuli demonstrate the classic categorical percep@tern, but vary in reaction time within
each category depending on the quality of the sounds (Blum&£4). Further more, the
structure and perception of speech seems to affect hyigwdge processing such as lexical
selection and integration. This suggests that diffedanpat does affect output in particular
ways. We known that graded acoustic input results in catedoutputs and that the more
ambiguous the input is, the longer it takes the “black bce€hanism to process the input to
produce an output. So how does our brain do this?

One proposal is the possibility of activating multipgamantic neural networks in speech
recognition. Using semantic priming techniques, Blums@2®4) concluded that acoustic
variability in phonetic category structure affects bt perception of phonetic categories of
speech as well as higher language processing such as ssacahtic networks. Andruski,
Blumstein, & Burton (1994) also suggest that low-level abod#ferences influences speech
processing even when listeners judge the phonetic iderttiee the same.

In addition, phonetic manipulation seems to have atatin only words and not
nonwords, indicating that acoustic information is impottin lexical processing and that it
may be used to anticipate the patterns in the memiable that will match incoming speech
signal. Ganong (1980) also found a lexical effect whereiceatimes for phoneme
recognition in words differ from nonwords. Another roblestture of language that influences
speech production and perception is the frequency of the wivdsd frequency effect is the
tendency for commowords to be perceived correctly at much lower speecliseratios
than uncommon words (Savin, 1963).

In summary, researchers have identified the diffeaentstic features (the input) that may

influence word recognition. The perceptual phenomen@nrasult of the varying acoustic
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features (categorical perception) has also been studiedseésely. However, there is no
consensus between the existing models for the mechawiSlainguage perception. As
language and human perception are complicated, | wilsfocua small aspect of language
perception and attempt to model the phenomenon of subpbieensitivity in language (it
takes us longer to process ambiguous sounds even though'iweoaniously tell the

difference between the two sounds).

2 Methods

Understanding the mechanism of how we recognize and pesmeeh sounds will be an
important part of understanding both learning and languagedbtve yet to achieve that
goal. Despite the fact that some “language centers® bagn localized in the brain, we fail to
find a pathway for speech recognition. One obstaclevaldping a testable mechanism is the
fact that we don't fully understand the functionsabthe brain structures and how it is
integrated. Most of what we’ve learned about languagedms from patients with language
deficiency, clearly not a good representation of tfexall population. Compound this
obstacle with ethical considerations to do experimentshe human brain; a computer model
might be useful and more suitable to help us understandebbanisms of how speech may be
recognized.

Mathematical modeling is used here to describe and inteifpat@mple sound matching
and lexical facilitation mechanisms. A mathematicatlel provides many advantages to
study the complex phenomenon of language perception. ekftatical models offer a great
deal of manipulating power using little to no resourcescrddoft Excel is used in the current
model because it is able to change the parameters, cohdwotgeriments, and compile data

all on one Excel data sheet. Excel worksheets provideyaaproduce large amounts of data
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while being very transparent about the process in whistdibne. The mathematical
expressions used here are also intuitive and solvablehwkip us understand the
mechanisms and allow a more realistic model of great@plexity to be investigated by non-
mathematicians. In addition, simulations can be rum and over again with minimal cost
since the calculations can be done in a short amoumef The system can also be
manipulated on a wide range of scales, allowing the passiiailexpand the model to adopt a
more complicated and extensive language. The model sabalextended to include more

processes as we discover more underlying mechanisms.

2.1 Model Description

Language researchers agree that language perception cardetearived into three
distinctive processes: first, feature extractiomé@rmation gathering from acoustic or visual
input of language; second, the selection or matching oirttiemation to our mental lexicon;
and third, the integration of these information in aaetms context. (Aydelott & Bates, 2004).
Traditional language models propose a simple matching mechdoir word recognition
where the sound input from the environment is matched tenaony of the sound representing
words in our mind; word recognition is achieved when thands match (Connine et al.,
1997). However, more recent studies have found that snbpto variations and other cues
such as contextual information (e.g.Ganong, 1980, McCle8aBtman, 1986 ) or word
frequencies (e.g. Savin, 1963) affect our perception of wemoignition. This suggests that
information in addition to just the acoustic stimulfluences our perception in some way. On
the basis of this assumption, | propose a model whtgtiti@nal information helps us identify

words with ambiguous sounds at the cost of increased caglutid (Figure 1).
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Activation,
Language Feature Extraction
Input Information Gathering

Phoneme Matching Semantic Dictionary
Sound Quality 1. Word Relativity
Is it a good match? (Context)

Threshold: p>0.9 2. Word Frequency

Word
Recognition
Semantic Integration

Figure 2.1 Conceptual representation of the model. Theanguage Input contains a wide range of
acoustic information (described as a matrix, see example@ Table 2.1). The ears serve as an
information gathering “funnel” which relays this information to different parts of the brain where
features relevant for processing are extracted. The #acted features are then used to match an
existing prototype in our memory. When the input matcles the prototype, the sound is recognized
as a word. When the input does not match the prototypedditional information as provided in an
internal semantic dictionary is used to help the recogtion process.
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Table 2.1 Matrix describing each sound input.
consisting of three “syllables” or phonemes. Each phonee is described as the probability of being

sound “A”, sound “B”, and sound “C".

Each souhis described as a potential word

First Phoneme

Second Phonem

e Third Phoneme

Probability of A 0.4 0.8 0.7
Probability of B 0.5 0.1 0.2
Probability of C 0.1 0.1 0.1

First, an artificial language is constructed (see AppeAjlizecause the English language
(or any language) is so immensely complex; it would be mdhedifficult to understand the
way we perceive speech no matter how simple the acihanism is. The artificial
language in the current model consists of only three phesésounds) represented by “A”,
“B”, and “C”. Ten of the possible 27 combinations are wordkonemes “A” and “B” for the
first "syllable” mimic minimal pairs (pairs of wordkadt differ in only one phoneme and have
distinct meanings) in the English language. For examplide English language, /b/ and /p/
are minimal pairs that sound very similar and diffenimally, yet at the same time the
perception can only be one or the other but never badbh Eput of sound is described as a
matrix of probabilities of each phoneme representiegattiual phoneme (Table 2.1). Second,
this model will focus on three variables that may@ftee process of word recognition: sound
quality, context, and word frequency. Each variable veiltlbscribed in probabilistic
expressions and the threshold for word recognition iaset0.3.

Sound quality is defined here as the probability of a potemtied based on the input
alone. The overall sound quality of a word is builthe way the sounds are described in the
artificial language (Table 2.1) because the matrix descebeh phoneme as the probability of

sounds. The sound quality is therefore defined as:
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p(ABC) = p(first phoneme as A) * p(second phoneme as B)(third phoneme as C).

Equation 2.1 Probability of a potential word based on thénput alone.

Word frequency is defined as how often a word is used inguége and this information
has an effect on our perception (see Appendix B). &elsdas shown that words with higher
frequencies seem to be more recognized, this is cakefigpuency effect. The frequency

effect helps the recognition of the word by:

p(ABC) = p(sound as ABC) * p(word frequency)

Equation 2.2 Probability of a potential word based on wad frequency

Context is defined as the influence of the meaning of otbedswon the recognition of the
sound of interest. Priming is often used in language m&séa study the effect of context on
perception, which refers to the idea that when a related is presented before a sound,
people use that information to help them recognized the.wbhné idea is that when someone
hears a word preceding another word (a prime), theyhasénformation to help them identify
the word following it. A table of prime relativity (segpendix C) that describes the
“relatedness” of two words (the probability of a wor@weing when preceded by a prime) is

constructed. The effect of context is calculated by:

p(context) = p(sound)*p(prime relativity given prime).

Equation 2.3 Probability of a potential word based on th&ontext.
Probabilities are normalized at the end of this stage.

The probabilities for each possible 27 combinations ofdbeds are calculated at each
stage. The sound with the highest probability is chosdrchecked against the threshold

value. If the probability is higher than the threshaie, model would report the sound as
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either the word or as a nonword. If the probabiktyower than the threshold, the word is not
recognized and the model would respond “Don’t Know” and it &gl on to use the next
step(s) where more information is processed to incrig@sprobability of word recognition.
There are a total of 3 steps: the initial step of soundtgualaluation, and the additional steps
of frequency and context. The number of steps it takethé model to recognize a word is
compared to the initial sound quality. The number of Stepspected to increase as the sound
quality decreases.

This model assumes that the processes occur in sghal than parallel. Since the
purpose of the current model is to emulate whether ambigimusli increases processing
time and not the amount of time, the order in whichpiteeesses occur should not matter.
When the processes are put in different orders, lidsgplays the same pattern in result. In
this sense, the model may or may not represent the iek@@ctions between all the factors,
however we do not know enough about our brain processesttorteven propose a more
detailed and comprehensive interaction. The current ndafficient to show that additional
processes may be needed to manage information that Wwergahe environment. The
current model only includes three processes and theyame gqual weights. In actual word
recognition, more processes may be involved in diffeneys and combinations however
simplifications to the model is needed and it would bgoissible to account for all the factors
involved in word recognition. Sound quality, context, and widuencies are chosen as
criteria in the current model because previous reseaheawesshown significant effects of
these factors on our perception (e.g. Ganong, 1980, 9868, Aydelott & Bates, 2004 &

Blumstein, 2004).
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2.2 Model Verification

Depending on the dataset, the slightest changes cah @afficome and predictions of a
mathematical model, therefore it is extremely imaotto verify that the model is consistent
with the parameters of the actual phenomenon undertigaggsn. The data input in this
model is an artificial language, thus we have to be vargful about the predictions that we
make from the model. Because we do not yet know theagtiens between specific features
of language to produce our perception, the artificial laggueed in this model doesn’t
assume any interactions between features of the langUdngeartificial language describes in
an inclusive way that encompasses all the interactibtiedeatures and express it as
individual probability values. This model also tries tomporate a continuum of probabilities
to mimic the minimal pairs in the English languagehil/the artificial language may not
represent the English language in every aspect, it does wertain aspects of language.

The variables of a mathematical model are limited dsétthat can be described in
mathematical terms and may not be a realistic rédlectf phenomenon. In this particular
model, phenomenon is described in terms of probabiltyraay encompass different types of
information in just one number. It is near impossibléease the information apart because we
simply do not have enough understanding of language. Howbegprobabilistic approach
allows us to study the phenomenon without really underst@uridfully. Thus, this model
cannot predict behaviours of individual characteristickeguage.

In another effort to simplify language perception, onlg fsvocesses in addition to the
“sound matching” are included in this model. In realitgréhare many more processes and
factors that we do not understand and cannot yet des&ibadvantage of this model is that

future knowledge about the weights of context and frequandytheir interactions can be
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incorporated. Additional processes can also be added tocettpamodel to make it more
complete and realistic.

Despite every precaution, there are still potentiarsrin simplifications of parameters.
There is a danger in believing the results of the modei € it is completely incorrect. It is
essential to check the numerical model against obsengatiThis paper will also compare the

results from the mathematical model with the reactime in a human experiment.

2.3 Experiment Description

A randomly generated list of probabilities that descrthessounds is used to form the
artificial language used to test the model. 100 sounds wedetosest the model. p(A) for the
first phoneme ranges from 0.01 to 0.99, p(B) ranges from 6.091, and p(C) is always zero.
p(A), p(B), and p(C) for the second and third phonemes anpletely random and averages to
be around 0.33. To evaluate whether the order of differprmcesses matter, the model was
simulated twice: the first time the Context proassssed before the Frequency process, and
vice versa for the second time. The numbers of steastieve recognition as well as the

number of words recognized at each stage were recorded.

3 Results

First, initial sound quality is compared with the numbesteps it takes to achieve word
recognition. Both simulations of the model shows witt increased probability based on

input alone, the number of steps required to achieve decisioreades (See Figure 3.1).
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Simulation #2

Simulation #1
(Fequency --> Context)

(Context > Frequency)

IS

Number of steps

Number of steps

0 0.1 0.2 03 0.4 05 0.6 0 01 0.2 03 04 05 0.6
Sound Quality Sound Quality

Figure 3.1. Number of Steps vs. Sound Quality. Simuli@n #1 and #2 show similar patterns. Number of
steps required to achieve word recognition increases asund quality decreases. Step 4 means that the
word is never recognized.

When comparing the number of words recognized in each &thp processes (Table
3.1), a difference in actual number of words recognizegeth step was found. More words
are recognized by the Context process than by the Fregpesess in general. When words
are recognized by context already, frequency seems #olitidey effect on word recognition.
There is always an upward trend where the more pracassenvolved, the more words are
recognized. Only approximately 15 % of the words are recedmiath information from the
input alone. However, there is a dramatic increase toaippately 80 — 85% of all words

recognized when the additional processes are used.

Sound Match Alone Process 1 Process 2
- - 81 85
Simulation #1 14 (Context) (Frequency)
- - 47 81
Simulation #2 14 (Frequency) (Context)

Table 3.1 Number of words recognized at each stage ofetlprocess. Context seems to be more effective at
increasing the probability of word recognition than Freqwency. The order of the processes also seems to
have an effect on the number of words recognized — Fragncy is only useful if there is no contextual
information. However, the order of the processes @s not effect the overall number of words recognized
by the model.
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Simulation #2

Simulation #1
(Frequency --> Context)

(Context --> Frequency)

Number of steps
Number of steps

03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09

Continuum Continuum
A-->B A->B

Figure 3.2. Number of Steps across a minimal pair contitum. Simulation #1 and #2 show similar
patterns. The number of steps required to recognizéhe word decreases around the ends of the continuum
where sound is more likely to represent the wordsMore steps are needed to recognize words the sourids
between the two words. If the words are too ambiguoyu# may not be recognized at all.

When comparing the number of steps it takes to recogniz#sve@ross a minimal pair
continuum, words representing the ends of the continugmreeless processing that words
that are ambiguous. The patterns of very similar ih Bohulations, however simulation one
obtained more words recognized in step 2 because of theilonkich the model was tested.
This result is similar to formats used in current reseand can thus be compared.

In conclusion, the current model predicts that as inputtguiecreases, the processing
time required to reach perception would increase. IrtiaddFrequency seems to have an
effect only when contextual information is not avakgtgstablishing an order in which actual
processes may follow. However, the order of the Apaeesses in reality can not be
concluded from the current model, the model simply suggiest®ne might make more sense

than the other.

4 Discussion

Current literature and research often uses the VOTinewmh to study speech perception

(e.g. Andruski, Blumestein, & Burton, 1994) because it isasible to evaluate the “quality”
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of an input as a whole. To get around this problem, reseadegrade only one feature of the
language, such as the VOT, to create a continuum of miipairs. For example, Blumstein
(2004) looked at the reaction times (time it takes ppetits to respond to a speech sound)
compared to the type of stimulus given. VOTs betw@erlOms describes one word in
English, while a VOT of 40ms describes another. Th@T ¥f 20ms in English speech is an
ambiguous sounding word (i.e.. Poor sound quality). Blumstested a continuum between
0 and 40 ms and found increased reaction times acrossahetjghboundary of 20ms where
sound quality is poor (Figure 4.1). This finding is comparabtegémne found in this paper
(Figure 3.2).

As mentioned earlier in this paper, the number of st to achieve word recognition
is intended to represent the processing time. We a&sbtimt the more steps are taken, the
more processing time will be need, or in other wordsiencognitive power is needed.
Psychologists agree that increased reaction timedsudt of heavier cognitive load, which is
directly related to the amount or processes used in aur. bAlthough specific interactions
and pathways of these processes are hard to map, wea&arthe general conclusion that

more processes equals larger reaction times.

SO

T

= 500 1 |
400 1 %
300 . —. .
¢ 1

I 30 4t
VOT

Figure 4.1. Reaction times across a VOT continuum. @ph taken from Blumstein, 2004. The graph
shows increased reaction time across the phonetic balsry (20ms) where the sound is ambigurous.
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The complexity of language and the difficulties in slifigmg the phenomenon will be a
task that researchers continue to overcome. In thieelnoontextual and frequency effects are
described in a simple probabilistic approach where oddsrapysadded and normalized. A
better approach may be to use the Bayesian probabgioyy where probabilities are measures
of subjective belief rather than relative frequencyooturrences in an infinite sequence of
trials. Many researchers believe that the philosoph&aét of Bayesianism may be more
realistic than the existing frequentist statistics.

Recent studies have also tried involving neural network®iddel the connections and
interactions between different processes and fad@is Stork, Wolff, & Levine, 1992).
Neural networks are proposed by many researchers todgeadaceptual representation of the
human brain because of its ability to learn from lasgés of data. The ability of neural
networks to learn without explicit “instructions” and #&snilar performance patterns to the
human brain seems to also offer a promising framewembkiild the language models.

The current model is a rudimentary representation g@uiage processing and perception
and further refinements and expansion will be neededertighrmore aspects of language and
be more representative of the actual phenomenon.li@ited knowledge at the present time
as well as the limitations of this project preventshertinsight into the problem. However,
the model does predict that a more ambiguous sound wouldntaiessteps or processing time

to match than an unambiguous sound, which is noted in adis@ivations.

4.1 Summary

A mathematical model is used to represent the proceasgiidge perception.
Specifically, the model will address the question of Isownd quality affects processing time.

The model is constructed in Microsoft Excel and iseésvith an artificial language consiting
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of three phonemes and 10 words. The model predicts sedgaocessing time for ambiguous
sounds than for non-ambiguous sounds and is representatitssasf/ations in reaction time
patterns across VOT continuums. The current modehigeld to predictions of processing
time based on probabilities alone, future improvementdeanade with the use of Bayesian

Probability Theory and Neural Networks.

Page limit (12-16 pages, excluding references and appendicesjeehto this point.
Do not delete.
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Appendix A: Words in Artificial Language

AAA word
AAB nonword
AAC nonword
ABA word
ABB word
ABC nonword
ACA word
ACB word
ACC nonword
BAA word
BAB nonword
BAC word
BBA nonword
BBB word
BBC nonword
BCA nonword
BCB word
BCC word
CAA nonword
CAB nonword
CAC nonword
CBA nonword
CBB nonword
CBC nonword
CCA nonword
CcCB nonword

CCC nonword
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Appendix B: Word Frequencies

AAA
AAB
AAC
ABA
ABB
ABC
ACA
ACB
ACC
BAA
BAB
BAC
BBA
BBB
BBC
BCA
BCB
BCC
CAA
CAB
CAC
CBA
CBB
CBC
CCA
ccB
CCC

0.13
0
0
0.12
0.08

0.1
0.09

0.13
0.08

0.07

0.11

o
o
o ©

O OO OO0 O0oOo
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Appendix C: Prime Relativity

AAA ABA
AAA 0.28 0.22
ABA 0.22 0.28
ABB 0.18 0.03
ACA 013 0.01
ACB 0.1 0.07
BAA 0.05 0.01
BAC 0.01 0.2
BBB 0.01 0.12
BCB 0.01 0.01
BCC 0.01 0.05
AAB 0 0
AAC 0 0
ABC 0 0
ACC 0 0
BAB 0 0
BBA 0 0
BBC 0 0
BCA 0 0
CAA 0 0
CAB 0 0
CAC 0 0
CBA 0 0
CBB 0 0
CBC 0 0
CCA 0 0
cCB 0 0
CCC 0 0

ABB ACA ACB

0.18
0.03
0.28
0.05
0.25
0.01
0.14
0.01
0.04

o
o
o

[eNeoNeoleolNolNolNolNeolNoNolNoNolNolNolNolNolNo]

0.13
0.01
0.05
0.28
0.01
0.01
0.03
0.13
0.09
0.26

0

[eNeolNeololNoNolNeolololNolNolNolNeolNolNolNeo]

0.1
0.07
0.25
0.01
0.28
0.06
0.09
0.03
0.01

0.1

o

[eNeolNeololoNolNolololNolNolNolNeolNolNolNeo]

BAA BAC
0.05 0.01
0.01 0.2
0.01 0.14
0.01 0.03
0.06 0.09
0.28 0.11
0.11 0.28
0.17 0.08
0.21 0.05
0.09 0.01
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

BBB
0.01
0.12
0.01
0.13
0.03
0.17
0.08
0.28
0.16
0.01

o

[eNeolNeololoNolNeolololNoNolNolNolNolNolNeo]

BCB
0.01
0.01
0.04
0.09
0.01
0.21
0.05
0.16
0.28

o
l_\
a

[eNeoNeoleolNolNolNolNolNolNolNoNolNolNolNolNolNe]

BCC
0.01
0.05
0.01
0.26

0.1
0.09
0.01
0.01
0.18

o
)
o ™

[eNeolNeololoNolNolololNolNolNolNolNolNolNo]
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UBC ISCI 422: Project 3 - Report Vivian Pan

Grading Rubric

Both instructors will grade your work independently accaydmthe criteria below (may
not have equal weight). The final grade will be assignedormalizing each instructor’s
evaluations (over all submissions) to have the sananmed variance (decided based on
overall class performance), and averaging both instrsiatormalized grades.

Raw Score
Instructor: Instructor

Criterion Comments

Student worked independently
without requiring too much
instructor assistance.

Motivation and research
guestion clear and interesting
from a scientific perspective.

Model clearly explained.

Model original and ambitious.

Assumptions are thoroughly
considered and well justified.

Experiments are appropriate {o
answer research question.

Experimental results clearly
explained.

Thoroughly explores
implications of results and
insights gained in regard to
research question.

The page limits were satisfied.

Total = Final Grade:
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