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Assignment 2, highlights

Second order moments to restrict size! L1 loss

[41]: | def integr‘al_heatma;z_layer'(dic.t):
eemiiiafeting Interpretable Shape
Representation

bias = 1 # 2

hm_exp = torch.exp(heatmap * bias)
logsum = torch.sum(torch. sum(hm_exp,
logsum = logsum.unsqueeze(2).unsquee
h_norm = hm_exp / (logsum * bias)

h - heatmap.size(}y[2]
w = heatmap.size()[3]

Contour lines

grid = torch.stack(
tarch.meshgrid( | v, |
torch.linspace(e, 1, h),
torch. linspace(@, 1, w) * < k
15 ’
dim=2

)

grid = torch.unsqueeze(grid, 9)

grid - torch.unsqueeze(grid, 0)

grid - grid.to(heatmap.device) ( )
flay

prods = grid * torch.unsqueeze(h_norm, 4|

pose = torch.sun(torch.sun(prods, dime3), dim=2)

perm = torch.LongTensor([1, 8]} i <2

pose = pose[:,:,perm] ~=L U

3D slope

x x —
Squared error Absolute error Euclidean distance
MSE MAE MPJPE

# NOTE: I have experimented with adding a “"moment” Loss
# term which penalizes the network for predicting heat-
# maps that are spread-out. Tts computation is below

# ond is inspired by the moment of inertia of a rigid
# body, which increases as mass is distributed further
# away from the cemter point.

L

centers - pose.unsqueaze(2).unsqueeze(2)
diffs - grid - centers

sqr_dists - torch.sum(diffs**2, dim--1)

sqr_dists_prods = sqr_dists * h_norm

moments - torch.sum(torch.sum(sqr_dists_prods, dim--1), dim--1} / (w * h}

return DeviceDict({
*probabilitymsp’: h_norm,
‘pose_2d": pose,
‘moments’: moments
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Hint on PyTorch data loader ?-'W"—f‘

torch.utils.data.DataLoader(

dataset,
batch_size=1,

shuffle=False,

sampler=None,

# dataset from which to load the data.
# how many samples per batch to load
# set to True to have the data reshuffled at every epoch
# defines the strategy to draw samples from the dataset

batch_sampler=None,# like sampler, but returns a batch of indices at a time

num_workers=0,

collate_fn=None,

pin_memory=False,

drop_last=False,

timeout=0,

# how many subprocesses to use for data loading, 0 means using the main process
# merges a list of samples to form a mini-batch of Tensor(s)

# if True, the data loader will copy Tensors into CUDA pinned CPU memory

# drop the last incomplete batch, if the size is not divisible by the batch size

# if positive, the timeout value for collecting a batch from workers

worker_init_fn=None, multiprocessing_context=None # threading stuff

)

Make sure that you understand all arguments!



Assignment 3

« Rendering
« Learning shape spaces
* Interpolating in shape spaces

* Work independently, don’t cheat!
« disciplinary measures will be reported
on your transcripts
» your future applications may be
rejected because of this

Assignment 3: Neural Rendering and Shape Processing

CPSC 532R/533R Visual Al
by Helge Rhodin and Yuchi Zhang

This assignment is on neural rendering and shape processing—computer graphics. We
provide you with a dataset of 2D icons and corresponding vector graphics as shown in
Figure 1. It stems from a line of work on translating low-resolution icons to visually
appealing vector forms and was kindly provided by Sheffer et al. [1] for the purpose of
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Figure 1: Icon vector graphics and their bitmap representation.

The overall goal of this assignment is to find transformation between icons. We provide
the TmagerIcon dataset as an HDF5 file. As usual, the Assignment3_TaskI.ipynb
notebook provides dataloading, training and validation splits, as well as display and
training functionality. Compatibility of the developed neural networks with color im-
ages is ensured by storing the contained 32 x 32 icon bitmaps as 3 x W x H tensors.
Vector graphics are represented as polygons with N = 96 vertices and are stored as
2 x N tensors, with neighboring points stored sequentially. The polygon representa-
tion with a fixed number of vertices was attained by subsampling the originally curved
vector graphics.



UBC
Convolution as matrix multiplication (details) Padding? ?-@?
lnsertarow-of zeroes

What about horizontal striding?

. Insert row with some kernel
Skip every second row

elements missing

|

Larger input
height?
Insert more
rows here.

Larger input width?
What about vertical striding? insert zeroes here.
Skip block of rows

[21 é]

Kernel
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Convolution with cyclic padding, theory

Convolution
* instead of inserting zeroes, copy values from the
opposing side of the image
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Cyclic padding, broken in PyTorch

Setting padding equal to zero or one seems to

have the same effect

* in both cases the output resolution is reduced,
as without padding

Experienced instability when using cyclic padding

Only tested with 1D convolutions

Don’t use it as of now!
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Project ad

Killer whale identification

Andrew W Trites

Professor and Director
Institute for the Oceans and Fisheries UBC

Final dataset: 300 images, 40
different whales

Sufficient to distinguish ecotypes:

transient and residential orcas

Final data available.
Drop me a mail if you
would like to inspect it.

mme-accurate 3D pose
and force estimation

Dr. Jorg Sporri
Sport medicine head
University Hospital Balgrist

Final dataset: 765 jump videos,
2D and 3D pose, pressure plate
measurement, cam. calibration.



Overview

« 11 Lectures (Weeks 1 — 6)
* Introduction
* Deep learning basics and best practices

Representing dense and 3D keypoints

Representing geometry and shape

Representation learning | (deterministic)

Representation learning Il (probabilistic)

@I decision making >

* Unpaired image translation
« Attention models

Project pitches next week!

CPSC 532R/533R - Visual Al - Helge Rhodin

Network architectures for image processing
Representing images and sparse 2D keypoints

UBC

€

* 3x Assignments

Playing with pytorch (5% of points)
Pose estimation (10% of points)

@generaﬁon (10‘@

Project pitch (3 min, week 6)
Project presentation (10 min, week 14)
Project report (8 pages, April 14)

@presentation (Weeks 8 — 13

Presentation, once per student (25% of points)
(20 min + 15 min discussion, week 8-13)

Read and review one out of the two papers
presented per session (10% of points)



Course project proposal

Conditions
« groups of up to two students
» send us your tentative title/topic and team
members by Thursday, Feb 6t
 a CV or CG topic of your choice

Project proposal

* 3-minute pitch

» written proposal (one page, 11pt font)
* research idea
» possible algorithmic contributions
» outline of the planned evaluation

Representation learning | (deterministic) lecture slides

- principal component analysis (PCA)

PCA face model

Jan 23 Deep Learning
- auto-encoder (AE)
Homework 2 due. Hemewerdc2release ook Chaptar 14
w4
Representation learning || (probabilistic) lecture slides
Jan 30 - variational autoencoder (VAE) Deep Learning
- generative adversarial network (GAN) Bock - Chapter 20
Homework 3 release Assignment3 zip (posted Feb. 1)
Sequential decision making
Feb 4 - Monte Carlo methods %}2 Lgﬁg”?gr 17
- reinforcement learning = pler 17
Wa Unpaired image translation
Feb 6 - cycle consistency Cycle Gan
- style transfer Style transfer
Attention models Rol pooling, Spatial
Fab 11 - spatial transformers, Rol pooling, attention maps Transformer
- camera models and multi-view Multi-view
W6 Homework 3 due (new deadline) Geometry
Project Pitches (3 min pitch)
Feb 13 Project proposal due
W7 Midterm Break (no class)
Conditional content generation
Park et al., Semantic Image Synthesis with Spatially-Adaptive Normalization
Feb 25 paper
Liet al, Putting Humans in a Scene: Learning Affordance in 3D Indoor
W8 Environments paper
Motion transfer
Feb 27 Chan et al, Everybody Dance Now paper

Gao et al | Automatic Unpaired Shape Deformation Transfer paper

10



Reinforcement learning




Reinforcement learning examples :‘-f-"wﬁ

Can we perform reinforcement learning at ImageNet scales?

L., Pastor, Krizhevsky, Quillen ‘16

[Sergey Levine, UC Berkeley] 12



Reinforcement learning examples :“’WE

Reward:

get closer to the opposite side

as quick as possible

Learned policy

stand upright

walk

walk in the right direction
keep the balance

run

jump

turn

Humanoid:
27 DoFs, 21 Actuators.

[Heess et al., Emergence of Locomotion Behaviours in Rich Environments] _,
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Reinforcement learning basics

€

Definitions:
* s;, the current state of the agent/environment
* R(s;), the reward/objective at time t
* might be zero for almost all t
« R=YT_,R(sy), the return as sum over all rewards
* a, the action, such as moving right or left
* a; = m(s;), the policy of which action a; to perform when in state s;

Goal: finding a good policy  such that R is maximized when executing action a; = m(s;)

Update loop: "'J Agent ||

« decide on a new action a; = m(s;) state| |reward Al
: S

* update the environment state s,,; = env(s, a;) e [ |RGse) ag

S '
« pay out reward R(s;) 4”1[ Environment ]4—

14



Reinforcement learning unrolled E—@ﬁ

Unrolling the update loop for N steps
* R =R(sy) + R(sy) +R(sy) ...

=R(so) + R(env(sy, ap)) + R(env(env(sy, ay), ay)) -

=R(sy) + R(env(sy, m(sy))) + R (env(env(so,n(so)), n(env(so,n(so))))

Goal: finding a good policy m such that R is maximized when executing action a; = m(s;)

Update loop: ’|_ Agent l

« decide on a new action a, = m(s;) S

state reward action
« update the environment state s;,; = env(s;, a;) Se | [R(Sp) a;

« pay out reward R(s;) :t+1[ Environment ]47
1\

15



Reinforcement learning: a form of supervised learning

Classical machine learning
* input x, label y, parametric function f

O(z,y) = L(f(x),y) with f(x) = CNNp(z,I)

Reinforcement learning
« Away of supervised learning
« so=x, R=L(f(X),y), with f(x) the joint effect of the environment, policy and reward
« difficult if reward is delayed for many steps

UB

0

€

16



Optimizing the policy :-f-'w"-f-:
Goal: finding a good policy  such that R is maximized when executing action a; = m(s;)

Difficulty:
« the reward is a complex function of the policy and the environment
« do we know this function?
« policy ni(s;): yes, we can parametrize it with a neural network mg(s;) with parameters 6
* environment reaction env(s;, a;) to action a;: often unknown, e.g., a robot in the real world
with chaotic behavior and partial observations
« but we can ‘compute’ it once, by performing the action and observing the outcome
« can we differentiate this function? (needed for gradient decent optimization of )
* policy mg(s;):
» yes? a normal neural network
* no? binary output not differentiable, e.g. left/right decision when navigating a maze
« environment: no! we don’t even know the function to differentiate...

17



Binary decisions




UB

0

Probabilistic interpretation

€

Changes in the probabilistic model

— 4 i f whick : F | :

[p(ad), p(ald), .. p(al)] = mg(s,), the policy that attributes a probability p(at) to all possible action at .
« the probability to perform al when in state s,

- can also be continuous, a function defined over the domain of states,mg(a; , s;)
* e.g., by how much should the agent turn the steering wheel when driving autonomously?

Probabilistic goal: Maximize the expected return E(R)

- argmaxE(R) =arg maxE R(sy) + R(env(sy, ag)) + R(env(env(sy, ap), a;)), with a; ~ mg(s;)
0 0

E[R] = Z p(507aéaai7"')R(SOaa’?(;]?aZia'") N
ag,a{,... for t=0...N,5=0..N,... E[uﬂ = Z f(m‘@)p(.’ﬁ@)

& Exponentially many combinations, intractable

19



Probabilistic interpretation

Simplification for our purposes: only a single decision to be made

 argmax E(R) =argmaxE R(env(sy, ay)), with ay ~ mg(s)
6 )

E[R]= )  m(so)R(env(so,aq))

aé for i=0...N

Even a single step is problematic
» large number of possible actions

* sometimes it is not possible to undo an action
« e.qg. if a kitchen robot breaks a glass

Using an estimator
« Monte Carlo approach, can work with a single sample

E[R] ~ Nmy(so)R(env(sg, ap)) QG

» simply tries all possible actions at random, quite inefficient

Blf]~ 2 > fwp(e)

with x; drawn
uniformly at random

20



On-policy reinforcement learning

Probabilistic goal: Maximize the expected return E(R)

 argmax E(R) =argmaxE R(env(sy, ay)), with ay ~ mg(sy)
6 0

Using a different estimator (definition of expectation)
« again, with a single decision and single sample

E[R] = CR(env(sg, ap)) with ag ~ mp(so)

* now we try the most likely actions more often
* a better estimator (lower variance)
- follows the learned policy, what about exploration?

UB

0

€

C
Z f(@i)p(x:)

N
Z x;) with &; ~ p

« sampling is not differentiable; only for continuous values we could use the reparameterization trick

21



Recap: Differentiation and sampling

Problem: How to differentiate through the sampling step?
« it's a random process, only statistically dependent on the mean and
standard deviation of the sampling distribution

Solutions:
1. The reparameterization trick: Use

h=p+o®e with e ~ N(0,1) 0 0
instead of
hNN(/-L:O—) e 0
W WD (E

« related to reinforcement learning and importance sampling Original Reparametrized

2. Monte-Carlo solution

« works for discrete and continuous variables

« we will cover it next week
22



Recap: Reparameterization trick, visually and mathematically

Equation: h = p+ o ® €, with e ~ N (0,1)
Influence
« changing mu
* increase ->moves sample right
» decrease -> moves sample left
« changing sigma
« increase -> moves away from center
» decrease -> moves to the center

Gradient
oh
do
oh
A

= ¢, with e ~ N (0,1)

=1

current sample

UB

0

€

oh "\
oo \
gradient

sample after downscaling sigma

23



UB
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Summary

€

Probabilistic goal: Maximize the expected return E(R)

E[R] ~ CR(env(sg, ap)) with ag ~ m(so)

Update loop:

» decide on a new action a; ~mg(s;)

« update the environment state s;,; = env(s;, a;)
« pay out reward R(s;)

* repeat N times

« compute gradient of R(s;) with respect to 6

Problem:
» the reparameterization trick only works for certain kind of continuous distributions (e.g. Gaussian)
* in general, the environment update function, env(s,, a,), is unknown/not differentiable

» it cuts off gradient flow to a,, backpropagation to 6 is not possible
24



Revisit the initial probabilistic formulation for gradients

Simplification for our purposes: only a single decision to be made

 argmax E(R) =argmaxE R(env(sy, ay)), with ay ~ mg(s)
6 )

E[Rl= ) wo(s0)R(env(so,af))
aa for ¢=0...N

Using an estimator
« Monte Carlo approach, can work with a single sample

E[R] = Nmy(so)R(env(sg,ap)) QG

» simply tries all possible actions at random, quite inefficient

Blf]~ 2 > fwp(e)

with x; drawn
uniformly at random

25
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Derivative of discrete random variables

€

1. Start from the sum over all possible classes

1=1
Computer gradient of this equation with OE[f(X)] C Ope(:)
respect to NN parameters 09 ~ Z f@i) ——F— 90 :
3. Multiply by 1’ o
IE[f(X)] ~ Z pe(ﬂiz')f(m)apa(ﬂ?i)
0 — pp(x;)” " 00
4. Algebraic transformation ch
OE[f(X)] 0log (pe(zi))
dlog f(z) _ 8/(z) oy Zpﬂ(ﬂfi)f(ﬂfi) 50
Oz f(@) =1
5. Definition of expectation 8E[ L EN: (910g pe(a%)) with z; ~ pg
N

 Now we sample from the policy (efficient) and have a relation on 6 for gradient descent
 How could we do this? Magic? What does this transformation mean?

26



Importance sampling, a computer graphics point of view '—@*

Sampling approaches are commonly used in rendering (ray tracing)

Image

Camera / 8 Light Source
[T
\ | View Ray »: Shadow Rav

Scene Object

27



Importance sampling, a computer graphics point of view




Importance sampling, a computer graphics point of view




Importance sampling

Idea: Sample those important paths more often

Challenges:
« Compute an unbiased estimate
« if many samples were taken, the estimate
should approach the true integral
« Compute a tight approximation
» low variance over different samples
» related to how to choose the important path

30



First use of importance sampling, chain reaction etc. ?@*

ol
&

Walls made of
concrete and
steel

3-5 feet thick
(1=1.5 meters)

4

Turbine
Generator

Condenser

Heater

Condensat:
umps

Feed
Pump

Demineralizer

Steamline

3 team

Generator

Reactor Control|
Vessel Rods

Coolant Loop 2

Core
L
Reactor
x::::gt Containment
Structure

Containment \
Cooling System

ressurizer

Emergency Water
Supply Systems

Trajectory of aneutron

IS it safe to stand next to the
reactor shielding?
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Riemann sum/integral

32



Monte Carlo (MC) integration

33



Monte Carlo integration: average of boxes

k-

f(x1)*(b-a)

f(x2)*(b-a)

f(x3)"(b-a)

an

0

UB

—|

€

* f(x4)*(b-a)

/

%1

1/4 %

¥3

a *4 b
)EL‘

& www. scratchapixel.com
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Importance sampling f—'@-‘*




How can this work?

N
EN;

(J

UBC
)
1 N Linearity of
N Z E [ f(xz) ] the expected
=1 pX(Xi) value
1 N Expectation over the
N Z/ f(X)PX(X) dx | continuous set of
i=1 () possible outcomes

36



Importance sampling




Variance of the estimator #—@#

How bigis Var[p(xi)

7/
N, pdf(x) o

~ P
-~ -

> 3 L
» > 3

Figure A.2: Comparison of three probability density functions. The PDF on the right provides variance
reduction over the uniform PDF in the center. However, using the PDF on the left would significantly
increase variance over simple uniform sampling.

[Jarosz etal.]
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UBC

Derivative of discrete random variables Il N W
1. Start from uniform MC sampling of f El/l~ % ; J(@i)po(s)  with a; ~ Uniform
2. I(rr:](?ots;t:lzizes:[ao;g;: \?v:;dldei;]::ibution q Blf] ~ % iv; };9((23) f(z;)  with 2; ~q

3. Compute gradient N i\r: 8pf95f'°) B

(before this was the first step)
4. Assume g=p and express as logarithm OE[f(X)]

N
« the same as log trick! a0 % Z f (i) 90
*  but now it makes sense =
« importance sampling with the current policy
« we don’t change the samples, hence, no gradient flow through q
« Advantages: We can sample from q != p, i.e. to encourage exploitation or reduce variance.
Easier to implement and understand. A large literature on how to improve importance sampling!

39
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Applications, my research | (object detection)

Proposal-based detection

In

Probability

[Katircioglu et al., Self-supervised Training of Proposal-based Segmentation via Background Prediction]

40



Applications, my research Il (learning body models) ?-'w"-—f‘

Cross-view correspondence finding e
|
.
% l

0.8

Source bounding boxes Target bounding boxes 09

Figure 5. Identity association. In this example, the light subject is
detected once as the first and once as the second subject, here vi-
sualized by red and green boxes. To match subjects across views,
we build a similarity matrix from their respective appearance en-
codings, as shown on the right.

[Rhodin et al., Neural Scene Decomposition for Multi-Person Motion Capture. CVPR’'19]



Applications, Michiel van de Panne (character animation & more)

Walking on Narrow Paths

assie w’?Amy_ a learped neural v
' 4




