Visual Al

CPSC 532R/533R - 2019/2020 Term 2

Lecture 8. Representation learning II (probabilistic models)

Helge Rhodin

Recap: Transposed convolution

Example: 2D transposed convolution with 3x3 kernel

Input Kernel

[https://d2l.ai/chapter_computer-vision/tranposed-conv.html]

Transposed what?

- Express classical convolution as linear matrix and transpose it
 - special case of a linear/fully-connected layer

Convolution as matrix multiplication

Convolution as matrix multiplication (details)

Transposed convolution as matrix multiplication

Recap: Feature map size after convolutional kernels

- Transformation of input and output by convolutions
- output size = (input size + 2*padding kernel size + stride)/stride
 - e.g., a 3x3 kernel that preserves size: W + 2*1 3 + 1 = W
 - e.g., a 4x4 kernel that reduces size by factor two: $(W + 2^*1 4 + 2)/2 = W/2$
- holds per dimension, i.e., 1D, 2D and 3D convolutions

Transformation of input and output by transposed convolutions (aka. deconvolution)

- output size = input size * stride stride + kernel size 2*padding
 - it has exactly the opposite effect of convolution
 - e.g., a 3x3 kernel that preserves size: W 1 + 3 2*1 = W
 - e.g., a 4x4 kernel that increases size by factor two: $W^2 + 2^1 4 + 2 = W^2$
 - e.g., a 3x3 kernel that increases size by two elements: W 1 + 3 2*0 = W + 2

Assignment 3

- Task I will be published tonight.
- Neural rendering

The other ones are delayed due to unforeseen difficulties.

Paper assignment finished (on Piazza)

The cur	rrent assignn	nent:	
W8	25-Feb	Conditional content generation	
		Park et al., Semantic Image Synthesis with Spatially-Adaptive Normalization	Daniele Reda
		Li et al., Putting Humans in a Scene: Learning Affordance in 3D Indoor Environments	Shih-Han Chou
	27-Feb	Motion transfer	
		Chan et al, Everybody Dance Now	Zikun Chen
		Gao et al., Automatic Unpaired Shape Deformation Transfer	Willis Peng
W9	3-Mar	Character animation	
		Rhodin et al., Interactive Motion Mapping for Real-time Character Control	Michela Minerva
		Holden et al., Phase-Functioned Neural Networks for Character Control	Dingqing Yang
	5-Mar	Self-supervised learning	
		Vondrick et al., Tracking Emerges by Colorizing Videos	Dave Pagurek
		Doersch et al., Unsupervised visual representation learning by context prediction	Zicong Fan
W10	10-Mar	Novel view synthesis	
		Hinton et al., Transforming Auto-encoders	Arda Ege Unlu
		Rhodin et al., Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation	Shane Sims
	12-Mar	Differentiable rendering	
		Rhodin et al., A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation	Lawrence Li
		Liu et al., Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning	Jerry Yin
W11	17-Mar	Learning person models	
		Lorenz et al., Unsupervised Part-Based Disentangling of Object Shape and Appearance	Tim Straubinger
		Rhodin et al., Neural Scene Decomposition for Human Motion Capture	Farnoosh Javadi
	19-Mar	Object parts and physics	
		Li et al., GRASS: Generative Recursive Autoencoders for Shape Structures	Peyman Bateni
		Xie et al., tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow	Michelle Appel
W12	24-Mar	Objective functions and log-likelihood	
		Christopher Bishop, Mixture Density Networks	Shenyi Pan
		Jonathan T. Barron, A General and Adaptive Robust Loss Function	Tianxin Tao
	26-Mar	Self-supervised object detection	
		Crawford et al., Spatially invariant unsupervised object detection with convolutional neural networks	Shuxian Fan
		Bielski and Paolo Favaro, Emergence of Object Segmentation in Perturbed Generative Models	Mona Fadaviardakani
W13	31-Mar	Mesh processing	
		Bagautdinov et al., Modeling Facial Geometry using Compositional VAEs	Matheus Stolet
		Verma et al., Feastnet: Feature-steered graph convolutions for 3d shape analysis	Matthew Wilson
	2-Apr	Neural rendering	
		Sitzmann et al., DeepVoxels: Learning Persistent 3D Feature Embeddings	Weidong Yin
		Saito et al., PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization	Peiyuan (Gary) Zhu

Recap: Auto Encoder (AE)

General case

 $\mathbf{h} = \operatorname{encoder}_{\theta}(\mathbf{x})$ $\mathbf{x}' = \operatorname{decoder}_{\theta}(\mathbf{h})$

Simple non-linear case

$$\begin{aligned} \mathbf{h} &= \sigma(\mathbf{W}\mathbf{x} + \mathbf{b}) \\ \mathbf{x}' &= \sigma(\mathbf{W}'\mathbf{h} + \mathbf{b}') \end{aligned}$$

Linear case (similar to PCA)

$$\mathbf{h} = \mathbf{W}\mathbf{x} + \mathbf{b}$$
$$\mathbf{x}' = \mathbf{W}'\mathbf{h} + \mathbf{b}'$$

General reconstruction objective $\label{eq:loss} \log(\mathbf{x}, \mathbf{x}')$

• e.g., MSE loss

https://en.wikipedia.org/ wiki/Autoencoder

Recap: Autoencoder variants

Bottleneck autoencoder:

- hidden dimension smaller than input dimension
 - leads to compressed representations
 - like dimensionality reduction with PCA
- Sparse autoencoder:
- hidden dimension larger than input dimension
- hidden activation enforced to be sparse (=few activations
- Denoising autoencoder:
- corrupt the input values, e.g. by additive noise $\mathbf{h} = \operatorname{encoder}_{\theta}(\operatorname{noise}(\mathbf{x}))$

$$\mathbf{x}' = \operatorname{decoder}_{\theta}(\mathbf{h})$$

Variational Auto Encoder (VAE)

- a probabilistic model
 - 'adding noise on the hidden variables'
 - More on this topic today!

Probability preliminaries

Bayes' theorem

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

• Links the degree of belief in a proposition before and after accounting for evidence

Prior distribution P(Y)

 belief in a proposition before accounting for evidence

Posterior distribution $P(Y \mid X)$

- belief in a proposition after accounting for evidence
 - here without knowing event B
- a conditional probability
 - here conditioned on B

From lecture 3: Regression revisited

Many loss functions are -log of probability distributions

CPSC 532R/533R - Visual AI - Helge Rhodin

0

 -3σ -2σ

 $-\sigma$

0

 2σ

 σ

 3σ

The prior is a regularizer

For instance, an I2 loss on the neural network weights Regularizer / prior term $O(X,Y) = L(f_{\theta}(X),Y) + \lambda(\theta - 0)^{2}$ corresponds to a prior on the weights Data term / log likelihood $P(\theta|X,Y) = P(f_{\theta}(X,Y)|\theta) * P(\theta)$ $\propto \frac{P(f_{\theta}(X,Y)|\theta) * P(\theta)}{P(X,Y)}$ We usually don't know the prior probability of X,Y, but we know that it is constant

When optimizing a network...

- without a prior, we infer the maximum likelihood (ML) estimate
- with a prior term, we infer the maximum a posteriori (MAP) estimate
- while considering the distribution of weights, we infer the posterior distribution of networks Bayesian networks, usually via Variational Inference of parametric distributions

UBC

Variational Autoencoder (VAE) concept

- mapping to a latent variable distribution
 - a parametric distribution
 - usually a Gaussian
 - with variable mean and std parameters
 - impose a prior distribution on the latent variables
 - usually a Gaussian
 - with fixed mean=0 and std=1
- Enables the generation of new samples
 - draw a random sample from the prior
 - pass it through the decoder
 - or draw a sample from the posterior
 - pass it through the decoder

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5da

VAE examples

Generating unseen faces

https://github.com/yzwxx/vae-celebA

Generating music

100

[Roberts et al., Hierarchical Variational Autoencoders for Music]

The Variational Autoencoder (VAE)

VAE Objective (general)

$$\mathcal{L}(\phi, \theta, \mathbf{x}) = -\mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\log p_{\theta}(\mathbf{x}|\mathbf{h}) \right) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) || p(\mathbf{h}))$$

Expectation over q

Data term / log likelihood

- Common parametrization
- Normal distributions

 $p(\mathbf{h}) = \mathcal{N}(0, 1)$ $q_{\phi}(\mathbf{h} | \mathbf{x}) = \mathcal{N}(\boldsymbol{e}(\mathbf{x}), \boldsymbol{\omega}(\mathbf{x})\mathbf{I})$ $p_{\theta}(\mathbf{x} | \mathbf{h}) = \mathcal{N}(\boldsymbol{d}(\mathbf{h}), \boldsymbol{\sigma}\mathbf{I})$

- parametrized by neural networks
 - encoder e
 - decoder d

Kullback–Leibler divergence (relative entropy)

• a dissimilarity measure between distributions

Regularizer / prior term

- not symmetric, KL(p,q) != KL(q,p)
- Definition for continuous distributions

D

$$_{\mathrm{KL}}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) \, dx$$
probability density of Q

The Variational Autoencoder (VAE), simplified I

VAE Objective (general)

 $\mathcal{L}(\phi, \theta, \mathbf{x}) = -\mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h} | \mathbf{x})} (\log p_{\theta}(\mathbf{x} | \mathbf{h})) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h} | \mathbf{x}) \| p(\mathbf{h}))$

$$p_{\theta}(\mathbf{x}|\mathbf{h}) = \mathcal{N}(\boldsymbol{d}(\mathbf{h}), \boldsymbol{\sigma}\mathbf{I})$$

$$\log\left(\mathcal{N}(\mu,\sigma)\right) = \log\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{1}{2\sigma^2}\left(x-\mu\right)^2$$

 $\mathcal{N}(\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

$$\Leftrightarrow \mathcal{L}(\phi, \theta, \mathbf{x}) = \mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\frac{1}{2\sigma^2} \left(\mathbf{x} - \mathbf{d}(h) \right)^2 \right) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) \| p(\mathbf{h})) + C$$

$$\Leftrightarrow \mathcal{L}(\phi, \theta, \mathbf{x}) = \lambda \mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\mathbf{x} - \mathbf{d}(h)\right)^{2} + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) \| p(\mathbf{h})) + C$$

A simple autoencoder reconstruction loss, the squared difference between input and output

Kullback–Leibler divergence and entropy

Definition

$$D_{\mathrm{KL}}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) \, dx$$

Interpretation

information gain achieved if Q is used instead of P

n

relative entropy

• Entropy:
$$H(p) = -\sum_{i=1} p(x_i) \log p(x_i)$$
.

 the expected number of extra bits required to code samples from P using a code optimized for Q rather than the code optimized for P

KL divergence between Normal distributions (univariate case)

UBC

The KL divergence can be split in two parts

$$D_{\mathrm{KL}}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) dx = \int_{-\infty}^{\infty} p(x) \log\left(p(x)\right) dx - \int_{-\infty}^{\infty} p(x) \log\left(q(x)\right) dx$$

For Gaussians $p(x) = N(\mu_1, \sigma_1)$ and $q(x) = N(\mu_2, \sigma_2)$ it holds

$$\int p(x) \log q(x) dx = -\frac{1}{2} \log(2\pi\sigma_2^2) - \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2}$$
Hence
$$KL(p,q) = -\frac{1}{2} \log(2\pi\sigma_1^2) - \frac{1}{2} + \frac{1}{2} \log(2\pi\sigma_2^2) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2}$$

$$= \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}$$

$$= -\log \sigma_1 + \frac{\sigma_1^2 + \mu_1^2}{2} - \frac{1}{2}$$
Using that m₂=0 and s₂=1

CPSC 532R/533R - Visual AI - Helge Rhodin

https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians

The Variational Autoencoder (VAE), simplified II

Starting point

$$\Leftrightarrow \mathcal{L}(\phi, \theta, \mathbf{x}) = \lambda \mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\mathbf{x} - \mathbf{d}(\mathbf{h})\right)^{2} + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) \| p(\mathbf{h})) + C$$

Simplification (for Gaussian prior p and Gaussian q with $\mu_1 = e(\mathbf{x})$ and $\sigma_1 = \boldsymbol{\omega}(\mathbf{x})$ Data term / log likelihood

0

0

$$\Leftrightarrow \mathcal{L}(\phi, \theta, \mathbf{x}) = \lambda \mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h} | \mathbf{x})} \left(\mathbf{x} - \mathbf{d}(\mathbf{h})\right)^{2} + -\log \sigma_{1} + \frac{\sigma_{1}^{2} + \mu_{1}^{2}}{2} + C'$$

Sampling (here a single sample)

$$\approx \lambda \left(\mathbf{x} - \mathbf{d}(h) \right)^{2} + -\log \sigma_{1} + \frac{\sigma_{1}^{2} + \mu_{1}^{2}}{2} + C' \text{ with } h \sim q_{\phi}$$
reconstruct 'keep sigma > 0'
the image 'keep sigma and mu small'

Expected value $E_{x \sim q} f(x) = \int q(x) f(x) dx$ $= \sum_{i=1}^{k} f(x_i) \text{ with } x_i \sim q$

Sampling from a Gaussian

- Rejection sampling from a uniform distribution
- intuitive approach
- ignores the tails of the distribution
- Better alternative:
- Box-Muller Transform
 - requires only two uniform samples
 - mathematically correct (not an approximation)
 - efficient to compute

The effect of the prior

- Create a dense and smooth latent space
- without holes
 - all samples will make sense
 - e.g., will reconstruct to plausible images

Deriving the posterior via Bayes

UBC

The evidence, intractable to compute (marginalization) $p(x) = \int p(x|h)p(h)dh$ It requires integration over all possible latent values h

Attempt: Approximate the posterior with a NN (encoder)

 $\mathbf{KL}(q_{\phi}(h|x)||p(h|x)) = \mathbf{E}_{\mathbf{q}}[\log_{q_{\phi}}(h|x)] - \mathbf{E}_{q}[\log p(x,h)] + \log p(x)$

• still intractable due to p(x) in the divergence

Consider the term

$$ELBO(\phi) = E_q[\log p(x, z)] - E_q[\log q_\phi(z|x)]$$

Together with the KL divergence from before, we get $\log p(x)$ as

 $\log p(x) = ELBO(\phi) + \mathbf{KL}(q_{\phi}(h|x)||p(h|x))$

- the Kullback-Leibler divergence is always greater than or equal to zero
 - minimizing the Kullback-Leibler divergence is equivalent to maximizing the ELBO (making one bigger must reduce the other one)

 $= -\mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} (\log p_{\theta}(\mathbf{x}|\mathbf{h}))$ $+ D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) || p(\mathbf{h}))$

(equal to what we had before)

Differentiation and sampling

Problem: How to differentiate through the sampling step?

 it's a random process, only statistically dependent on the mean and standard deviation of the sampling distribution

Solutions:

1. The reparameterization trick: Use

 $h = \mu + \sigma \odot \epsilon$, with $\epsilon \sim \mathcal{N}(0, 1)$

instead of

 $h \sim \mathcal{N}(\mu, \sigma)$

2. Monte-Carlo solution

- related to reinforcement learning and importance sampling
- works for discrete and continuous variables
- we will cover it next week

Original

Reparametrized

Reparametrization trick, visually and mathematically

Equation: $h = \mu + \sigma \odot \epsilon$, with $\epsilon \sim \mathcal{N}(0, 1)$

Influence

- changing mu
 - increase -> moves sample right
 - decrease -> moves sample left
- changing sigma
 - increase -> moves away from center
 - decrease -> moves to the center

Gradient

 $\begin{aligned} &\frac{\partial h}{\partial \sigma} = \epsilon, \text{ with } \epsilon \sim \mathcal{N}(0,1) \\ &\frac{\partial h}{\partial \mu} = 1 \end{aligned}$

VAE results

Mixed appearance generation

VAE limitations

Generating human pose and appearance

VAE Limitations II

Tradeoff between data and prior term

- high weight on data term (big lambda):
 - crisp reconstruction of training data
 - but latent code is not Gaussian
 - the reconstruction of latent code samples from a Gaussian will be incorrect
- high weight on prior term (small lambda):
 - blurry reconstruction
 - but latent code follows a Gaussian distribution
 - sampling leads to expected outcomes (as good as training samples)

GAN training

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Chaotic GAN loss behavior (e.g., generator loss going up not down)

Wasserstein GAN

Diverse measures exist to compare probability distributions

• The Total Variation (TV) distance

$$\delta(\mathbb{P}_r, \mathbb{P}_g) = \sup_{A \in \Sigma} |\mathbb{P}_r(A) - \mathbb{P}_g(A)|$$

• The Kullback-Leibler (KL) divergence

$$KL(\mathbb{P}_r || \mathbb{P}_g) = \int \log\left(\frac{P_r(x)}{P_g(x)}\right) P_r(x) d\mu(x) ,$$

• The Jensen-Shannon (JS) divergence

 $JS(\mathbb{P}_r, \mathbb{P}_g) = KL(\mathbb{P}_r || \mathbb{P}_m) + KL(\mathbb{P}_g || \mathbb{P}_m) ,$

 $W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x, y) \sim \gamma} \left[\|x - y\| \right] ,$

• The Earth-Mover (EM) distance or Wasserstein-1

[Arjovsky et al., Wasserstein GAN. 2017]

GAN vs. WGAN

UBC

Wasserstein distance is even simpler!

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

GAN

Algorithm 1 WGAN, our proposed algorithm.	All experiments in the paper used
the default values $\alpha = 0.00005, c = 0.01, m = 64$	$4, n_{\rm critic} = 5.$

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. $n_{\rm critic}$, the number of iterations of the critic per generator iteration. **Require:** : w_0 , initial critic parameters. θ_0 , initial generator's parameters. 1: while θ has not converged do for $t = 0, ..., n_{\text{critic}}$ do 2: Sample $\{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r$ a batch from the real data. 3: Sample $\{z^{(i)}\}_{i=1}^{m} \sim p(z)$ a batch of prior samples. $g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^{m} f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^{m} f_w(g_\theta(z^{(i)}))\right]$ 4: 5: $w \leftarrow w + \alpha \cdot \text{RMSProp}(w, q_w)$ 6: $w \leftarrow \operatorname{clip}(w, -c, c)$ 7: 8: end for Sample $\{z^{(i)}\}_{i=1}^{m} \sim p(z)$ a batch of prior samples. $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_w(g_{\theta}(z^{(i)}))$ 9: 10: $\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})$ 11:

12: end while

WGAN

DCGAN

Convolutional generator architecture

PatchGAN

Patch-wise classification into real or fake (instead of globally)

Discriminator network

[Li and Wandt, Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

Conditional Generative Adversarial Nets

First week of paper reading..

[Isola et al., Image-to-Image Translation with Conditional Adversarial Networks] 41

Hidden questions

Solder use of realities seeming. While devid codealing and lines an publick coper-?

When a sufficient manifestory (AV) is summer address introduced

Whe upper construit an interapporter to upper the second