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Recap: Transposed convolution

Example: 2D transposed convolution with 3x3 kernel

Input Kernel Output
0]0 011 0|0

011 011
=10]0 + 2|13+ 0]2 + 014

213 213
416 4 112

Transposed what?
« Express classical convolution as linear matrix and transpose it
» special case of a linear/fully-connected layer
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https://d2l.ai/chapter_computer-vision/tranposed-conv.html
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Convolution as matrix multiplication W
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Convolution as matrix multiplication (details)
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What about horizontal striding?

Skip every second row Padding?
Insert a row of zeroes

Larger input
height?
Insert more
rows here.

Larger input width?
What about vertical striding? insert zeroes here.
Skip block of rows
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Transposed convolution as matrix multiplication %
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Recap: Feature map size after convolutional kernels

Transformation of input and output by convolutions
* output size = (input size + 2*padding — + stride)/stride

* e.g., a 3x3 kernel that preserves size: W+2*1-3+1=W

* e.g., a 4x4 kernel that reduces size by factor two: (W + 2*1 — 4 + 2)/2 = W/2
* holds per dimension, i.e., 1D, 2D and 3D convolutions

Transformation of input and output by transposed convolutions (aka. deconvolution)
¢ Output size = input size * stride - stride + - 2*padding
» it has exactly the opposite effect of convolution
* e.g., a3x3 kernel that preserves size: W-1+3-2*1=W
* e.g., a4x4 kernel that increases size by factor two: W*2 +2*1 — 4 + 2 = W*2
* e.g., a3x3 kernel that increases size by two elements: W-1+3-2*0=W + 2
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Assignment 3

Task | will be published tonight.
* Neural rendering

The other ones are delayed due to unforeseen
difficulties.
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Paper assignment finished (on Piazza)

The current assignment:

Wa

W9

W10

W11

W12

W13

25-Feb

27-Feb

3-Mar

5-Mar

10-Mar

12-Mar

17-Mar

19-Mar

24-Mar

26-Mar

31-Mar

2-Apr

Conditional content generation

Park et al., Semantic Image Synthasis with Spatially-Adaptive Nermalization

Li et al.. Putting Humans in a Scene: Learning Affordance in 30 Indoor Environments
Motion transfer

Chan et al, Everybody Dance Now

Gao et al., Automatic Unpaired Shape Deformation Transfer

Character animation

Rhodin et al., Interactive Motion Mapping for Realtime Character Control

Holden et al., Phase-Functioned Neural Networks for Character Control
Self-supervised learning

Vondrick et al., Tracking Emerges by Colorizing Videos

Doersch et al., Unsupervised visual representation learning by context prediction
MNovel view synthesis

Hinton et al., Transforming Auto-encoders

Rhodin et al., Unsupervised Geometry-Aware Representation for 30 Human Pose Estimation
Differentiable rendering

Rhodin et al., A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation

Liu et al., Soft Rasterizer: A Differentiable Renderer for Image-based 30 Reasoning

Learning parson models

Lorenz et al., Unsupervised Part-Based Disentangling of Object Shape and Appearance
Rhodin et al., Neural Scene Decomposition for Human Motion Capture

Object parts and physics

Li et al.. GRASS: Generative Recursive Autoencoders for Shape Structures

Xie et al., tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow
Objective functions and log-likelihood

Christopher Bishop, Mixture Density Networks

Jonathan T. Barron, A General and Adaptive Robust Loss Function

Self-supervised object detection

Crawford et al., Spatially invariant unsupervised object detection with convolutional neural networks

Bielski and Paclo Favaro, Emergence of Object Segmentation in Perturbed Generative Models

Mesh processing
Bagautdinov et al., Modeling Facial Geometry using Compositional VAEs

erma et al., Feastnet: Feature-steered graph convolutions for 3d shape analysis

Meural rendering
Sitzmann et al., DeepVoxels: Leamning Persistent 3D Feature Embeddings

Saito et al., PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization

Daniele Reda
Shih-Han Chou

Zikun Chen
Willis Peng

Michela Minerva
Dingging Yang

Dave Pagurek
Zicong Fan

Arda Ege Unlu
Shane Sims

Lawrence Li
Jerry Yin

Tim Straubinger
Famoosh Javadi

Peyman Bateni
Michelle Appel

Shenyi Pan
Tianxin Tao

Shuxian Fan
Mona
Fadaviardakani

Matheus Stolet
Matthew
Wilson

Weidong Yin
Peiyuan
(Gary) Zhu



Recap: Auto Encoder (AE)

General case

h = encodery(x)
x" = decodery(h)

Simple non-linear case
h =0(Wx +b)
x' = o(Wh+Db')

Linear case (similar to PCA)
h=Wx+b
x' =Wh+ b’

General reconstruction objective
loss(x, x")
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Recap: Autoencoder variants W
Bottleneck autoencoder: Variational Auto Encoder (VAE)
« hidden dimension smaller than input dimension « a probabilistic model
» |leads to compressed representations « ‘adding noise on the hidden variables’
* like dimensionality reduction with PCA * More on this topic today!

Sparse autoencoder:

« hidden dimension larger than input dimension

* hidden activation enforced to be sparse
(=few activations

Denoising autoencoder:

« corrupt the input values, e.g. by additive noise
h = encodery(noise(x))
x" = decodery(h)
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Probability preliminaries

Bayes’ theorem

P(X |Y)P(Y)
P(X)

P(Y | X) =

» Links the degree of belief in a proposition before
and after accounting for evidence

Strip volume
+y = P(X=x)

Strip volume
+ f . (xy) = P(Y=y)

= P(X=x n Y=y)

P(X=x n Y=y)

P(X=x n Y=y)
P(X=x) P(Y=y)

P(Y=y|X=x) = P(X=x|Y=y) =

UBC
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Prior distribution P(Y)
» belief in a proposition before accounting for
evidence

Posterior distribution P(Y | X)

» belief in a proposition after accounting for
evidence
* here without knowing event B

« a conditional probability
* here conditioned on B
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Regression revisited

Many loss functions are —log of probability distributions
+E(x)

2

Error functions xr

E
() Mean squared
error (MSE)

¥
4 p(x)
2
Distributions eXp ( — )
p(z) = exp(—E(z)) .
Gaussian
, distribution
xTr

Simple case

x|

Mean absolute
error (MAE)

0.25
02
exp(—|z]) §°
:
Laplace & o1
distribution
0.05¢

-30 =20 —0
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The prior is aregularizer
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For instance, an |12 loss on the neural network weights Regularizer / prior term

O(X,Y) = L(f3(X),Y) + A0 — 0)?

corresponds to a prior on the weights Data term / log likelihood

POIX,Y) = P(fo(X, Y)[6) = P(6)
_ PU(X.Y)]0) = P(O)
P(X,Y)

We usually don’t know the prior probability of X,Y,

but we know that it is constant
When optimizing a network...

« without a prior, we infer the maximum likelihood (ML) estimate

« with a prior term, we infer the maximum a posteriori (MAP) estimate

» while considering the distribution of weights, we infer the posterior distribution of networks
Bayesian networks, usually via Variational Inference of parametric distributions
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Variational Autoencoder (VAE) concept

* mapping to a latent variable distribution
* a parametric distribution
» usually a Gaussian
« with variable mean and std parameters
* impose a prior distribution on the latent variables
* usually a Gaussian
« with fixed mean=0 and std=1
* Enables the generation of new samples
« draw a random sample from the prior
* pass it through the decoder
« or draw a sample from the posterior
* pass it through the decoder

CPSC 532R/533R - Visual Al - Helge Rhodin

ENCODER

Input Layer

- - 2

Standard Autoencoder
(direct encoding coordinates)

Qutput Layer

Variational Autoencoder
(p and o initialize a probability distribution)

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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VAE examples '—@#

Generating unseen faces Generating music

[Roberts et al., Hierarchical Variational

Autoencoders for Music] 15


https://github.com/yzwxx/vae-celebA

The Variational Autoencoder (VAE)

VAE Obijective (general)

UBC

ey

n-iulbih

Regularizer / prior term

L($,0,x) = —Enrq, mjx) (log po(x/h)) + Dkr(qs(h[x)[|p(h))

Expectation over q
Data term / log likelihood

Common parametrization
* Normal distributions

p(h) - N(Oa 1)
¢s(h|x) = N(e(x), w(x)I)
po(x/h) = N(d(h),oT)

« parametrized by neural networks
* encodere
 decoderd

Kullback—Leibler divergence (relative entropy)

« adissimilarity measure between distributions
* not symmetric, KL(p,q) '= KL(q,p)

» Definition for continuous distributions

(P Q) = [ pla)tog (@) dr

o q(z)

probability density of Q
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The Variational Autoencoder (VAE), simplified |

€

VAE Obijective (general)

L($,0,x) = —Enrq, nx) (log po(x/h)) + Dkr (g (h[x)[|p(h))

Ny o) = ——e3(22)° po(x|/h) = N(d(h), o)

1

g (V(1,0)) = 1o (7= ) = 50 (o = )’

1

& £0610.) = Bneg o (o7 (6~ (D)) + D s (o)1) + €

& L($,0,%) = ABhrg, (npx) (x — d(h))” + Dxr.(gs(h|x)[p(h)) + C

A simple autoencoder reconstruction loss,
the squared difference between input and output

17
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Kullback—-Leibler divergence and entropy
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Definition
> p(z)
_ 1 —
D (P 1 @) = [ ptayiog (20 da
Interpretation !

» information gain achieved if Q is used instead of P

* relative entropy " 0.5
=4
» Entropy: H(p) = — ) p(x;)logp(;).
i=1
« the expected number of extra bits required to 9 05 1

PriX=1)
code samples from P using a code optimized for

Q rather than the code optimized for P
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KL divergence between Normal distributions (univariate case)

The KL divergence can be split in two parts

PP Q) = [ platog (M) o= [ plytog o)) de— [ pe)iog (a(e)) do

oo q() oo Coo

For Gaussians p(x) = N(u1,01) and g(x) = N(u2,02) it holds

1 2 _ 2
/P(fﬂ)log g(2)dz = —=log(2r02) — L (#12 ji2)
2 205
Hence 1 1 1 o2 + (1 — p2)?
KL{pq) = —5log(2m01) = 5 + 5 log(2m03) + = 5
2 2
o2 o7+ (u1 — p2) 1
— log 22 1
o8 o1 * 203 9
of +u3 1
= —logoy + — . K1 ; Using that mz=0 and si=1

https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians
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The Variational Autoencoder (VAE), simplified Il

Starting point
& L($,6,%) = ABpg, (njx) (x — d(h))” + Dxw(ge(h|x)[lp(h)) + C

Simplification (for Gaussian prior p and Gaussian g with i1 = e(x) and 07 = w(x)
Data term / log likelihood
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2 O-% + M% I
= L(gb,é?,x) = )\Ethd)(mx) (X—d(h)) + —logoy + + C
Sampling (here a single sample)
—~ 2 U% + M% A E d |
~A(x—d(h))" +—logo; + 5 T C" with h ~ gy xpected value
By f(0) = [ a(@)f(c)da
k
reconstruct ‘keep sigma > 0’ = fla;) with z; ~ g
the image =

‘keep sigma and mu small’

21



Sampling from a Gaussian

Rejection sampling from a uniform distribution
* intuitive approach
» ignores the tails of the distribution

Better alternative:
« Box-Muller Transform
» requires only two uniform samples
« mathematically correct
(not an approximation)
» efficient to compute

All candidates

Accepted samples

22



The effect of the prior

Create a dense and smooth latent space
« without holes
« all samples will make sense
* e.g., will reconstruct to
plausible images

with prior

without prior
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Deriving the posterior via Bayes

The evidence,

Goal: Compute the posterior intractable to
compute
p(h|x) = p(@ |(h))p(h) (marginalization)
pPLr
(o) = [ (al)p(b)dn
Good hidden It requires
code h, given x integration over
' all possible latent
values h

Attempt: Approximate the posterior with a NN (encoder)
KL(qg(hlz)||p(h|z)) = Eq[log,, (h|z)] — Eq[log p(z, h)] + log p(x)

 still intractable due to p(x) in the divergence
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Evidence Lower BOund
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Consider the term

ELBO(¢) = Eq[logp(z, 2)] — Eq[log q¢(z]x)] = —En~g, (hx) (log po(x[h))
+Dxw(gs (h[x)||p(h))

(equal to what we had before)

Together with the KL divergence from before, we get log p(x) as
log p(z) = ELBO(¢) + KL(qe(h|z)||p(h|z))
» the Kullback-Leibler divergence is always greater than or equal to zero

« minimizing the Kullback-Leibler divergence is equivalent to maximizing the ELBO
(making one bigger must reduce the other one)
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Differentiation and sampling

Problem: How to differentiate through the sampling step?
« it's arandom process, only statistically dependent on the mean and
standard deviation of the sampling distribution

Solutions:
1. The reparameterization trick: Use

h=p+o®e with e ~ N(0,1) 0 0
instead of
hNN(/-L:O—) e 0
W WD (E

« related to reinforcement learning and importance sampling Original Reparametrized

2. Monte-Carlo solution

 works for discrete and continuous variables

« we will cover it next week
28



Reparametrization trick, visually and mathematically

Equation: h = p+ o ® €, with e ~ N (0,1)
Influence
« changing mu
* increase ->moves sample right
« decrease -> moves sample left
« changing sigma
* increase -> moves away from center
» decrease -> moves to the center

Gradient
oh
do
oh
A

= ¢, with e ~ NV (0,1)

=1

current sample

UB

0

€

oh "\
oo \
gradient

sample after downscaling sigma
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VAE results

€

Mixed appearance generation

2-step

B-VAE

2-step
B-VAE

a= 0 01 02 03 04 05 06 0.7 08 0.9 1

Interpolation

CPSC 532R/533R - Visual Al - Helge Rhodin 31



VAE limitations

Generating human pose and appearance

AE

VAE

B-VAE

2-step
AE

2-step
B-VAE

CPSC 532R/533R - Visual Al - Helge Rhodin
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VAE Limitations Il

Tradeoff between data and prior term

high weight on data term (big lambda):

crisp reconstruction of training data

but latent code is not Gaussian
the reconstruction of latent code samples
from a Gaussian will be incorrect

high weight on prior term (small lambda):

blurry reconstruction
but latent code follows a Gaussian
distribution
sampling leads to expected outcomes
(as good as training samples)

itz

l,,....
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GANS D should be high for fake

examples

A min max game (from perspective of G)
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minmax V(D, G) = min max[E~ paaca[log D(2)] + Ez ~ p:[log(1 — D(G(2)))]]

D should be low for fake
examples
(from perspective of D)

D should be high for
real examples
(not influenced by G)

. Effects: ]
« learning a loss function -
» like a VAE, we sample from a Gaussian H
o

distribution (some form of a prior assumption)

=

v
$ Generated
Generator Fake
h z Samples
-

Real
Samples

—_— Learn how to tell apart
fake data from true data
Learn data -
s . IsD
distribution ? Correct
. Discriminato .

i Fine Tune Training
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GAN training

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do
e Sample minibatch of m noise samples {z(*), ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {z*),..., ("™} from data generating distribution
pdata(m)'

e Update the discriminator by ascending its stochastic gradient:

Vo3 [osD (219) +108 (1- 2 (6 ()))]

end for
e Sample minibatch of m noise samples {z(), ..., 2™} from noise prior p(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 (10 (6 (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

C
o
0

i

— crit_real
204 — crit_fake
— gen

10 A

—10

—20 1

T T T T T
200 400 600 800 1000

Chaotic GAN loss behavior
(e.g., generator loss going up not down)

o 4

[Goodfellow et al., Generative Adversarial Networks. 2014]
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Wasserstein GAN @#

Diverse measures exist to compare probability distributions

e The Total Variation (TV) distance e The Earth-Mover (EM) distance or Wasserstein-1
— _ W(P,,P,)= inf E, | llz— :
5(P,,P,) sup P, (A) — P,(A)| . (B By) = ol Eaa [z —wyll]

e The Kullback-Leibler (KL) divergence

KL(P,|P,) = flog (?_((3) P(z)du(z) Compare in this direction
g

e The Jensen-Shannon (JS) divergence ot in this direction

JS(Pr,Py) = KL(Py||Pm) + KL(Py|[Pra) EM distance principle

[Arjovsky et al., Wasserstein GAN. 2017]
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GAN vs. WGAN

Wasserstein distance is even simpler!

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our

experiments.
for number of training iterations do
for k steps do
e Sample minibatch of m noise samples {z(%), ..., 2(™)} from noise prior p, ().
o Sample minibatch of m examples {z(!),..., (™} from data generating distribution
pdaw(z)'
e Update the discriminator by ascending its stochastic gradient:
1 3 g
Vo, — Z [logD (z(’)) +log (1 =D (G (z(’))))] :
ma L N
end for
o Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior py(z).

o Update the generator by descending its stochastic gradient:

W ICICONE

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

GAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, ncritic = 9.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic; the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 60, initial generator’s parameters.
1: while 6 has not converged do
2 for t =0,..., Neritic do
3 Sample {z(V}7 | ~ P, a batch from the real data.
4: Sample {2(Y}™, ~ p(2) a batch of prior samples.
5: Gw < Vu [% 2121 fw(x(l)) - % 221 fw(gg(z(’)))]
6:
it
8
9

w ¢+ w + o - RMSProp(w, g)
w < clip(w, —c¢, )
end for
; Sample {z(M}™, ~ p(z) a batch of prior samples.
100 go =V >iny fulge(2))
11: 6 + 6 — a - RMSProp(0, g¢)
12: end while

WGAN

38



DCGAN

Convolutional generator architecture

1024
A

4
100z ‘ .

Code Project and
reshape

CPSC 532R/533R - Visual Al - Helge Rhodin

Deconv 1

Deconv 3
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PatchGAN "@*

Patch-wise classification into real or fake (instead of globally)

Discriminator network

128x128%6 64X 64x64 A feature map Qf
fake/real probabilities
32x32x128
16x16x256
15%15%512
14x14x1
— — > —> > Output

[Li and Wandt, Precomputed Real-Time Texture Synthesis with
Markovian Generative Adversarial Networks
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Conditional Generative Adversarial Nets

First week of paper reading..

Labels to Street Scene Labels to Facade BW to Color

output
Edges to Photo

Day to Night

output input output input output

[Isola et al., Image-to-Image Translation with Conditional Adversarial Networks] ,,



Hidden questions
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