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Recap: Voxel representations

Idea: A 3D tensor that encodes occupancy
» stores binary values
« occupied or empty cell
Size: C x D x Hx W (C: channels, D: depth, H: height, W: width)
Batched size: N x D x H x W (N: number of elements in mini batch)
Benefits: We can apply 3D convolutions
« A generalization to 2D convolutions with a 3D kernel
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Drawback:
» cubic in memory footprint and computational complexity




Signed Distance Field (SDF)

input domain: dimension equal to the dimension of the space
» usually two or three-dimensional

output domain: a scalar

* negative for inside of the object

* positive outside

continuous SDF: defined by a parametric function
* e.g., sum of Gaussians, neural network
discrete SDF: defined on a grid

 e.g.2D grid or 3D grid

easy to display SDF in color code
(red to blue = negative to positive)
non-trivial to reconstruct the exact shape boundary

Continuous SDF
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[Saito et al., PIFu: Pixel-Aligned Implicit Function for :_.l'-!_—-..%

Im P licit functions throu 9 h NNs High-Resolution Clothed Human Digitization]
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Idea: Train a neural network that takes an image

as well as a 3D query point as input and outputs:

 negative for positions inside the object f(z) = CNNy(z, 1)
« positive outside the object

* reconstruct by querying a dense sampling

Advantage:

» No explicit limit on resolution (only limited by NN capacity)

Disadvantage:

» Reconstruction requires many network evaluations, its slow!

Testing
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Recap: Implicit functions

Idea: define complex shapes as the zero-crossing of a function
Size: W (the number of parameters of the function)
» independent of output space dimension!

« Any parametric function works
* e.g., mixtures of n Gaussian distributions
with position mu and covariance Sigma

= = f(SU) — ZG(:E:/J’%G%')
=1

5c) contourline /zero crossing [Real-time Hand Tracking Using a Sum

of Anisotropic Gaussians Model]

 a neural network?!



Recap: Surface mesh

Representation: Vertices connected by edges forming faces (usually triangles)
« Size:NxD + F x 3 (N: # points, D: space dimension, F: #triangles)
« A 3D surface parametrization (can be higher-dimensional)

* Piece-wise linear with adaptive detail; triangle faces are usual
Benefits
« Good for single and multi-view reconstruction
* Provides orientation information (surface normal)
« Graph convolutions possible

Drawbacks
« Irregular structure (hnumber of neighbors, edge length, face area)
 Difficult to change topology

(shape changes require to create new vertices and edges)



Spiral convolution #-@#

Goal: break the permutation invariance of neighbors

X
Idea: Order neighbors by simple rul A \\\
; ghbors by simple rules f
1. collect all neighbors (d hops in the graph) i 1
2. pick the closest one (geodesic distance) ( , ! \ \
3. continue counterclockwise until spiral is of length \[J \
4. multiply features h along spiral with weight matric X J

B = 0 (hepirattueighvors(in W ")

Advantages:

« fixed number of points in each spiral
» efficient to compute

« anisotropic and topology-aware

e easy to optimize



Details: Mesh Laplacian

Goal: A form of 2" order derivative on the mesh

Laplacian for a function in 3D space:

o*f O*f  O*f

2
vf_3$2+8y2+8z2

Difficulty:

irregularity, where is left / right / up / down?

Solution:

(weighted) average over all neighboring nodes Ni
L(v) =V, — — Z \
IJEJ/
Widely used to encode surface detail and to
compare meshes
* as aloss to compare surfaces
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Finite differences approximation in 1D
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1D Laplacian
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Assignment 2 discussion ‘f—-@—"

« Issues of heatmap prediction
« outliers at inference time

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

» Issues of integral pose regression
» Dbias towards the center

For example, if we have the following 10 heatmap
0,1,1,0,0,0,0,

after applying softmax we get the probability map
0.0958, 0.2605, 0.2605, 0.0958, 0.0958, 0.0958, 0.0958,

which leads to predicted position 0 » 0.0958 + 1 »x 0.2605 + 2 » 0.2605 + 3 x 0.0958 + 4 > 0.0958 + 5 = 0.0958 + 6 = 0.0958 = 2.5



Assignment 2 discussion Il

Mind the numerical stability of soft-max Dimensions, width and height...
» a stable implementation was Probability maps look strange!!

For task 2, my predicted poses look quite consistent with the reference. and loss is always less than 0.003. However, the probability maps |

introduced in an earlier lecture

All black probability map and pose - Task I
For task I, the training process seems to work fine during the first epoch. However, if | keep training, during the second epoch the predicted probability map and ¢
Anybody knows what can be the problem?

Displayed output of an iteration (first epoch)
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Epoch 0, iteration 2820 of 2823 (99 %), l0ss5=0.0017382814548909664

0

Epoch @, iteration 98 of 2823 (3 %), loss=8.8017087692394852638

Displayed output of an iteration (second epoch)

Any other issues?

0

Epoch 1, iteration 2650 of 2823 (93 %), loss=nan



Debugging best practice!

1. Basic principle: garbage in, garbage out
« make sure your input has the correct type
« correct tensor dimension, correct order of
dimension, correct values, ...
« ifitis an image or matrix, plot it
« if you deal with points, plot them
2. How do | determine whether my input/output
values are correct?
« read the specification (e.g., assignment)
« if there is no specification, write one
« toy examples where you know the correct behavior
* e.g., asingle object, single color, primitive shape

E—"wﬁ

3. My inputis correct, but the output is

wrong, how do | find the bug?

Wolf fence algorithm by Edward Gauss:

There's one wolf in Alaska; how do you find it?

build a fence down the middle of the state,
wait for the wolf to howl, determine which
side of the fence it is on (point 1&2).
Repeat process on that side only, until you
can see the wolf.

* try to separate influence factors, such as scale and shape

* e.g., two images with the same shape but different scale
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PCA and AEs will be important for the paper reading! ?@*

Principal Component Analysis (PCA) and Auto Encoder (AE)

Superisd -
Interpretable Shape —_— -
Representation
Abstraction-l

Spatial layout (bounding boxes & depth)

Abstraction Il

N

Instance segmentation and depth maps

Abstraction Il

Encoding and novel view decoding
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Principal Component Analysis (PCA)
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Recap: Principal component analysis overview

« The orthogonal linear transformation that transforms the data to a new
coordinate system such that the greatest variance by some scalar

projection of the data comes to lie on the first coordinate

4

Z(X(i).wy} wo-dimensional space

%

W) = arg max
[wi=1

« First weight vector w(1) {

computed over all x(i) in the dataset
« ... continue iteratively in orthogonal directions

« Stacking all weight vectors as rows into a matrix W yields a

linear auto encoder =WW p

reconstruction projection thousand-dimensional space
(decoding) (encoding)
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PCA-like body model




PCA space: time or space?

3D Shape
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Time

UBC
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Data matrix

The data matrix X encodes

* each row represents a new
measurement

* each column represents the

CPSC 532R/533R - Visual Al - Helge Rhodin

Measurement at time ¢t
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- - UBC
The covariance matrix @ &
The empirical sample covariance matrix of XT XTX — o= X

1
X'X
1—n X
We consider its unscaled form — |
Relation of first coordinate to = X'X
XX the second one across time

This symmetric matrix can be decomposed
(Eigendecomposition)

XTX = WAWT

Eigenvalues

Eigenvectors

Sphere-ellipse representation
(how are points on a sphere deformed by XTX)
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UBC

Spatial components 5

e each component captures shape shape components texture texture components
mean Ist. (+50) 2nd. (+50) 3rd. (+50) mean 1st. (+50) 2nd. (+50) 3rd. (+50)

» together = correlated
* move = change across
different measurements

« global: scale ,male-female Ist. (=50) 2nd.(—56) 3rd. (—50) Ist. (—50) 2nd. (—=56) 3rd. (—50)
« forehead wrinkles in one basis

* points that ‘move’ together

* e.g. leftand right side
« if the input motion is smooth,

» it will lead to a smooth shape basis

 works also on textures

[Blanz and Fetter, A morphable model for the synthesis of 3D faces. 1999]
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The covariance matrix Il

Exchanging the role of rows and columns

XX =

Relation of first frame to
the second one across vertices

CPSC 532R/533R - Visual Al - Helge Rhodin
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Recall from lecture 3: Input and output normalization

€

original data zero-centered data normalized data

Goal: Normalize input and output variables to have

u=0 and 6=1 . xX—p
X =

g

* For an image, normalize each pixel by the std and “— =+ = —w %
mean color (averaged over the training set)

Related to data whitening
 whitening transforms a random vector to hai\y
zero mean and unit diagonal covariance

This is what we can do with PCA, it’s a
rotation and scaling of the data

« by contrast, the default normalization for deep
learning is element wise, neglecting dependency
« the resulting covariance is not diagonal!
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http://cs231n.github.io/neural-networks-2/
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Trajectory basis

€

* smooth input motions lead to

a smooth trajectory basis

« approximates DCT for —=DCT
: : ber of PCA10
increasing number o — PCA100
‘training’ sequences ——PCA1000

_ [Akhter et al., Bilinear Spatiotemporal
PCA with 10,100,1000 Basis Models. 2012]

training sequences

Fourier transform / Discrete cosine transform (DCT)
« achange of basis
« orthogonal basis
« turn a function of time into a function of frequency

23



Singular value decomposition (SVD)

Decomposition of the data matrix X with SVD

— orthonormal (unit length and
X = UTWT/- linearly independent columns)

matrix of eigenvectors

diagonal matrix of singular values

« singular values are arranged in descending order (makes SVD unique)

» closely related to PCA:
X'X =wx'U'usw’
—wxT'ssw? trajectory basis

shape basis
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SVD in matrix form

X =

MxnN  MmMxm mxn Nxn

T

||

U

UT

W W' =

I
3—

X =

mxn

U

s W'

mxd mxn dxn
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Extension: Bilinear model

PCA Shape Basis

CPSC 532R/533R - Visual Al - Helge Rhodin

DCT Trajectory Basis

(UTius

[Akhter et al., Bilinear Spatiotemporal
Basis Models. 2012]
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PCA - correspondence

PCA requires multiple ‘measurements’ of the same quantity
. e.g., for a human mesh model:

« same number of vertices in mesh

« the same vertex must correspond to the same

semantic position. E.g., vertex 612 is the nose
* holes (missing data) is not supported
» Inappropriate for monocular reconstructions, e.g.,
where the back of the person is missing

» generalizations exist to address this case
« scale sensitive
« estimates those components that maximize variance
« facial details are outweighed by belly shape
« for human perception the face is important!
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Recap: SMPL: A Skinned Multi-Person Linear Model

§

—

@ T, W ) T + Bs(B), J(B) (© Tp(B,0) = T+Bs(B)+Bp(0) (@ W (Tp(B,0),J(B),0,W)

Figure 3: SMPL model. (a) Template mesh with blend weights indicated by color and joints shown in white. (b) With identity-driven

blendshape contribution only; vertex and joint locations are linear in shape vector 3. (c) With the addition of of pose blend shapes in
preparation for the split pose; note the expansion of the hips. (d) Deformed vertices reposed by dual quaternion skinning for the split pose.
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Recap: Skinning
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© st»ep
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Auto Encoder (AE) #-@-#
General case General reconstruction objective EELLERS. , |

h = encodery(x) loss(x,x")

x" = decodery(h)
Simple non-linear case
h=0(Wx+b)

x' = o(W'h + b')

Input Layer
Qutput Layer

A two-layer fully-connected ,
neural network v e

Linear (if‘s_ew . Similar to PCA when using squared loss
= WX+ (W spans the same space, but neither
x'=Wh+b forms an ordered nor orthogonal basis)

argwminz |x — x/||? w1y = aﬂg ”n_1?x {Z (%) - W)z}

:argwminz %) — WWx(;)||? = arg max {w' X Xw}

[wi[=1

29



UBC

Autoencoder variants @‘*
Bottleneck autoencoder: Variational Auto Encoder (VAE)
« hidden dimension smaller than input dimension « a probabilistic model
» |leads to compressed representations « ‘adding noise on the hidden variables’
* like dimensionality reduction with PCA * more in lecture 8!

Sparse autoencoder:

« hidden dimension larger than input dimension

* hidden activation enforced to be sparse
(=few activations

Denoising autoencoder:

« corrupt the input values, e.g. by additive noise
h = encodery(noise(x))
x" = decodery(h)
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input
image |s{#
tile

output
|| segmentation
4 & 5 map

Relation to previous lectures ' “

e The UNet has an encoder-decoder structure

256 256

I-blbl 3 I*I’I =»conv 3x3, ReLU
-l o o ':' g
1

copy and crop

LA 5. 1024
el ] ‘---- # max pool 2x2
e 1024 [ 4 up-conv 2x2
-.._._ - cony 11
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Preparation for Assignment 3

* Will be posted tonight or tomorrow
* PyTorch issues encountered

* circular convolutions are broken...

« the current version is a bit boring

32



. . yd A
Feature map size after convolutional kernels A A1
it
rd%dls
Transformation of input and output by convolutions /:;/j/:
11 A
* output size = (input size + 2*padding — + stride)/stride d j/gﬁ

* e.g., a 3x3 kernel that preserves size: W+2*1-3+1=W
* e.g., a 4x4 kernel that reduces size by factor two: (W + 2*1 — 4 + 2)/2 = W/2
* holds per dimension, i.e., 1D, 2D and 3D convolutions

Transformation of input and output by transposed convolutions (aka. deconvolution)
¢ Output size = input size * stride - stride + - 2*padding
» it has exactly the opposite effect of convolution
* e.g., a3x3 kernel that preserves size: W-1+3-2*1=W
* e.g., a4x4 kernel that increases size by factor two: W*2 +2*1 — 4 + 2 = W*2
* e.g., a3x3 kernel that increases size by two elements: W-1+3-2*0=W + 2
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Presentation topic assignment ongoing
Anyone missing who send their choiceS

Summary: 19 votes for 22 papers Dingging
Ege Unlu
. .. Dawve Pagurek van Mossel
« Gives 3 late votes or remaining slots? _
Shuxian Fan
Shelly C
- Remaining papers can be presented by auditing students Peyman Bateni

Tim Straubinger
* volunteers? Shenyi Pan
Michela Minerva - michelz
Jerry ¥in
Willis Peng
Michelle Appel
stolet
Zicong Fan (Alex)
fjavadi
s5iMs
Daniele Reda

Shih-Han Chou
Weidong Yin
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Project

Project proposal

3-minute pitch per group

written plan

* one page, 11pt font, may include figures
* not more than one, not less than half a page of text

the proposal plan must cover

« the research idea

» the possible algorithmic contributions

« and an outline of the evaluation

get feedback from during office hours

* Yuchi on Tuesdays

 me on Wednesdays

* Only three weeks left!
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Hidden questions
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