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Forward kinematics, linear or not?

Forward kinematics
* non-linear in the angle (due to cos and sin)

B = | R |

cosfl;y —sin 91]

cosfl, —sinfo
sinf)y cosb;

sinfly  cosfy
* linear given a set of rotation matrices

p2(b1,02) = Rlpgo) + RoRy (péo) — Pgo))

Inverse kinematics
* minimize objective to reach goal location ¢

O(01,02) = ||qg — p2(01, 62)]]

 difficult, due to nonlinear dependency on theta
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Recap: Percentage of Correct Keypoints (PCK)

* The number of keypoints below a threshold
« usually using Euclidean distance
* less sensitive to outliers
« scale sensitive

* Scale invariant version: PCKh

 relative to the scale of the GT annotatiog® >
* e.g. haltthe head-neck distance is
common for 2D human pose
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Loss comparison W

Contour lines

3D slope

Squared error Absolute error Euclidean distance
MSE MAE MPJPE



Recap: Chamfer distance

A distance between point clouds without correspondence
« sum of distances between closest points
* bi-directional

* closest pointofyinY forall x in X

» closest point of x in X forally in'Y

dep(S1,S2) = Z mm lz — yll3 + Z Imn lz — y||3

I€S1 """"""""""" 1,-'65'2

* |s not a distance function in the mathematical sense,

because the triangle inequality does not hold



A Point Set Generation Network for 3D Object Reconstruction from a Single Image
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Assignment 1 highlights
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Assignment 1 highlights

Useful sources

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10 _tutorial.html
https://towardsdatascience.com/build-a-fashion-mnist-cnn-pytorch-style-efb297e22582
https://pytorch.org/tutorials/
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/docs/stable/torchvision/datasets.html#mnist
https://www.tensorflow.org/tensorboard/tensorboard_in_notebooks
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
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Text(®, 8.5, 'Classification loss % (1 - classification accuracy)')
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epoch = training_loss[:,1]

loss = training loss[:,2]

plt.plot(epoch,loss)

plt.title("Training loss: cross entropy loss")
plt.xlabel("Gradient Update™)
plt.ylabel("Cross Entropy Loss)")

Text(@, 8.5, 'Cross Entropy Loss)')

Training loss: cross entropy loss
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Good (plot with labels)

Please include your output in the submission and make it readable 5

optimizer = optim.Adam(network.parameters(), lr=0.0001)
loss_interval = 10
print_interval = 10

training_losses = []
validation_losses = []
for epoch in range(5):

running loss = 0.0
for i, data in enumerate(training_loader, ©):
optimizer.zero_grad()
output = network(data)
loss = criterion(data["output"], output[“prediction"]) # Task IV
loss.backward()
optimizer.step()

running loss += loss.item()

if i % loss interval == loss_interval - 1:
training_losses.append(running loss / loss_interval)
running_loss = 8.9
validation_losses.append(validation loss())

if i % print_interval == print_interval - 1:
# Task VII
# Task VIIT
clear_output(wait=True)
print(’epoch %d, iteration %5d' % (epoch + 1, i + 1))
plt.plot(training_losses, label="Training Loss");
plt.plot(validation losses, label="Validation Loss");
plt.legend()
plt. shou()

print(“Done training")

# Task V

test_loader = torch.utils.data.Dataloader (
test_dataset,
batch_size=num_test_examples,
shuffle=True,

)

test_batch = next(iter(test_loader))
def test_loss():
preds = network(test_batch)["prediction”]
out = test_batch["output™]
loss = criterion(preds, out).cpu().detach().numpy();
return np.mean(loss)

print("The final test loss is ", test_loss())

def show_predictions(loader, n):

OUtput missing!



Assignment 2: Clarification

Heatmap-based pose classification

# Detection network that handles dictionaries as input and output
class HeatNetWrapper(torch.nn.Module):
def __init_ (self, net):
super().__init_ ()
self.net = net

def forward(self, dictionary):
return DeviceDict({'heatmap':(self.net(dictionary['img'])['out'1)})
num_joints = len(joint_names)
det_network = HeatMetWrapper(torchvision.models.segmentation.deeplabv3_resnet58(num_classes=num_joints)).cuda()

[*]: [hat takes an Nxkx2 pose vector (N: batch dimension, K: number of keypoints) to create stacks of heatmaps that have Gaussian distribution with the mean at the keypoint and standard deviation egual to 3.

I argument specifies the output dimensions of the map. Note that the keypoints are defined in normalized coordinates, ranging from 8..1 irrespectively of the image resolution.

Was meant to be 3 pixel. Chose your own std instead!

W*‘Wﬂ#“WWW'\*»«JW”"‘*»*T"W

© 100 120 140 0 100 200 %0 200

(14 %), loss=0.005484297405028373

h @, iteration 420 of 2823

Empty graph in exa

mple output has been removed in final version
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Voxel representations

Idea: A 3D tensor that encodes occupancy

» stores binary values
« occupied or empty cell

Benefits: We can apply 3D convolutions
A generalization to 2D convolutions with a 3D kernel
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Drawback:
cubic in memory footprint and computational complexity
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Implicit functions

Idea: define complex shapes as the zero-crossing of a function
* use parametric function
* e.g., mixtures of Gaussian distributions

with position mu and covariance Sigma

C(x) = Gi(pi, )
i=1

ntour line / zero crossin
contou e/ zero cross g [Real-time Hand Tracking Using a Sum

of Anisotropic Gaussians Model]
« a neural network?!
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Implicit functions through NNs ’-‘f@ﬁ
Idea: Train a neural network that takes an image %l ol
as well atc,-a 3D query pomt[ -as |n-put.and outpu-ts: }l A ?h ‘:) -
« a positive value for positions inside the object ,\.; ) b
* anegative value for positions outside the object ... ¥ Sngevew 0

[Saito et al., PIFu: Pixel-Aligned Implicit Function for

* reconstruct by querying a dense sampling ' : R
High-Resolution Clothed Human Digitization]

Advantage:
» No explicit limit on resolution (only limited by NN capacity)

Disadvantage:
* Reconstruction requires many network evaluations, its slow!

’ Marchin l. ‘ ' ‘
‘ ] (e e M’ @ Q | 4 Tex-PIFu |+ i i
Q L& Z ol '

n-view inputs (n > 1) 3D occupancy field reconstructed geometry textured reconstruction

Testing
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Surface mesh

Representation: Vertices connected by edges forming faces
« Size: NxD + E x 2 (# points, space dimension, # edges)
« A 3D surface parametrization (can be higher-dimensional)
* Piece-wise linear with adaptive detail; triangle faces are usual
Benefits
« Good for single and multi-view reconstruction
* Provides orientation information (surface normal)
« Graph convolutions possible

Drawbacks
« Irregular structure (hnumber of neighbors, edge length, face area)
 Difficult to change topology

(shape changes require to create new vertices and edges)
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General graph convolution
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o &6 06 06 06 o o
« traditional 2D convolutions is convolution on a regular grid % o000 00 00
e & 06 06 06 o o
. ) ] e 06060 00 0 0 00
Difficulties for general graph convolution 000 e e
« no notion of left/right and up/down Convolution on a regular grid
» different number of neighbors o e
« distances between nodes _ \
Solution L || e A
_ _ _ R e I e T ARl o ST L s S
« per-node weight matrix for all nodes (like 1x1 conv.) R I
* weighted average over all neighbors (like average pooling)

1
W =0 [ Y —nw®

—~ Cjj Graph convolution network
J
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https://tkipf.github.io/graph-convolutional-networks/

Mesh Laplacian

Goal; A form of derivative on the mesh

Difficulty:
 irregularity, where is left/right/up/down?

Solution
« (weighted) average over all neighboring nodes
1
L(v,)=V,— - Z v,
L jeN;

« Widely used to encode surface detail and to
compare meshes
* as aloss to compare surfaces
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Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images W
v . z . s p 2 o &
Input Image Perceptual Feature Pooling Perceptual Feature Pooling Perceptual Feature Pooling

oo
< =

5]
€8
0 =
-

Deformation
Deformation
Graph
Unpooling
Deformation

Ellipsoid Mesh 156 vertices 628 vertices 2466 vertices
Desired:
« an output mesh that matches in position * ... and follows a coarse-to-fine manner

« Chamfer distance * minimize change of Laplacian between
* and has the same surface orientation layers

e surface normal
_ 2
In = Zp Zq:argminq("p—qng) ”(p — k, Il,;,) HQ
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Spiral convolution #-@#

Goal: break the permutation invariance of neighbors

X
Idea: Order neighbors by simple rul A \\\
; ghbors by simple rules f
1. collect all neighbors (d hops in the graph) i 1
2. pick the closest one (geodesic distance) ( , ! \ \
3. continue clockwise until spiral is of length k \[J \
4. multiply features h along spiral with weight matric X J

B = 0 (hepirattueighvors(in W ")

Advantages:

« fixed number of points in each spiral
» efficient to compute

« anisotropic and topology-aware

e easy to optimize



Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

Regression of SMPL parameters from images using deep learning
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PCA body model




Body shape spaces

Data-driven model
fitted to laser scans
linear shape model 3 VT ‘
Principal Component Analysis | | a1 \J IE - | 0 ﬁ' > @
(PCA) &N I SR
non-linear correction for articulation Il “ENFTR f | r ‘ ﬁ
corrective blend shapes "N Bl 11 LU |

!
. | f
& 0
o Lo
() N >
-
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(common in the CG community)
Good for ‘naked’ body shape
Hard to model clothing

too varied

topological changes Rk \'
(©:0- opening & jacken Shape in canonical pose
(registered)
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Principal component analysis

« The orthogonal linear transformation that transforms the data to a new
coordinate system such that the greatest variance by some scalar

projection of the data comes to lie on the first coordinate

4

Z(Xm.wy} wo-dimensional space

i

W(1) = arg max
lwi[=1

« First weight vector w(1) {

computed over all x(i) in the dataset
« ... continue iteratively in orthogonal directions

« Stacking all weight vectors into a matrix W yields a ‘inear auto encoder’

reconstruction  projection thousand-dimensional space
(decoding) (encoding)
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SMPL: A Skinned Multi-Person Linear Model

§

—

@ T, W ) T + Bs(B), J(B) (© Tp(B,0) = T+Bs(B)+Bp(0) (@ W (Tp(B,0),J(B),0,W)

Figure 3: SMPL model. (a) Template mesh with blend weights indicated by color and joints shown in white. (b) With identity-driven

blendshape contribution only; vertex and joint locations are linear in shape vector 3. (c) With the addition of of pose blend shapes in
preparation for the split pose; note the expansion of the hips. (d) Deformed vertices reposed by dual quaternion skinning for the split pose.
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Skinning
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Corrective blend shapes
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Surface texture #-“W-#

Representation: A map that assigns a color to every point of a surface
« Size: W x H+ N x 2 (W: width, H: height, N: #points for uv-coordinates)
 Dimensions: 2 D (embedded in 3D space via a mesh)

* Discrete in space, continuous in color
« UV-coordinates attached to each mesh vertex define the spatial association
Benefits

« Appearance modelling for graphics and vision
(e.g., rendering and reconstruction)
« Can carry more than color
(shadowmaps, normal maps, feature maps)
Drawbacks
« Texture mapping (assigning vertices to texture map location) is hard

« Only a surface, not volumetric
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https://en.wikipedia.org/wiki/Texture_mapping

UV mapping

» describe points on the texture with u,v coordinates
» the horizontal and vertical position

* equip each vertex with the u,v coordinate
 a 2D point

Example: teapot.obj

v -3.000000 1.800000 0.000000  (vertex definition)
v -2.991600 1.800000 -0.081000

vt 0.000100 0.000100 (uv texture coordinates)
vt 0.999900 0.000100

f1252 1248 1122  (edges of a triangle/face)
f 1027 1035 1133

CPSC 532R/533R - Visual Al - Helge Rhodin
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Example: mapping a face to a texture ‘-@-—-“

face
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driving [ DRIVING VIDEO:

driving d 4

vector

a form of uv mapping
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Tex2Shape: Detailed Full Human Body Geometry From a Single Image

|

f(#
s

» Convolutional detail estimation via texture and normal maps
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Dense Pose: Dense Human Pose Estimation In The Wild

Issue: Heatmap representations don’t generalize well
to many points (one map per point)

Idea: Encode locations as continuous value
e as u,v coordinates
* generalizes well to multiple people

[Dense Pose: Dense Human
Pose Estimation In The Wild]
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Dense Pose results

We introduce a system that can associate every
image pixel with human body surface coordinates.




3D ‘uv coordinates’

wean Y

Idea: Learn to map to 3D coordinates

(0.0,0)
Solution:
« ageneralization of uv-coordinates in 3D “
NOCS Map (‘|‘ 0, [])
Benefits: [Normalized Object Coordinate Space for Category-Level

. 6D Object Pose and Size Estimation]
* compact, continuous, accurate

(b) Normalized Object
Coordinate Space (NOCS)
Map Estimation

(@) Input: Single RGB-D
Image

(c) Output: Category-
Level 6D Pose and Size
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Location maps

Idea: Predict 3D pose in a convolutional manner

Implementation:
1. predict three location maps alongside the heatmap H

" Root Relative
Joint Positions

» respectively one for the x,y,z positon

Location-map

2. retrieve the arg max of the heatmap (2D joint location) e S,

3. Read out the x,y,z maps at the predicted 2D location

Admantages:

 fully convolutional networks, which apply to varying image resolution

» (convolutional) operations are centered around the area of interest (joints)
« generalized well to multiple persons



UBC
VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera "f"@“

» Using location maps

« A combination of feed forward prediction with NNs
and optimization of skeleton parameters

Full-frame Input Bounding Box Heatmaps Location Maps 2D Keypoints 3D Pose 3D Skeleton

I, Bounding Box B, CNN Temporal B} Skeleton 15%
Tracking Regression Filter Fitting
Bl 1 K[ 1 1 Kffl P'L’"J [ P;L]

35



Hidden questions
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