Visual Al

CPSC 532R/533R - 2019/2020 Term 2

Lecture 6. Representing and learning shapes

Helge Rhodin

Forward kinematics, linear or not?

Forward kinematics
* non-linear in the angle (due to cos and sin)

B = | R |

cosfl;y —sin 91]

cosfl, —sinfo
sinf)y cosb;

sinfly cosfy
* linear given a set of rotation matrices

p2(b1,02) = Rlpgo) + RoRy (péo) — Pgo))

Inverse kinematics
* minimize objective to reach goal location ¢

O(01,02) = ||qg — p2(01, 62)]]

 difficult, due to nonlinear dependency on theta

UB

—|

0

€

Recap: Percentage of Correct Keypoints (PCK)

* The number of keypoints below a threshold
« usually using Euclidean distance
* less sensitive to outliers
« scale sensitive

* Scale invariant version: PCKh

 relative to the scale of the GT annotatiog® >
* e.g. haltthe head-neck distance is
common for 2D human pose

CPSC 532R/533R - Visual Al - Helge Rhodin

Loss comparison W

Contour lines

3D slope

Squared error Absolute error Euclidean distance
MSE MAE MPJPE

Recap: Chamfer distance

A distance between point clouds without correspondence
« sum of distances between closest points
* bi-directional

* closest pointofyinY forall x in X

» closest point of x in X forally in'Y

dep(S1,S2) = Z mm lz — yll3 + Z Imn lz — y||3

I€S1 """"""""""" 1,-'65'2

* |s not a distance function in the mathematical sense,

because the triangle inequality does not hold

A Point Set Generation Network for 3D Object Reconstruction from a Single Image

AR

“ Aoy " “-lo,.

=
¥ o
P
S

Input Reconstructed 3D point cloud Shape completion

CPSC 532R/533R - Visual Al - Helge Rhodin

C
o
0

Assignment 1 highlights

:l
= 1] W] <] | > o W] #]

Once Loop Reflect

HaAT [D A<M

Classification on fashion MNIST More fashion

rt/top t-shirt/top dress t-shirt/top pullover sneaker pullover)
1

200
400
600
800 ;

1000

n 250
Transfer learningD

Training loss per iteration

0 2500 5000 7500 10000 12500 15000 17500 20000

Assignment 1 highlights

Useful sources

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10 _tutorial.html
https://towardsdatascience.com/build-a-fashion-mnist-cnn-pytorch-style-efb297e22582
https://pytorch.org/tutorials/
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/docs/stable/torchvision/datasets.html#mnist
https://www.tensorflow.org/tensorboard/tensorboard_in_notebooks
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

0

€

Text(®, 8.5, 'Classification loss % (1 - classification accuracy)')

Validation Loss

045 a,

040

035

030

025

020

Classification loss % (1 - classification accuracy)

©

10 20 30 40 50 60
Epoch

epoch = training_loss[:,1]

loss = training loss[:,2]

plt.plot(epoch,loss)

plt.title("Training loss: cross entropy loss")
plt.xlabel("Gradient Update™)
plt.ylabel("Cross Entropy Loss)")

Text(@, 8.5, 'Cross Entropy Loss)')

Training loss: cross entropy loss

175
150
125
100

075

Cross Entropy Loss)

050

0.25

0.00

500 1000 1500 2000 2500 3000 3500 4000
Gradient Update

o4

Good (plot with labels)

Please include your output in the submission and make it readable 5

optimizer = optim.Adam(network.parameters(), lr=0.0001)
loss_interval = 10
print_interval = 10

training_losses = []
validation_losses = []
for epoch in range(5):

running loss = 0.0
for i, data in enumerate(training_loader, ©):
optimizer.zero_grad()
output = network(data)
loss = criterion(data["output"], output[“prediction"]) # Task IV
loss.backward()
optimizer.step()

running loss += loss.item()

if i % loss interval == loss_interval - 1:
training_losses.append(running loss / loss_interval)
running_loss = 8.9
validation_losses.append(validation loss())

if i % print_interval == print_interval - 1:
Task VII
Task VIIT
clear_output(wait=True)
print(’epoch %d, iteration %5d' % (epoch + 1, i + 1))
plt.plot(training_losses, label="Training Loss");
plt.plot(validation losses, label="Validation Loss");
plt.legend()
plt. shou()

print(“Done training")

Task V

test_loader = torch.utils.data.Dataloader (
test_dataset,
batch_size=num_test_examples,
shuffle=True,

)

test_batch = next(iter(test_loader))
def test_loss():
preds = network(test_batch)["prediction”]
out = test_batch["output™]
loss = criterion(preds, out).cpu().detach().numpy();
return np.mean(loss)

print("The final test loss is ", test_loss())

def show_predictions(loader, n):

OUtput missing!

Assignment 2: Clarification

Heatmap-based pose classification

Detection network that handles dictionaries as input and output
class HeatNetWrapper(torch.nn.Module):
def __init_ (self, net):
super().__init_ ()
self.net = net

def forward(self, dictionary):
return DeviceDict({'heatmap':(self.net(dictionary['img'])['out'1)})
num_joints = len(joint_names)
det_network = HeatMetWrapper(torchvision.models.segmentation.deeplabv3_resnet58(num_classes=num_joints)).cuda()

[*]: [hat takes an Nxkx2 pose vector (N: batch dimension, K: number of keypoints) to create stacks of heatmaps that have Gaussian distribution with the mean at the keypoint and standard deviation egual to 3.

I argument specifies the output dimensions of the map. Note that the keypoints are defined in normalized coordinates, ranging from 8..1 irrespectively of the image resolution.

Was meant to be 3 pixel. Chose your own std instead!

W*‘Wﬂ#“WWW'*»«JW”"‘*»*T"W

© 100 120 140 0 100 200 %0 200

(14 %), loss=0.005484297405028373

h @, iteration 420 of 2823

Empty graph in exa

mple output has been removed in final version

10

Voxel representations

Idea: A 3D tensor that encodes occupancy

» stores binary values
« occupied or empty cell

Benefits: We can apply 3D convolutions
A generalization to 2D convolutions with a 3D kernel

0
4
¥,
(XX)
0.0

’0

A

Q

TS S S,
TS S S
B W W W

Drawback:
cubic in memory footprint and computational complexity

11

Implicit functions

Idea: define complex shapes as the zero-crossing of a function
* use parametric function
* e.g., mixtures of Gaussian distributions

with position mu and covariance Sigma

C(x) = Gi(pi,)
i=1

ntour line / zero crossin
contou e/ zero cross g [Real-time Hand Tracking Using a Sum

of Anisotropic Gaussians Model]
« a neural network?!

12

Implicit functions through NNs ’-‘f@ﬁ
Idea: Train a neural network that takes an image %l ol
as well atc,-a 3D query pomt[-as |n-put.and outpu-ts: }l A ?h ‘:) -
« a positive value for positions inside the object ,\.;) b
* anegative value for positions outside the object ... ¥ Sngevew 0

[Saito et al., PIFu: Pixel-Aligned Implicit Function for

* reconstruct by querying a dense sampling ' : R
High-Resolution Clothed Human Digitization]

Advantage:
» No explicit limit on resolution (only limited by NN capacity)

Disadvantage:
* Reconstruction requires many network evaluations, its slow!

’ Marchin l. ‘ ' ‘
‘] (e e M’ @ Q | 4 Tex-PIFu |+ i i
Q L& Z ol '

n-view inputs (n > 1) 3D occupancy field reconstructed geometry textured reconstruction

Testing

13

Surface mesh

Representation: Vertices connected by edges forming faces
« Size: NxD + E x 2 (# points, space dimension, # edges)
« A 3D surface parametrization (can be higher-dimensional)
* Piece-wise linear with adaptive detail; triangle faces are usual
Benefits
« Good for single and multi-view reconstruction
* Provides orientation information (surface normal)
« Graph convolutions possible

Drawbacks
« Irregular structure (hnumber of neighbors, edge length, face area)
 Difficult to change topology

(shape changes require to create new vertices and edges)

14

General graph convolution

UB

0

€

o &6 06 06 06 o o
« traditional 2D convolutions is convolution on a regular grid % o000 00 00
e & 06 06 06 o o
.)] e 06060 00 0 0 00
Difficulties for general graph convolution 000 e e
« no notion of left/right and up/down Convolution on a regular grid
» different number of neighbors o e
« distances between nodes _ \
Solution L || e A
_ _ _ R e I e T ARl o ST L s S
« per-node weight matrix for all nodes (like 1x1 conv.) R I
* weighted average over all neighbors (like average pooling)

1
W =0 [Y —nw®

—~ Cjj Graph convolution network
J

15

https://tkipf.github.io/graph-convolutional-networks/

Mesh Laplacian

Goal; A form of derivative on the mesh

Difficulty:
 irregularity, where is left/right/up/down?

Solution
« (weighted) average over all neighboring nodes
1
L(v,)=V,— - Z v,
L jeN;

« Widely used to encode surface detail and to
compare meshes
* as aloss to compare surfaces

0

UB

—|

€

16

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images W
v . z . s p 2 o &
Input Image Perceptual Feature Pooling Perceptual Feature Pooling Perceptual Feature Pooling

oo
< =

5]
€8
0 =
-

Deformation
Deformation
Graph
Unpooling
Deformation

Ellipsoid Mesh 156 vertices 628 vertices 2466 vertices
Desired:
« an output mesh that matches in position * ... and follows a coarse-to-fine manner

« Chamfer distance * minimize change of Laplacian between
* and has the same surface orientation layers

e surface normal
_ 2
In = Zp Zq:argminq("p—qng) ”(p — k, Il,;,) HQ

CPSC 532R/533R - Visual Al - Helge Rhodin

17

Spiral convolution #-@#

Goal: break the permutation invariance of neighbors

X
Idea: Order neighbors by simple rul A \\\
; ghbors by simple rules f
1. collect all neighbors (d hops in the graph) i 1
2. pick the closest one (geodesic distance) (, ! \ \
3. continue clockwise until spiral is of length k \[J \
4. multiply features h along spiral with weight matric X J

B = 0 (hepirattueighvors(in W ")

Advantages:

« fixed number of points in each spiral
» efficient to compute

« anisotropic and topology-aware

e easy to optimize

Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

Regression of SMPL parameters from images using deep learning

20

PCA body model

Body shape spaces

Data-driven model
fitted to laser scans
linear shape model 3 VT ‘
Principal Component Analysis | | a1 \J IE - | 0 ﬁ' > @
(PCA) &N I SR
non-linear correction for articulation Il “ENFTR f | r ‘ ﬁ
corrective blend shapes "N Bl 11 LU |

!
. | f
& 0
o Lo
() N >
-
> 0
{
i

(common in the CG community)
Good for ‘naked’ body shape
Hard to model clothing

too varied

topological changes Rk \'
(©:0- opening & jacken Shape in canonical pose
(registered)

22

C
@
0

|

Principal component analysis

« The orthogonal linear transformation that transforms the data to a new
coordinate system such that the greatest variance by some scalar

projection of the data comes to lie on the first coordinate

4

Z(Xm.wy} wo-dimensional space

i

W(1) = arg max
lwi[=1

« First weight vector w(1) {

computed over all x(i) in the dataset
« ... continue iteratively in orthogonal directions

« Stacking all weight vectors into a matrix W yields a ‘inear auto encoder’

reconstruction projection thousand-dimensional space
(decoding) (encoding)

23

C
o
0

SMPL: A Skinned Multi-Person Linear Model

§

—

@ T, W) T + Bs(B), J(B) (© Tp(B,0) = T+Bs(B)+Bp(0) (@ W (Tp(B,0),J(B),0,W)

Figure 3: SMPL model. (a) Template mesh with blend weights indicated by color and joints shown in white. (b) With identity-driven

blendshape contribution only; vertex and joint locations are linear in shape vector 3. (c) With the addition of of pose blend shapes in
preparation for the split pose; note the expansion of the hips. (d) Deformed vertices reposed by dual quaternion skinning for the split pose.

24

Skinning

CPSC 532R/533R - Visual Al - Helge Rhodin

© %fs»ep

25

Corrective blend shapes

File Edit Create Select Modify Display W Skin Deform Constrain

Rigging EmaEsc i GO ES S

Custom

B2 gicarace PR

ing Light Show erer Panels

0 s seometry T Reset Tool Tool Help
— “N Select Character

Character name

¥ Animate Buttons

FK->IK IK->FK COPY| PASTE| "%0R) ReSET) "3 | MOCAP| SAVE| LOAD
WALK| RUN | CREATEFOOTSTEP| ' CYCLE toPATH | Detevepami cvaie| T |
1.0000 ;:;SEIE FOOTSTEP Distance Scale =>> 1 00 CORRECTIVE SHAPE | APPLY

P Body Selector

P Face Selector ¥ Sculpt Parameters
¥ Select Controls

n_body1_angZ 0_998624742

on: ik

SHAPES
cn_body1_angZ_0_998624742Shape

Update
Update
P About Perseus Autc Stroke

Stylus Pressure

Attribute Maps

Display

14 4 4 P pl Pl W

sBulas 0oL

Surface texture #-“W-#

Representation: A map that assigns a color to every point of a surface
« Size: W x H+ N x 2 (W: width, H: height, N: #points for uv-coordinates)
 Dimensions: 2 D (embedded in 3D space via a mesh)

* Discrete in space, continuous in color
« UV-coordinates attached to each mesh vertex define the spatial association
Benefits

« Appearance modelling for graphics and vision
(e.g., rendering and reconstruction)
« Can carry more than color
(shadowmaps, normal maps, feature maps)
Drawbacks
« Texture mapping (assigning vertices to texture map location) is hard

« Only a surface, not volumetric

27

https://en.wikipedia.org/wiki/Texture_mapping

UV mapping

» describe points on the texture with u,v coordinates
» the horizontal and vertical position

* equip each vertex with the u,v coordinate
 a 2D point

Example: teapot.obj

v -3.000000 1.800000 0.000000 (vertex definition)
v -2.991600 1.800000 -0.081000

vt 0.000100 0.000100 (uv texture coordinates)
vt 0.999900 0.000100

f1252 1248 1122 (edges of a triangle/face)
f 1027 1035 1133

CPSC 532R/533R - Visual Al - Helge Rhodin

28

Example: mapping a face to a texture ‘-@-—-“

face

ok

&

-
i
il
g
10|
-
-
-
=
&
-
-
=8
-

driving netwokk

« \
/o 4
[4
N4
N N
4 4

driving [DRIVING VIDEO:

driving d 4

vector

a form of uv mapping
29

Tex2Shape: Detailed Full Human Body Geometry From a Single Image

|

f(#
s

» Convolutional detail estimation via texture and normal maps

CPSC 532R/533R - Visual Al - Helge Rhodin

UBC

30

Dense Pose: Dense Human Pose Estimation In The Wild

Issue: Heatmap representations don’t generalize well
to many points (one map per point)

Idea: Encode locations as continuous value
e as u,v coordinates
* generalizes well to multiple people

[Dense Pose: Dense Human
Pose Estimation In The Wild]

31

Dense Pose results

We introduce a system that can associate every
image pixel with human body surface coordinates.

3D ‘uv coordinates’

wean Y

Idea: Learn to map to 3D coordinates

(0.0,0)
Solution:
« ageneralization of uv-coordinates in 3D “
NOCS Map (‘|‘ 0, [])
Benefits: [Normalized Object Coordinate Space for Category-Level

. 6D Object Pose and Size Estimation]
* compact, continuous, accurate

(b) Normalized Object
Coordinate Space (NOCS)
Map Estimation

(@) Input: Single RGB-D
Image

(c) Output: Category-
Level 6D Pose and Size

33

Location maps

Idea: Predict 3D pose in a convolutional manner

Implementation:
1. predict three location maps alongside the heatmap H

" Root Relative
Joint Positions

» respectively one for the x,y,z positon

Location-map

2. retrieve the arg max of the heatmap (2D joint location) e S,

3. Read out the x,y,z maps at the predicted 2D location

Admantages:

 fully convolutional networks, which apply to varying image resolution

» (convolutional) operations are centered around the area of interest (joints)
« generalized well to multiple persons

UBC
VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera "f"@“

» Using location maps

« A combination of feed forward prediction with NNs
and optimization of skeleton parameters

Full-frame Input Bounding Box Heatmaps Location Maps 2D Keypoints 3D Pose 3D Skeleton

I, Bounding Box B, CNN Temporal B} Skeleton 15%
Tracking Regression Filter Fitting
Bl 1 K[1 1 Kffl P'L’"J [P;L]

35

Hidden questions

UB

0

€

