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TA for the next two weeks

Raghav Goyal

« Same time and room as usual
* Yuchi is still available via Piazza and mail



UBC

Overview W
« 11 Lectures (Weeks 1 — 6) « 3XxAssignments

* Introduction « Playing with pytorch (5% of points)

« Deep learning basics and best practices @Stimaﬁon (10% of points)

« Network architectures for image processing + Shape generation (10% of points)

. Representing images and sparse 2.D keypoints @Ct (40 % of@
@tmg dense and SD@

* Project pitch (3 min, week 6)

 Representing geometry and shape
P Je Y . * Project presentation (10 min, week 14)

Representation learning | (deterministic) Project report (8 pages, April 14)

Representation learning Il (probabilistic)

Sequential decision making @presentation (Wee@
Unpaired image translation «  Presentation, once per student (25% of points)
Attention models (20 min + 15 min discussion, week 8-13)

* Read and review one out of the two papers

presented per session (10% of points)
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Bréject updates

Killer whale identification

SR

Andrew W Trites
Professor and Director
Institute for the Oceans and Fisheries UBC

300 images, 40 different whales

Sufficient to distinguish ecotypes:

transient and residential orcas

Sample data available.
Drop me a mail if you
would like to inspect it.

mme-accurate 3D pose
and force estimation

Dr. Jorg Sporri
Sport medicine head
University Hospital Balgrist

Pilot: 6 jumps, 2D and 3D pose,
pressure plate measurement,
video, camera calibration.
Final (end of Jan.): 1000 jumps of
the same kind



Reading: Conditional content generation & Motion transfer

oo | o |
ook

« Park et al.,, Semantic Image Synthesis

with Spatially-Adaptive Normalization

« Lietal., Putting Humans in a Scene:
Learning Affordance in 3D Indoor
Environments

« Chan et al, Everybody Dance Now

« Gao et al., Automatic Unpaired Shape
Deformation Transfer




Reading: Character animation & Self-supervised learning "@*

Week 9: b = R
* Rhodin et al., Interactive Motion Mapping 1T

for Real-time Character Control

 Holden et al., Phase-Functioned Neural
Networks for Character Control

« Vondrick et al., Tracking Emerges by
Colorizing Videos
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» Doersch et al., Unsupervised visual
representation learning by context
prediction



Reading: Novel view synthesis & Differentiable rendering

Week 10:

UB

0

€

Hinton et al., Transforming Auto-encoders ‘ ‘ . . - -

Rhodin et al., A Versatile Scene Model with

CaowTaou) —n - e

Rhodin et al., Unsupervised Geometry-Aware _
Representation for 3D Human Pose Estimation q Unuporvised Supervised -
— —

Differentiable Visibility Applied to Generative
Pose Estimation

Liu et al., Soft Rasterizer: A Differentiable
Renderer for Image-based 3D Reasoning
(changed from preliminary schedule)

A “ Soit Renderad Imnage 1,
Soft Rasterizer 7 Aggregme Function (-



Reading: Learning person models & Object parts and physics "@*
Interpretable Shape ——
Representation
Week 11. ' i Spatial layout (bounding boxes & depth)
« Lorenz et al., Unsupervised Part-Based i . Abstraction I
Disentangling of Object Shape and Appearance B o - A

Abstraction Il

 Rhodin et al., Neural Scene Decomposition for
. Encoding and novel view decoding
Human Motion Capture

- Lietal., GRASS: Generative Recursive T o~
Autoencoders for Shape Structures

« Xie et al., tempoGAN: A Temporally Coherent,
Volumetric GAN for Super-resolution Fluid Flow




Reading: Objective functions & Self-supervised object detection

A

t

Week 12: o L )
 Christopher Bishop, Mixture Density Networks / Pl

« Jonathan T. Barron, A General and Adaptive
Robust Loss Function

« Crawford et al., Spatially invariant unsupervised
object detection with convolutional neural
networks

~ shift PAVEZ

» Bielski and Favaro, Emergence of Object !

mask

Segmentation in Perturbed Generative Models =g
(changed from preliminary schedule)
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Reading: Mesh processing & Neural rendering W
M y M M 1\31
Week 13 % %}" (2! Lpllmz
. . . \frh ) h'E Eh{ﬂ. h g2 ~ 7 h,
« Bagautdinov et al., Modeling Facial Geometry SN N = , = A
M M ........ .___;[_z__i.-__?-_z___
using Compositional VAES (2) Global model  (b) Local model (c}Convolunnml VAE (d) Compositional VAE

<(
Verma et al., Feastnet: Feature-steered graph
convolutions for 3d shape analysis

Images & poses DeepVoxels

Sitzmann et al., DeepVoxels: Learning Persistent

3D Feature Embeddings

Saito et al., PIFu: Pixel-Aligned Implicit Function
for High-Resolution Clothed Human Digitization
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Assignment clarifications

- Task IILI: Compare the three approaches (regression, classification, integral regres-
sion) in terms of the mean squared joint position error. Which of them attains the
highest accuracy (lowest error) on the provided validation set? You don’t have to
train for ages, but make sure that you train all models for the same time. Comment
on whether in your setup convergence speed (attaining a decent result early on)
or overall accuracy (best result after training all methods for sufficient time) is the
main factor.

Submission. Once finished, submit your jupyter notebook on Canvas. If you have
dependencies, add them to a .zip archive. Name your submission

assignment2x firstName lastName.ipynb (or .zip).

If some of your outputs are displayed with external tools, such as Tensorboard, please
include screenshots of those.

Accessing UBC jupyter servers (slow but easy way)

> ssh -X rhodin@Ilin01.students.cs.ubc.ca
> firefox &
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Recap




Recap: Network architectures
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New: Stacked Hourglass Architecture

Idea: Stacking multiple encoder-decoder networks
« stack of multiple U-Net blocks (usually 2-8)
« form of iterative refinement
« combined bottom-up (low-level) and
top-down (high-level) features
« encoders: a form of reconstruction (bottom up)
« decoders: a form of fitting a global model (top-down)
* Intermediate supervision
(to improve training)

[Newell et al., Stacked
Hourglass Networks for
Human Pose Estimation]
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An extension of heatmaps (positions) to vectors (directions) | \t
« Ground truth affinity field L* between joints c,k

v ifponlimbec, k
0 otherwise.

Determine presence by

0<v-(p—xj, 1) Zlep and [vy - (p —xj, 1) <oy,

with v defined as

vV = (Xjok = Xj1.0) /[ Xjo.k — X5 k|2

[Cao et al., Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017]
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Recap Integral Regression-based 2D pose estimation

A combination of classification and regression input
1. Detection network to produce heatmaps
« same CNN as for heatmap prediction
2. Soft-max layer to turn heatmap H into probability map P
« normalizing all pixels in each heatmap H
Jalb P i heatmap
[,v]
Plu,v] = soft-max(H, (u,v)) = Zmdth Zhelght o
3. Integration layer to regress joint position (expected position)
« can be interpreted as voting/weighted average prob. map
each pixel votes for its own position, weighted by its probability
width height
pose, = Z Z ;L'P[zc,y}
rz=1 y=1
width height

pose vector

pose, = Y > yPlx,y
z=1 y=1

[Sun et al., Integral Human Pose Regression.]
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3D transformations




Linear transformations @-’é

» Used in computer graphics and computer vision
« Achain of linear maps is a linear map

« Rotation

« Scaling

« Shear and mirror

18



Affine transformations & augmented matrix and vector ?@?

Can express rigid

transformations

Translation
Scale
Rotation
Shear and
mirror

Linear

f(x)= Z W, X;

=W X

=

|

Multidimensional

f(x) = Wx

i

f(x) =ZW,5X,,; +0b

=w-x+5b }

=w - % [T [
e X
with w = (Wl, W, ..., Wy, D)
and X = (X1,X2,...,X,, 1) — )
(x) =W - %
f(x) x
Wi Wiz ... Wi, I L
with W = (WZJ W22 ... Wap }’2) W b 1
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Projective transformation & Homogeneous coordinates ?@?

Equivalence in homogeneous coordinates
« Compared to the Euclidean space, points are not unique:

1 T1A 1/ Tm
To To T2/ Tm
Tm—1 mm—l)\ xm—l/mm

T, T A 1

» Able to model perspective transformations (projection) as a

linear transformation T
Y1 fo0 0 0N [
yp|l~10 f 0 0 af
1 0010/ |7

Projection in Homogeneous coordinates

Pinhole camera model

gy _ _i L1
Y2 T3 \ T2
Projection in Euclidean coordinates
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Project Idea: Projective transformations within CNNs (ProjResNext)

256-din

« The basis building block of NNs are
affine transformations (linear + bias)
» ldea: Use projective transformations
instead
» Tasks:
« Literature review, has this been
tried?
* How to initialize (to prevent
vanishing gradients)
* Do we need to adapt other NN
structures, e.g., Batch Norm?
*  Willit be better?

256, 1x1, 4 256, 1x1,4 |, . 35| 256, 1x1,4
- - paths -
4,3x3, 4 4,3x3,4 | "=+ | 4,3x3,4
- - -
Projection | Projection Projection
* - -

4, 1x1, 256 4, 1x1,256 4, 1x1, 256

256-d out




3D representations




Depth maps

Representation: a depth value per pixel
« Size: W xH (Width x Height)
« A2.5D representation
« Continuous in Z (depth)
» Discrete in X,Y (horizontal and vertical)

Use cases

* Monocular and stereo reconstruction

* Novel view synthesis

» Well-suited for 2D convolution operations

Drawbacks
« Missing parts and holes
* No semantics/correspondence between frames

6
[Ummenhofer et al. DeMoN: Depth and Motion ;{\\ ({\
Network for Learning Monocular Stereo] \
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Point cloud

Representation: A collection of 3D points

« Size: N x D (Number of points, space dimension)

« Sparse 3 D locations (usually, can be in a higher-dimensional)
« Continuous and adaptive detalil

Benefits

« Well suited for structure from motion form keypoints

« Compact representation of sparse keypoint locations
* human joints, object edges, ...

» Ordered point clouds carry semantics (e.g., first point is the head,
the second the neck position)

Drawbacks

« Unstructured, not well suited for convolutions etc.

* No orientation information

[Snavely et al., Photo Tourism:
Exploring Photo Collections in 3D]
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PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation :@:

A network architecture to make point cloud processing invariant to
« the point cloud order

global rigid transform.

feature mlp (64,128,1024) max mlp
iansform . pool 74 (512,256,k)
i . \g shared nx1024 ]
global feature
e i - .
.................................................................................................... ... outputscores -
............................... ':l,¢’—___-_-'-F‘.F—_pointfeaturesm
2
% g |3
n|x 1088 shared ‘g shared & =
! : 2
multiply multiply _,[_I_]_. E 5
mlp (512,256,128) mlp (128,m)

Segmentation Network



PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Applications

car?

7

Classification

CPSC 532R/533R - Visual Al - Helge Rhodin

PointNet

' B

Part Segmentation

Semantic Segmentation
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MonoPerfCap: Human Performance Capture from Monocular Video

-

-




Skeleton representation -f"-'-"w—?

Representation: Bones connected by rotational joints
. .. . Attachment to
Size: J x (3+1) + B x 1 (# joints, axis + angle, # bones) next bone
* Ahierarchical skeleton approximating anthropology bone‘e}‘%'
« Joint rotation is modelled by axis+angle (3 DOF), exponential maps
(3-4 DOF) , quaternions (4 DOF) and euler angles (3 DOF)

Benefits Attachment to
« Common for human and animal motion capture previous bone

@ jointangle

« Enforces skeleton constraints explicitly
» |Is efficient to optimize (human tree/star skeleton structure)
Drawbacks
« Only approximates the human skeleton
(e.g., the shoulder joint is complex to model properly)

« Indirect representation

Forward and inverse kinematics

» the end effector position depends on all parent joints
29



Forward and inverse kinematics

Forward kinematics
e given joint axis, angle, and skeleton hierarchy
« compute joint locations
» start at the root (neck or head)
 iteratively continue from parent to child
« until end-effector is reached
» a chain of affine transformations!

Inverse kinematics

» given skeleton hierarchy and goal location

« optimize joint angles
« iteratively, gradient descent (as for NNs)

* minimize distance between end effector (computed
by forward kinematics) and goal locations

30



Deep Kinematic Pose Regression ?-'w"—f‘

Regressing joint angles and bone length instead of joint position
« Change of coordinates enforces prior information

* bone length symmetry

« constant bone length (over time)

o ‘ — =1 Y = ‘ = = | peo o
~ —+| CNN |— pr— — | FC layer |—s ) _.‘ K";g"::t'c S o
. L . ] y | A

Joint ldcations

Input image Convolutional Motion Joint Idss

features parameters locations

* Is better than predicting points and enforcing symmetry explicitly
[Imposing Hard Constraints on Deep Networks: Promises and Limitations]

 Feasible using Karush-Kuhn-Tucker Conditions  Positively Negative

 Did not work well in practice Workshop on Negative Results in
Computer Vision. CVPR 2017


http://negative.vision/

Objective functions




Recap: MSE, MAE and Cross Entropy ?@#

So far:
« simple losses operating element-wise
* thel:loss/ MSE
« thel:loss/ MAE
« connecting all elements, but treating them equally

2.04

« soft-max + log-likelihood

* Cross entropy

log-likelinood (%, y) = — log(soft-max(f(z),y)) Quadratic loss
l2<yv l) = (y - l)z
leross entropy € y) Z Y4] 10g 3] ) Absolute loss

Li(y, 1) =y =1



Mean Per-Joint Position Error (MPJPE) ?@#

Euclidean distance
« the square root of the sum of squared coordinate offsets

d(p,q)” = (g1 — p1)* + (@2 — p2)* .

P(x, ¥, 2)

Z-coordinate

=Y

X-coordinate

-coordinate
/ yreoordinat Distance of prediction (solid) to
ground truth (dashed)

« averaged over all points
e groups elements
« 2D: group of 2 elements, e.g., tensor of N x 18 x 2 for a skeleton with 1

« 3D: group of 3 elements
34



Percentage of Correct Keypoints (PCK) W

* The number of keypoints below a threshold
« usually using Euclidean distance

+ less sensitive to outliers ——
« scale sensitive = .
- ] .
'\ .
« Scale invariant version: PCKh GReEEEE
 relative to the scale of the GT annotatiog® > 2 | ¢ ~
 e.g. halt the head-neck distance is ‘ wa A0

common for 2D human pose
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ROC and AUC

Receiver operating characteristic (ROC)

« true positive rate (TPR) against the false positive
rate (FPR)

» defined for binary classification

« applicable for any binary metric (e.g., PCK)
« often reveals important details! —~

Area Under Curve (AUC)
« ascore for consistency

« the integral (sum) of PCK over different thresholds

« summarizes the ROC curve in single value

« good for ranking approaches with different
precision-recall tradeoffs

Percentage below threshold

Percentage below threshold
2

=
8

3
S

40

=3
=3

®
=3

-3
S

'
S

Drosophila Melanogaster

m— Supervised
— QUIS
= Cycle-GAN (ICCV"17)
= GCc-GAN (CVPR'19)
= Fast-Style-Transfer
= Synthetic

5 10 15 20 25 30 35 40

Absolute error threshold (px)

Drosophila Melanogaster

5 10 15 20 25 30 35 40

Absolute error threshold (px)
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Chamfer distance

A distance between point clouds without correspondence
« sum of distances between closest points
* bi-directional

* closest pointofyinY forall x in X

» closest point of x in X forally in'Y

dep(S1,S2) = Z mm lz — yll3 + Z Imn lz — y||3

m€S1 1,-'65'2

* |s not a distance function in the mathematical sense,

because the triangle inequality does not hold
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A Point Set Generation Network for 3D Object Reconstruction from a Single Image

AR

“ Aoy " “-lo,.

=
¥ o
P
S

Input Reconstructed 3D point cloud Shape completion
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Hidden questions
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Surface mesh

Representation: Vertices connected by edges forming faces

Size: N x D + E x 2 (# points, space dimension, # edges)
A 3 D surface parametrization (can be in a higher-dimensional)
* Piece-wise linear with adaptive detail; triangle faces are usual

Benefits

Good for single and multi-view reconstruction
Often used for body and object models
Graph convolutions possible

Drawbacks

Irregular structure (number of neighbors, edge length, face area)
Difficult to change topology
(shape changes require to create new vertices and edges)
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