Visual Al

CPSC 532R/533R - 2019/2020 Term 2

Lecture 4. Advanced architectures and sparse 2D keypoints

Helge Rhodin

Recap: Automatic differentiation and backpropagation

Backwards pass to $W^{(1)}$

NN theory and universal approximation

Mathematical prove in [Hornik et al., 1989; Cybenko, 1989]

What is the benefit of deep neural networks?

- In principle a fully-connected network is sufficient
- universal approximator
- but hard to train!
- Empirical observation (for image processing)
- convolution and pooling operations act as a strong prior
 - locality
 - translational invariance
- a deep network increases the receptive field
 - such large context helps
- many simple operations work better than a monolithic one
 - separable conv., group conv., 3x3 instead of 5x5, ...
 (this lecture)

ResNet details

ResNet 32 (32 layers)

3X3 C

64. /2

What if number of channels changes?

3x3 col

- apply a linear transformation to match the size
 - a projection on a linear subspace, related to principal component analysis (PCA)

(, 128 (, 128

3X3 CO

333

3x3 cor 3x3 cor 3x3 cor 3x3 cor

3X3 C(

GoogleLeNet (Inception Net V1)

even deeper network with computational efficiency

- 22 layers

- Efficient "Inception" module
- No FC layers
- -Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)

Szegedy et al., 2014]

Idea: design good local topology ("network within network") and then stack these modules

Idea: design good local topology ("network within network") and then stack these modules

Apply **parallel filter operations** on the input from previous layer

—Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise

What's the problem?

Naive Inception module

28x28x256

Idea: design good local topology ("network within network") and then stack these modules

28x28x128

Apply **parallel filter operations** on the input from previous layer

—Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)

— Pooling operation (3x3)

Concatenate all filter outputs together at output depth-wise

28x28x96

28x28x192

Convolutional Layer: 1x1 convolutions

Idea: design good local topology ("network within network") and then stack these modules

1x1 "bottleneck" layers

Inception module with dimension reduction

saves approximately 60% of computations

GoogleLeNet

even deeper network with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- -Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)

Szegedy et al., 2014

ILSVRC winner 2012

CPSC 532R/533R - Visual AI - Helge Rhodin

Network comparison

The goal is to balance

- accuracy (maximize)
- number of parameters (minimize)
- number of operations (minimize)
- efficiency of operations (maximize)
 - cache efficiency
 - parallel execution
 - precision, e.g. float, float16, binary,...

History of Inception Networks

Inception V1 GoogleNet

- Network in network approach
 Inception V2
- Use of batch normalization

[Batch normalization: Accelerating deep network training by ...]

Inception V3

Factorizations

[Rethinking the inception architecture for computer vision]

Inception V4

Tuning of filters

[Inception-v4, Inception-ResNet and the Impact of ...]

- Inception-ResNet
- Skip connections instead of concatenations

Inception ResNet block example

Separable Convolutions

Idea:

Separate a single convolution operation into a sequence of simpler operations

- e.g., 7x7 convolution into
 - 1x7 and 7x1
- reduction of parameters
 - e.g., 14 vs. 49 for 7x7 conv.

Drawback:

- It models simpler functions
 - no 'diagonal' entries possible
 - successive layers can't be run in parallel

f⊗k

Mobile Net V1

Depthwise separable convolution

- separate a 3x3 convolution with M input and N output channels
 - M 3x3 convolutions, each applied on a single channel
 - N 1x1 convolutions, combining the M intermediate features
 - add ReLU and Batch Normalization after each layer

Advantages

- fewer add-mul operations
 (8-9 times less than conventional convolution)
- highly efficient operations
 - 95% of time spend on 1x1 convolutions
 - 1x1 convolutions are highly optimized
 - an instance of general matix multiplication (GMM)

(b) Depthwise Convolutional Filters

SqueezeNet

Goal: Very small model size and efficient execution

- Strategy 1. Replace 3x3 filters with 1x1 filters
 - a 1x1 filter has 9X fewer parameters than a 3x3 filter
- Strategy 2. Decrease the number of input channels to 3x3 filters
 - (number of input channels) * (number of output channels) * (3*3)
- Strategy 3. Downsample late
 - known to yield higher accuracy
- No fully connected layers
 - use global average pooling instead

Reducing the model footprint

Pruning

- rank the neurons in the network according to how much they contribute, e.g.:
 - L1/L2 mean of neuron weights
 - their mean activations
 - the number of times a neuron wasn't zero on some validation set
- remove the low-ranking neurons
- Deep Compression [Han et al., 2015]
- quantize CNN parameters (e.g. 8-bits of precision)
- uses a codebook

[Pruning Convolutional Neural Networks for Resource Efficient Inference]

ResNeXt: Aggregated Residual Transformations

- Idea: "vertical residual blocks"
- create blocks with identical topology
 - and independent weights
 - replicate them c times ("cardinality")
- add these blocks together
- add a skip connection as in ResNet
- Related: Krizhevsky et al.'s grouped convolutions [AlexNet]

Advantage:

- larger number of channels, same number of operations
- improved performance
- increasing cardinality is more effective than going deeper or wider when we increase the capacity

A new (NeXt) dimension: depth, width, and cardinality

UBC

ShuffleNet

Idea:

- Group-wise convolution
- shuffle features for cross-talk

Advantage:

- less parameters for 1x1 conv
 - 1/ #g parameters, where #g is the cardinality
 - recall that MobileNet spent
 95% in 1x1 convolution

Spatial pyramid pooling

Accumulate features spatially

- at multiple resolutions
- average or max pooling

Advantage:

• applies to arbitrary image dimensions

[He et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition]

Dilated/Atrous Convolution and ESP Net

Idea: increase the receptive field

- inserting zeros in the convolutional kernel
 - the effective size of n × n dilated convolutional kernel with dilation rate r, is (n-1)r +1 x (n-1)r +1
 - no increase in parameters
- use a set of dilated filters for multi-scale information
- Problem: checkerboard patterns
- Fix: Hierarchical feature fusion (HFF)
 - add output from different dilations before concat

without HFF

[Mehta et al. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation]

CPSC 532R/533R - Visual AI - Helge Rhodin

Sequential application of dilated convolution

UBC

- maintains high resolution
- increases receptive field of subsequent layers

(a) Going deeper without atrous convolution.

[Chen et al., Rethinking Atrous Convolution for Semantic Image Segmentation]

Squeeze and excitation networks

Idea: feature recalibration:

 use global information to selectively scale informative features

1. Squeeze

• global average pooling yields channel-wise statistics

$$\mathbf{F}_{sq}(\mathbf{u}_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i,j)$$

 $\mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(\mathbf{W}_2 \delta(\mathbf{W}_1 \mathbf{z})).$

2. Excite

- fully-connected network with a single hidden layer
- scale the original features U with the output of Fex

Network comparison

Assignment I & II

Assignment I

- is due today!
- submit on Canvas
- remember to annotate your solution with # Task X

Assignment II

- the main part will be released tonight
 - to not scoop solutions of Assignment I
- we already released a preparatory notebook
 - to train operations needed for the main task
 - element-wise operations
 - accumulation functions
 - parallelization

(tensor operations instead of for loop)

Issues?

Your laptop / desktop

- No GPU?
- Note, parallel dataloaders might not work well on Windows: Error: "Can't pickle <function <lambda>"
- Other issues encountered?

Compute resources at UBC

UBC lin01.students.cs.ubc.ca to lin25.students.cs.ubc.ca

- GTX 1060, 3GB memory, anaconda and pytorch installed
- Create a session (replace colored parts with your name and ports)
 > ssh -N -f -L localhost: 9991:localhost:9992 rhodin@remote.cs.ubc.ca
 - > ssh rhodin@remote.cs.ubc.ca
 - > ssh -N -f -L localhost:9992:localhost:9991 rhodin@lin01.students.cs.ubc.ca

Throws error "bind [::1]:9992: Cannot assign requested address" but still works

- > ssh rhodin@lin01.students.cs.ubc.ca
- > /cs/local/lib/pkg/anaconda-2019.07/bin/conda init
- > jupyter-lab --no-browser --port=9991
- Open link provided by jupyter-lab in browser <u>http://localhost:9991/?token=6a7ee7feec81f</u>...
- Upload Assignment2.ipynb in Jupiter lab

Note: running a cell with import pytorch might take some seconds

Regression-based 2D pose estimation

A classical regression task

- Input:
 - grid of color values, an image
- Output:
 - pairs of continuous values, the position in the image
 - one pair for each skeleton joint/keypoint
- Neural network architecture:
 - Some convolutional layers to infer an internal representation of the human pose
 - One or more fully-connected layers to aggregate spatial information into the output values

Heatmap-based 2D pose estimation

Phrase the regression task as classification

- separate heatmap H_j for each joint j
- Each pixel of H_j encodes the 'probability' of containing joint j
 - not a true probability as pixels don't sum to one

• Advantages:

- Inferred with fully convolutional networks
 - less parameters than fully connected ones (MLPs)
 - applies to arbitrary image resolution and aspect ratio (can be different from training)
 - translation invariance
 - locality
- Generalizes to multiple and arbitrary number of persons

[Tompson et al., Efficient object localization using convolutional networks.]

Part affinity fields for associating joints of multiple persons

UBC

An extension of heatmaps (positions) to vectors (directions)

Ground truth affinity field L* between joints c,k

$$\mathbf{L}_{c,k}^{*}(\mathbf{p}) = \begin{cases} \mathbf{v} & \text{if } \mathbf{p} \text{ on limb } c, k \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

Determine presence by

$$0 \leq \mathbf{v} \cdot (\mathbf{p} - \mathbf{x}_{j_1,k}) \leq l_{c,k} \text{ and } |\mathbf{v}_{\perp} \cdot (\mathbf{p} - \mathbf{x}_{j_1,k})| \leq \sigma_l,$$

with v defined as

$$\mathbf{v} = (\mathbf{x}_{j_2,k} - \mathbf{x}_{j_1,k}) / ||\mathbf{x}_{j_2,k} - \mathbf{x}_{j_1,k}||_2$$

[Cao et al., Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017]

Heatmap-based 2D pose estimation II

- Disadvantage:
 - Large image scale variations
 - Two-stage pipelines are alleviating this
 - 1. Detect person bounding box at coarse resolution
 - 2. Infer skeleton pose within box at high resolution
 - Not end-to-end differentiable (pose extraction requires arg-max function)
 - No sub-pixel accuracy
 - multi-scale approaches can overcome this at the cost of execution time (average over runs on re-scaled input)

Super-resolution heatmaps

- Up sampling the input
- inefficient
- must learn features for different scales (e.g., small and big people)
- Multi-scale aggregation
- filters can be scale selective
- inefficient

 $\underbrace{5}_{2} \xrightarrow{M} \rightarrow \underbrace{5}_{2} \xrightarrow{M} \rightarrow \underbrace{CNN} \rightarrow \underbrace{CN$

Picture from [Bottom-up Higher-Resolution Networks for Multi-Person Pose Estimation]

[Sun et al., Integral Human Pose Regression.]

1.

2.

3.

input

heatmap

prob. map

pose vector

150

50

50

100

100

Details

Integral Regression-based 2D pose estimation II

Advantages

- 1. Fully-convolutional CNN (as for heatmap classification)
- 2. Differentiable 2D pose regression
 - soft-max is differentiable, stable, and efficient to compute

$$P[u, v] = \text{soft-max}(H, (u, v)) = \frac{e^{H[u, v]}}{\sum_{x=1}^{\text{width}} \sum_{y=1}^{\text{height}} e^{H[x, y]}}$$

• sum over probability map is differentiable

$$pose_x = \sum_{x=1}^{\text{width height}} \sum_{y=1}^{xP[x,y]} xP[x,y]$$
$$pose_y = \sum_{x=1}^{\text{width height}} \sum_{y=1}^{xP[x,y]} yP[x,y]$$

3. End-to-end training

- no difference between training and inference
- sub-pixel accuracy possible through joint influence of pixels
 - low-resolution heatmaps possible

Integral Regression-based 2D pose estimation III

UBC

- Disadvantages / open questions = possible course projects!
- 1. Sensitive to outliers
 - if there are two maxima in the heatmap, the predicted position will be in the middle of the two
- 2. How to support multiple people, at different scales?
 - Some form of hierarchical model?
- 3. Part affinity fields have been successful, can we develop a differentiable model?
 - An elongated ellipse that has position and orientation?
- 4. What about occluded joints?
- 5. What about temporal information?
- 6. Is it possible to infer neck-centered human pose (not knowing the absolute position, only relative distance of keypoints to the neck)?

Hidden questions

Solder use of realities seeming. While devid codealing and lines an publick coper-?

When a sufficient manifestory (AV) is summer address introduced

Whe upper construit an interapporter to upper the second