# Visual Al

# CPSC 532R/533R - 2019/2020 Term 2

# Lecture 3. Network architectures for image processing (and their optimization)

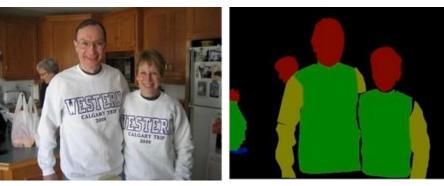
Helge Rhodin

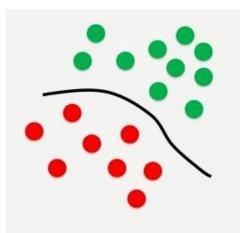


### **Classification vs. regression**



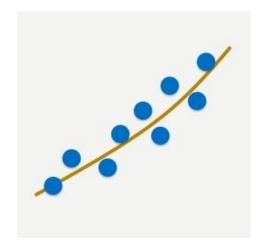
Classification





Regression

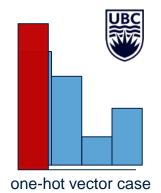




### **Cross-entropy loss / Cross-entropy criterion**

Negative Log Likelihood (NLL) formulation for a *one-hot vector*, target class c

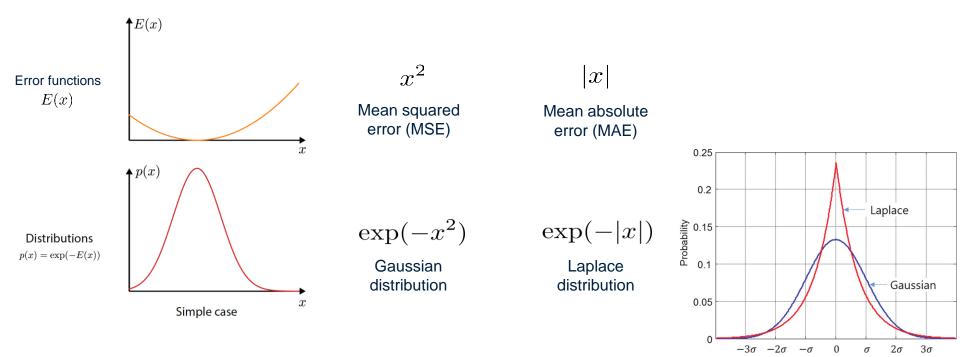
 $l_{\mathrm{NLL}}(x,c) = -\log(f_{[c]}(x))$ 



### **Regression revisited**



Many loss functions are -log of probability distributions



4

# **Recap done**



### **Density networks**

**Assumption:** Data is distributed according to a random process

 $y \sim N(F(x), \sigma)$ , with mean F(x) and standard deviation  $\sigma$ 

Given N samples  $(x_i, y_i)_{i=1}^N$ 

**Goal:** Find that function that maximizes the likelihood of the samples  $(x_i, y_i)$ 

 $L = N(y|f_{\theta}(x), \sigma)$ , with mean  $f_{\theta}(x)$  a neural network with parameters  $\theta$ 

**Solution:** minimize the negative log-likelihood (here mean squared error)

 $E = \frac{1}{2\sigma^2} (y - f_\theta(x))^2$ 

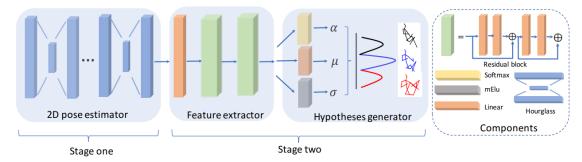
**Density Networks:** Predict the mean µ and standard deviation 6

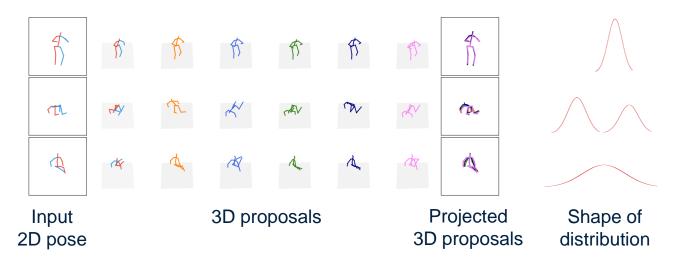
$$\sigma, \mu = f_{\theta}(x)$$
  $L = N(y|\mu, \sigma)$ 



# **Generating Multiple Hypotheses for 3D Human Pose Estimation with Mixture Density Networks**







### Separable objective and mini batches

Separable objective over independent samples x,y

$$E(D, \theta) = \sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} l(-(\mathbf{x}^{(i)}, \theta), y^{(i)})$$

### Evaluated over mini batches of size N



#### Stored as tensor, e.g.,

dim 0: N, number of images in a batchdim 1: C, number of channelsdim 2: H, height of the feature mapdim 3: W, width of the feature map





### **Optimizers**

### Stochastic Gradient Descent

 Gradient descent on randomized mini batches (with learning rate alpha)

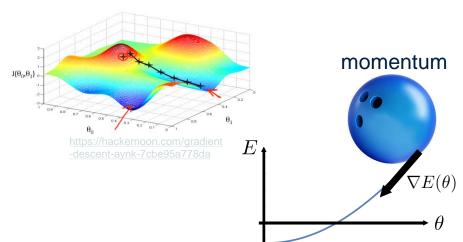
$$\theta_t = \theta_{t-1} - \alpha \sum_{i=1}^n \nabla E_i(\theta)/n,$$

#### Adam

....

- Momentum-based (continue with larger steps if the previous steps point in the same direction)
- Damp step-length if direction changes often (second moment is high)
- Uses exponential moving average (EMA)

$$\bar{y}_t = \begin{cases} y_1, & t = 1\\ \beta \cdot \bar{y}_{t-1} + (1 - \beta) \cdot y_t, & t > 1 \end{cases}$$



$$\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$$

Adam update rule

### Smaller batch size can be better; it induces more noise!

#### CPSC 532R/533R - Visual AI - Helge Rhodin

### Adam and co.



- Adam is my current favorite
  - Not that sensitive to learning rate
  - No scheduler necessary
  - Intuitive motivation

Disadvantage: Properly tuned SGD can be more accurate

- Recent alternative
  - Learning with Random Learning Rates
    [Blier et al.,]
    - give each neuron a different learning rate
    - those with inappropriate rates will die (constant output for all feasible input values)
    - parameter free, more stable training

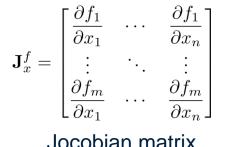
**Require:**  $\alpha$ : Stepsize **Require:**  $\beta_1, \beta_2 \in [0, 1)$ : Exponential decay rates for the moment estimates **Require:**  $f(\theta)$ : Stochastic objective function with parameters  $\theta$ **Require:**  $\theta_0$ : Initial parameter vector  $m_0 \leftarrow 0$  (Initialize 1<sup>st</sup> moment vector)  $v_0 \leftarrow 0$  (Initialize 2<sup>nd</sup> moment vector)  $t \leftarrow 0$  (Initialize timestep) while  $\theta_t$  not converged **do**  $t \leftarrow t + 1$  $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$  (Get gradients w.r.t. stochastic objective at timestep t)  $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$  (Update biased first moment estimate)  $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot q_t^2$  (Update biased second raw moment estimate)  $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$  (Compute bias-corrected second raw moment estimate)  $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$  (Update parameters) end while **return**  $\theta_t$  (Resulting parameters)

[Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization. ICLR 2015]

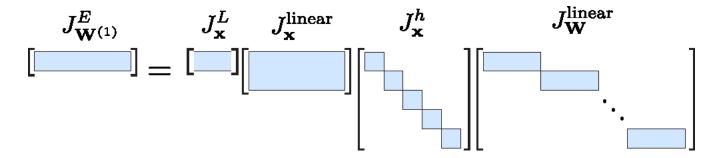
# Automatic differentiation and backpropagation



 $L(h(\text{linear}(h(\text{linear}(x, W^{(1)})), W^{(2)})))$ Forward pass  $= Lh\left( \begin{bmatrix} \mathbf{w} & \mathbf{v} \end{bmatrix} h\left( \begin{bmatrix} \mathbf{w} & \mathbf{v} \end{bmatrix} \right) \right)$ 



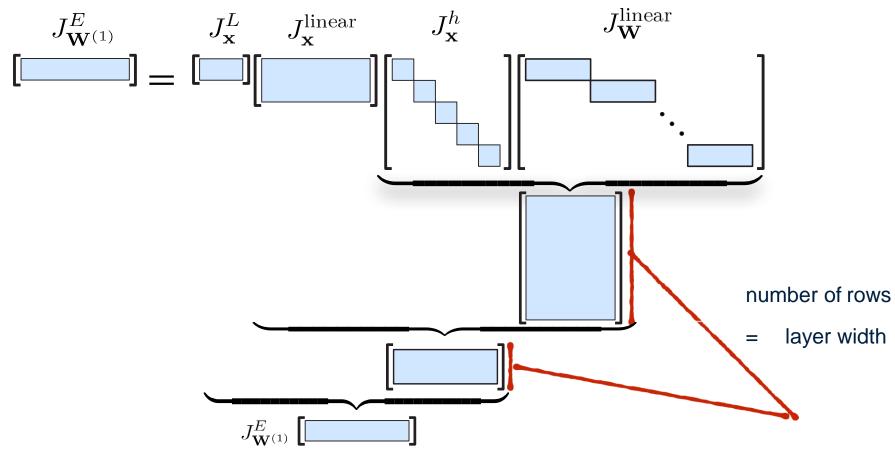
Backwards pass to  $W^{(1)}$ 



Jocobian matrix

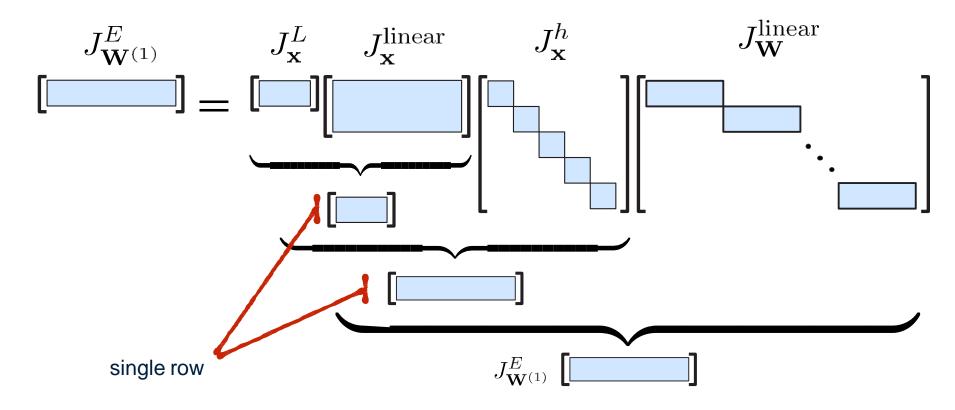
### **Forward propagation**





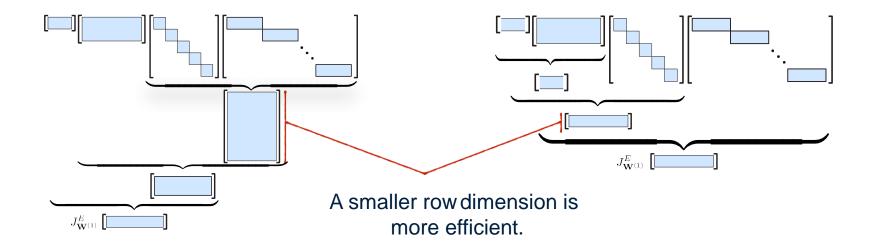
### **Reverse mode - backpropagation**





### Forward vs. reverse mode





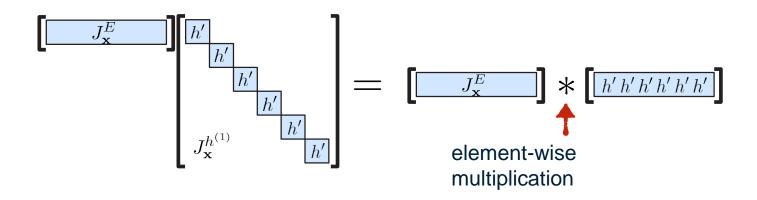
Forward accumulation is more efficient for functions that have more outputs than inputs.

Reverse accumulation is more efficient for functions that have more inputs thanoutputs.

### **Backpropagation** — a special case

Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

### Backpropagation through activation function



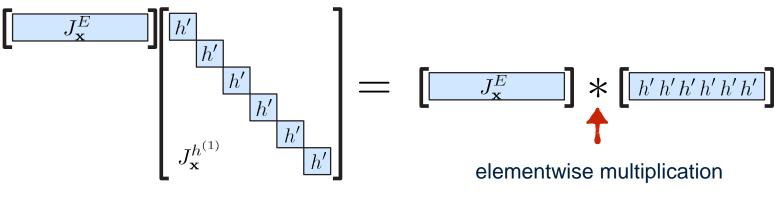


# **More optimizations**

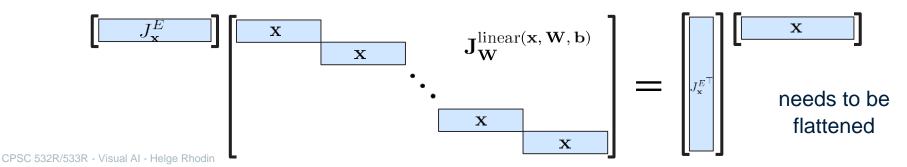
Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.



### Backpropagation through activation function



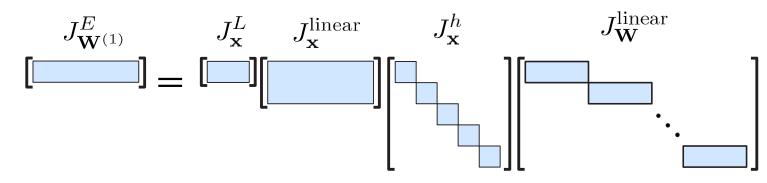
### Backpropagation through linearlayer



# Advantage of backpropagation

Backpropagation is a form of reverse automatic differentiation, where the Jacobi matrix is not explicitly computed. The gradient is propagated by simpler equivalent operations.

### Jacobianformulation



### Compactbackpropagation

$$\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$



# Vanishing gradients problem

The objective function

$$O(x,y) = L(h(\mathbf{l}(h(\mathbf{l}(x,W^{(1)})),W^{(2)})),y)$$

 $J_{\mathbf{W}^{(1)}}^{E} = J_{\mathbf{x}}^{L} J_{\mathbf{x}}^{\text{linear}} J_{\mathbf{x}}^{h} J_{\mathbf{w}}^{\text{linear}}$ 

The gradient of O with respect to  $W^{(2)}$ 

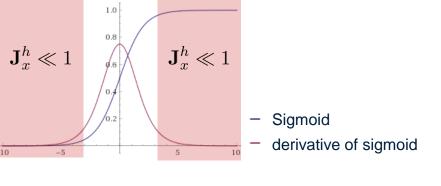
$$O(x,y) = \mathbf{J}_x^L \mathbf{J}_x^h \mathbf{J}_W^{\mathrm{l}_{(2)}}$$

The gradient of O with respect to  $W^{(1)}$ 

$$O(x,y) = \mathbf{J}_x^L \mathbf{J}_x^h \mathbf{J}_x^l \mathbf{J}_x^h \mathbf{J}_x^l \mathbf{J}_W^{(1)}$$

The gradient vanishes exponentially with respect to the number of layers if  $\mathbf{J}_x^h < 1$ 

CPSC 532R/533R - Visual AI - Helge Rhodin



Use ReLU rather than sigmoid in **deep** neural networks!



# Mini break



Find a team partner for your course project

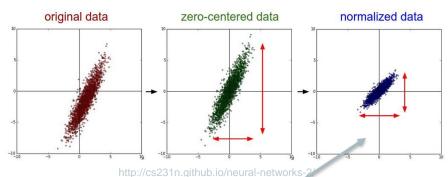
### Input and output normalization

- Goal: Normalize input and output variables to have  $\mu$ =0 and  $\sigma$ =1  $\tilde{\mathbf{x}} = \frac{\mathbf{x} - \mu}{\mu}$
- For an image, normalize each pixel by the std and mean color (averaged over the **training** set)

Related to data whitening

- whitening transforms a random vector to have zero mean and unit diagonal covariance
- by contrast, the default normalization for deep learning is element wise, neglecting dependency
  - the resulting covariance is not diagonal!

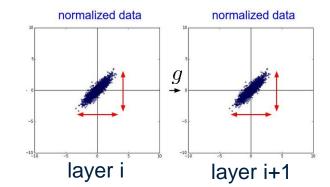




# **Neural network initialization**



- Goal: preserve mean and variance through the network
- Assume that the input is a random variable with var(x) = 1 and mean(x) = 0
- Derive the function g that describes the change of variance and mean between layers  $\begin{pmatrix} \tilde{\mu} \\ \tilde{\nu} \end{pmatrix} = g \begin{pmatrix} \mu \\ \nu \end{pmatrix}$



- Initialize the neural network weights (weights of linear layers) such that g is the identity function
- For the linear neuron with K incoming neurons

$$Var(\mathbf{w} \cdot \mathbf{x}) = \sum_{i=1}^{K} Var(\mathbf{w}_i) Var(\mathbf{x}) \qquad Var(\mathbf{x} + y) = Var(x) + Var(y)$$
$$= KVar(\mathbf{w}_i) Var(\mathbf{x}) \qquad \Rightarrow \quad Var(\mathbf{w}) = \frac{1}{K} \qquad Var(xy) = Var(x) Var(y)$$
for variables with zero mean

Xavier Initialization: Initialize with samples from a (Gaussian) distribution with std =  $\sqrt{1/K}$ 

٦

# **Neural network initialization II**

The activation function changes the distribution

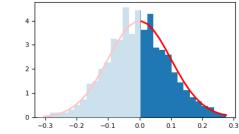
- the mean of ReLU(x) is nonzero
  - hence, the variance of product equation does not apply
  - instead, it holds

 $Var(xy) = Var(x)E(y^2)$ for x zero mean and y arbitrary

• and, assuming that y is from a symmetric distribution,

$$E(ReLU(\mathbf{y})^2) = \frac{1}{2} \operatorname{Var}(\mathbf{y})$$

Var(xy) = Var(x)Var(y)for variables with zero mean



• the variance transformation of linear layer + activation becomes

$$\operatorname{Var}(\mathbf{w} \cdot \operatorname{ReLU}(\mathbf{x})) = \frac{K}{2} \operatorname{Var}(\mathbf{w}_i) \qquad \Rightarrow \quad \operatorname{Var}(\mathbf{w}) = \frac{2}{K}$$

He et al. Initialization: Initialize with samples from a (Gaussian) distribution with std =  $\sqrt{2/K}$ 



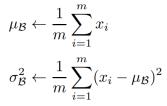
### **Batch normalization**



[Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift]

- Normalize after each linear + activation function
  - normalize across minibatch, to have  $\mu$ =0 and  $\sigma$ =1

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$



• Strict normalization reduces performance, hence, add back a learnable offset and scale

$$y_i \leftarrow \gamma \widehat{x}_i + \beta$$

- What if we only have a single image at inference time?
  - Re-apply mean and variance recorded during training (using exponential moving average)

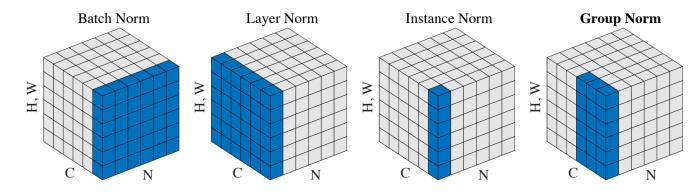
### **Batch normalization effect and variants**



#### What is the benefit of first normalizing and then 'denormalizing'?

- noise from other images regularizes
- it separates learning of the variance (scale) and bias (offset) from the values itself
- Empirical: training deeper networks, with sigmoid activation, higher learning rate, and faster convergence

#### Variants normalize over different slices of the feature tensor:



#### [Wu and He. Group Normalization]

### Regularization



### Dropout

- randomly zero out activations
- re-weight the non-zero ones to maintain the distribution of the unmodified activations
  - induced noise reduces overfitting

### Weight decay

$$\tilde{\mathbf{w}} = (1 - \tau)\mathbf{w}$$
 with  $\tau$  small)

Weight decay and square prior are equivalent under certain conditions (vanilla SGD without momentum)

Prior on neural network weights

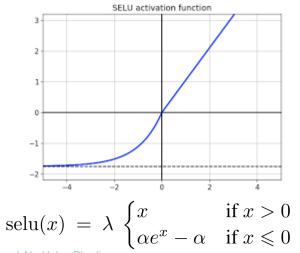
$$\widetilde{E}(\mathbf{w}) = E(\mathbf{w}) + \frac{\lambda}{2}\mathbf{w}^2$$

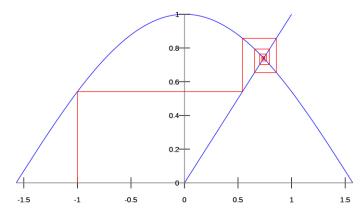
# Self-normalizing neural networks

### Self-normalizing Neural Networks

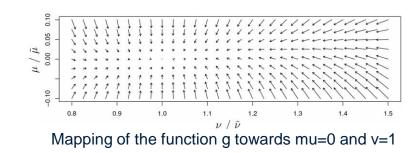
### [Klambauer et al.]

- fixed point enforced by choice of activation function (SELUs)
- stable and attracting fixed point for the function g that maps mean and variance from one layer to the next
- Possibility to train deep fully connected NNs





Fixed point iterations for cos(x)

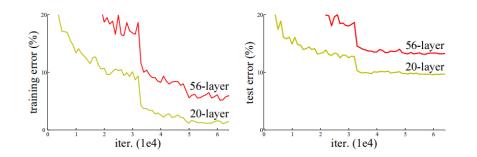




### **Residual networks and skip connections**



• Deep networks are hard to train



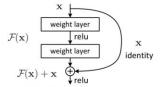
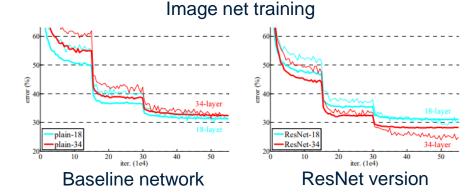


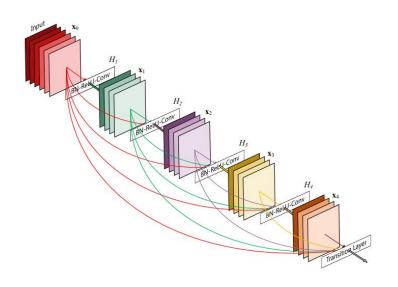
Figure 2. Residual learning: a building block.

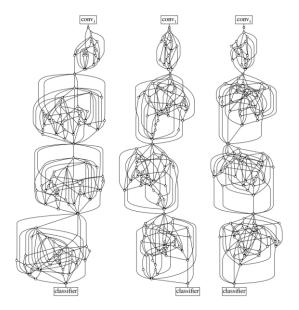
- Residual blocks with shortcut/skip connections
  - $\mathbf{y} = F(\mathbf{x}) + \mathbf{x}$
  - no extra parameters
  - enables training of deep neural networks



### **Other network architectures**







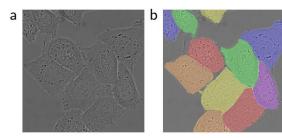
### DenseNet (skip connection to all future layers)

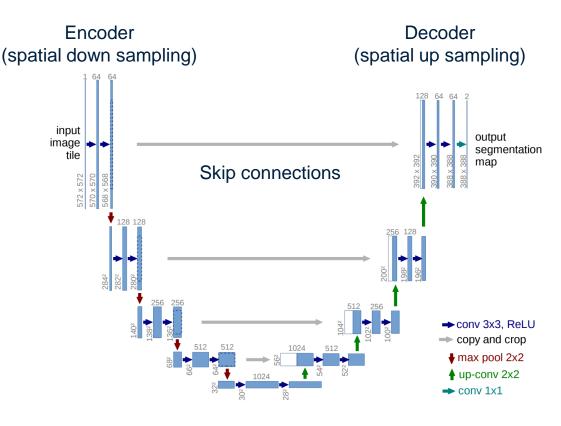
Randomly wired networks (search for best wiring among candidates)

### **U-Net architecture**



- Similar input and output resolution
- A global encoding is learned by down sampling (to 32 x 32 px)
- Progressive increase of channels maintains throughput / capacity
- Skip connections preserve details





[U-Net: Convolutional Networks for Biomedical Image Segmentation]

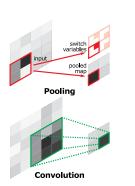
CPSC 532R/533R - Visual AI - Helge Rhodin

# Spatial down and upsampling



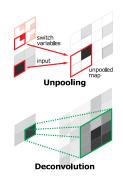
### Spatial downsampling

- max-pooling
- average pooling
- convolution with stride



### Spatial upsampling

- max-unpooling
- (bilinear) interpolation
- deconvolution



# Hidden questions



# Solder use of realities seeming. While devid codealing and line an publick coper-?

# When a sufficient manifestory (AV) is summer address introduced

# Whe upper construit an intrappenter to upper the second