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Reading material for today’s topics

Neural Networks and Deep Learning 
Chapter 1-2 (online book) 

NeuralNetworksAndDeepLearning.com 

15

Michael Nielsen

http://NeuralNetworksAndDeepLearning.com
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Neural networks in practice

16

Natural language processing

Neural networks (NNS) are a widely used — a tool  to learn patterns from large databases.

[Google Translate]
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Neural networks in practice
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Computer vision, image segmentation

Neural networks (NNS) are a widely used — a tool  to learn patterns from large databases.
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Neural networks in practice
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Biology, DNA analysis

Neural networks (NNS) are a widely used — a tool  to learn patterns from large databases.

[Angermueller et al.]
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Neural networks in practice

19

Finance and risk management

Neural networks (NNS) are a widely used — a tool  to learn patterns from large databases.
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Neural networks and visual computing

20

Object and person detection [Redmon 2016] 3D Human pose estimation [Mehta 2017]

Animation, character control

Convolutional NNs are particularly suited to extract semantic information from images.
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Neural networks and visual computing
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Object and person detection [Redmon 2016] 3D Human pose estimation [Mehta 2017]

Computer Graphics, rendering [Nalbach 2017] Animation, character control

Convolutional NNs are particularly suited to extract semantic information from images.
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Neural networks and visual computing

20

Object and person detection [Redmon 2016] 3D Human pose estimation [Mehta 2017]

Computer Graphics, rendering [Nalbach 2017] Animation, character control

Convolutional NNs are particularly suited to extract semantic information from images.
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Biological neural network

21

Microscopic slice 
(neocortex)

3D reconstruction 
(dendrite and surrounding)

Macroscopic scale 
(human brain)

The name, but also the network structure, is inspired by our understanding of real brains.
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Artificial neural network
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Artificial neural network — a graph
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NNs are composed of simple primitives, neurons with multiple inputs and a single output.  
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Artificial neural network — a graph

23

Neuron

input  

activation function 

weights 

bias

h
wi

xi

b

NNs are composed of simple primitives, neurons with multiple inputs and a single output.  



Artificial neural network — building blocks
Neuron

neuron: affine map + activation function,    neuron w/o activation function = linear map
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Artificial neural network — building blocks
Activation function

Sigmoid

RELU

Linear without activation function!

Neuron

neuron: affine map + activation function,    neuron w/o activation function = linear map

Fully-connected NN
Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2
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domain

Output 
domain

NNs are general they can be used as a black-box function that maps input to output.
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Approximation power — universal

26

Step function

Four neurons can form a box-function, multiple boxes can approximate continuous functions.

RELU
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Approximation 
f(x) =x^2

…

Approximation power — universal

26

Step function

Mathematical prove in [Hornik et al., 1989; Cybenko, 1989]

Box function

Four neurons can form a box-function, multiple boxes can approximate continuous functions.
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Approximation 
f(x) =x^2

…

Approximation power — universal

26

Step function

Mathematical prove in [Hornik et al., 1989; Cybenko, 1989]

Box function

Approximation in 2D

[neuralnetworksanddeeplearning.com]

Four neurons can form a box-function, multiple boxes can approximate continuous functions.
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An affine map is a linear map plus an offset      =     a linear map with an augmented vector.
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An affine map is a linear map plus an offset      =     a linear map with an augmented vector.

Affine
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Artificial neural network — matrix notation
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Layered NNs are simply a chain of matrix multiplications and activation functions. 

Artificial neural network — matrix notation
Layered network

Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2

The shape of W 
defines the  

network structure

The values of W 
define the functionality.
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Deep Learning
Shallow Learning

31

Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2

Chaining many (more than 1) hidden layers yields a deep neural network.
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Deep Learning
Shallow Learning

31

Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2
Layers 
(n=4)

Input Hidden OutputHidden HiddenDeep Learning

Chaining many (more than 1) hidden layers yields a deep neural network.
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Deep Learning

32

Chaining many (more than 1) hidden layers yields a deep neural network.

Functional representation

Matrix representation

… …
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Neural network playground (classification)

33

http://playground.tensorflow.org

http://playground.tensorflow.org
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Deeeeeeep Learning

• Residual network, more than 100 layers 

• Stacked hourglass network, task-dependent architectures

34

Very deep networks of hundreds of layers can be formed but require special architectures.
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FaceApp

35

Very difficult tasks can be modeled. Such as changing the age or gender of a photo.
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Image to image translation

36

[Everybody dance now. Chan et al. 2018]
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My research on human motion capture

37

[Rhodin et al. 2018]
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My research on human motion capture

37

[Rhodin et al. 2018]
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Learning from examples

38

The vast amount of NN parameters can’t be defined by hand. It is learned from data.

W

W=

W=

W=

7

8

4
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Big data and deep learning

39

Image net 
(14 million image-class pairs)

Human3.6M 
(3.6 million image-3D pose pairs)

Training neural networks require huge amounts of data — coined big data.
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Big data and deep learning

39

Image net 
(14 million image-class pairs)

Human3.6M 
(3.6 million image-3D pose pairs)

MPII human pose 
(40 thousand image-2D pose pairs)

Europarl translation dataset 
(60 million words per language)

Training neural networks require huge amounts of data — coined big data.
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MNIST database of handwritten digits

40

It contains 70 000 digit examples and is one of the most well-known and used test beds.
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Sampling?

41

• Sampling, course of dimensionality

41

1D 
2 cells 

2D 
4 cells 

3D 
8 cells 

784D 
        cells 

In high dimensions, the course of dimensionality prevents regular sampling. Splitting each 
dimension in half causes exponentially many cells. It is impossible to create large enough 
datasets that samples all these dimensions.
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Sampling?

41

• Sampling, course of dimensionality

41

1D 
2 cells 

2D 
4 cells 

3D 
8 cells 

784D 
        cells 

• Non-convex problem 

• Newton’s method, BFGS, or gradient decent solver?

In high dimensions, the course of dimensionality prevents regular sampling. Splitting each 
dimension in half causes exponentially many cells. It is impossible to create large enough 
datasets that samples all these dimensions.
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Neural network — a parametric function 

42

Linear regression

Polynomial regression

Neural Networks

Input 
domain

Output 
domain

Function Parameters

NN: A parametric function, but with more parameters & higher complexity than seen before.

✓ =
�
W(1),W(2), · · · ,W(d),b(1),b(2), · · · ,b(d)

 

W(i) 2 Rmi⇥mi�1

b(i) 2 Rmi



RGL Realistic Graphics Lab, CVL Computer Vision Lab CS-328

Neural network — a parametric function 

42

Linear regression
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Neural Networks
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domain

Output 
domain

Function Parameters
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Linear regression
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Neural Networks

Input 
domain
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An optimization problem
Optimize the parameters such that the predicted values are as close as possible to the labels.

✓ =
�
W(i),W(2), · · · ,W(d),b(1),b(2), · · · ,b(d)
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An optimization problem
Optimize the parameters such that the predicted values are as close as possible to the labels.

Linear least squares Non-linear least squares

Akin to optimization problems in previous lectures

✓ =
�
W(i),W(2), · · · ,W(d),b(1),b(2), · · · ,b(d)
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An optimization problem

44

W

W

W

W

7

8

4

Optimize the parameters such that the predicted values are as close as possible to the labels.

Loss function 
(distance metric)

✓ =
�
W(i),W(2), · · · ,W(d),b(1),b(2), · · · ,b(d)
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W

W

W

W

7

8

4

Optimize the parameters such that the predicted values are as close as possible to the labels.

Parameter

Loss function 
(distance metric)

✓ =
�
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RGL Realistic Graphics Lab, CVL Computer Vision Lab CS-328

An optimization problem

44

W

W

W

W

7

8

4

Optimize the parameters such that the predicted values are as close as possible to the labels.

Parameter

Loss function 
(distance metric)

Dataset LabelsInput

✓ =
�
W(i),W(2), · · · ,W(d),b(1),b(2), · · · ,b(d)
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Objective and loss function

45

The difference between prediction and label — a compromise of tractability and realism.
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General form

Separable sum

MNIST digit example

Objective and loss function

45

The difference between prediction and label — a compromise of tractability and realism.

Loss functions

Quadratic loss

Absolute loss
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RegressionClassification
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RegressionClassification
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• discrete classes 

• probabilistic interpretation 
(probability of class)
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Classification vs. regression
• Regression 

• works for continuous values

47

0
0.2
0.4
0.6

cla
ss
	A

cla
ss
	B

cla
ss
	C

Probability
• Classification 

• discrete classes 

• probabilistic interpretation 
(probability of class)
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Neural network playground (regression)
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Training a NN

49

1) Representation (i/o domain)

Input image Label 

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.
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Training a NN
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2) Dataset 

[MNIST] 

1) Representation (i/o domain)

Input image Label 

3) Objective

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.
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Training a NN
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2) Dataset 

[MNIST] 

1) Representation (i/o domain)

Input image Label 

3) Objective   4) Model 
Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.
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Training a NN

49

2) Dataset 

[MNIST] 

1) Representation (i/o domain)

Input image Label 

3) Objective   4) Model 
Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.

5) Solver

1.5 2.0 2.5 3.0

-2

2

4

6

8
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Iterative solver

50

[Wikipedia]



Stochastic gradient descent

51

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. 
At each iteration a new subset is chosen to decent closer to the minimum of the full energy.



• Start with a random initialization

Stochastic gradient descent

51

Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. 
At each iteration a new subset is chosen to decent closer to the minimum of the full energy.



• Start with a random initialization

• Select a training subset (minibatch, 1-100 examples)

Stochastic gradient descent

51

Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. 
At each iteration a new subset is chosen to decent closer to the minimum of the full energy.



• Start with a random initialization
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• Compute gradient with respect to parameters

Stochastic gradient descent
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• Select a training subset (minibatch, 1-100 examples)

• Compute gradient with respect to parameters

• Update weights with learning rate 

Stochastic gradient descent
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• Start with a random initialization

• Select a training subset (minibatch, 1-100 examples)

• Compute gradient with respect to parameters

• Update weights with learning rate 

• Iterate on a new minibatch

Stochastic gradient descent

51

1.5 2.0 2.5 3.0

-2

2

4

6

8

Layers 
(n=3)

Input Hidden Output

Dimension m0=3 m1=4 m2=2

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. 
At each iteration a new subset is chosen to decent closer to the minimum of the full energy.



Simplistic stochastic gradient descent
In the most simple case we choose a single sample per iteration and use the squared loss. 

Full energy



Simplistic stochastic gradient descent
In the most simple case we choose a single sample per iteration and use the squared loss. 

Full energy Approximation at iteration i
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Differentiation
NN function

53

The NN consists of simple matrix operations  — apply chain rule with matrix-vector notation.

Toy example, a scalar NN

@ nn

@w(1)
(x,w(1), w(2)) = w(2)h0(w(1)x)x
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Differentiation
NN function

54

The NN consists of simple matrix operations  — apply chain rule with matrix-vector notation.

NN Jacobian matrix
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Jacobian matrices

55

Two of the three involved Jacobian matrix types have sparse structure, we exploit that later.
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Two of the three involved Jacobian matrix types have sparse structure, we exploit that later.

function to differentiate…

…with respect to x
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Jacobi matrices

56

Two of the three involved Jacobi matrix types have sparse structure, we exploit that later.
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Jacobi matrices

56

Two of the three involved Jacobi matrix types have sparse structure, we exploit that later.

<latexit sha1_base64="ghUWbsYnXt3quS8t/xwoYaAV/oI="></latexit>
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Automatic differentiation — forward mode

57

In forward mode, Jacobian matrices are multiplied from back to front, i.e., in the same way 
as x passes through the network in the forward pass.
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Automatic differentiation — forward mode

57

number of rows 
=  layer width

In forward mode, Jacobian matrices are multiplied from back to front, i.e., in the same way 
as x passes through the network in the forward pass.
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Automatic differentiation —reverse mode

58

In reverse mode automatic differentiation Jacobi matrices are multiplied from front to back.
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Automatic differentiation —reverse mode

58

single row

In reverse mode automatic differentiation Jacobi matrices are multiplied from front to back.
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Forward vs. reverse mode

59

Forward accumulation Reverse accumulation

Reverse accumulation is more efficient for NNs since the objective function is a scalar.

Forward accumulation is more 
efficient for functions that have 

more outputs than inputs.

Reverse accumulation is more 
efficient for functions that have 

more inputs than outputs.
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Forward vs. reverse mode

59

Forward accumulation Reverse accumulation

Reverse accumulation is more efficient for NNs since the objective function is a scalar.

Forward accumulation is more 
efficient for functions that have 

more outputs than inputs.

A smaller row dimension
is more efficient.

Reverse accumulation is more 
efficient for functions that have 

more inputs than outputs.
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Backpropagation — a special case

60

element-wise multiplication

Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

Backpropagation through activation function
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Backpropagation — a special case

60

element-wise multiplication

Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

Backpropagation through activation function

needs to be flattened

Backpropagation through linear layer
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Backpropagation of a two hidden layer NN

61

Jacobian formulation

Backpropagation is a form of reverse automatic differentiation, where the Jacobi matrix is 
not explicitly computed. The gradient is propagated by simpler equivalent operations.

Compact backpropagation
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NN in a nutshell

62

Successful training of NNs requires well chosen yet simple building blocks.
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NN in a nutshell
1. Problem definition 

• input and output representation

2. Dataset 

• pairs of desired input and output 

3. Objective and loss function 

• sum over loss on dataset samples  

4. NN model 

• stack of linear and non-linear layers 

62

Layers 
(n=4)

Input Hidden OutputHidden Hidden

Successful training of NNs requires well chosen yet simple building blocks.
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NN in a nutshell
1. Problem definition 

• input and output representation

2. Dataset 

• pairs of desired input and output 

3. Objective and loss function 

• sum over loss on dataset samples  

4. NN model 

• stack of linear and non-linear layers 

5. Optimization procedure (solver) 

• iterative gradient descent approximation

62

Layers 
(n=4)

Input Hidden OutputHidden Hidden

1.5 2.0 2.5 3.0

-2

2

4

6

8

Successful training of NNs requires well chosen yet simple building blocks.
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• Local kernel 

Convolution, Filters

64

Filtering of images with local kernels has a long history, for instance for edge detection.

[cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12]
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Filtering of images with local kernels has a long history, for instance for edge detection.

[cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12]
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Convolutional Neural Networks

65

Low-level Mid-level High-level

• Local operations, weights shared

Convolutional NNs apply convolutions with trainable weights — weight sharing.
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Data dependent filter

66
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NNs capture the training examples. A network has different features on a different dataset.
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Recurrent neural networks
Stacking multiple NNs 

67

t-1

t

Network structures can be complex, e.g. the input at time t can be the output of time t-1.
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Recurrent neural networks
Stacking multiple NNs 

67

Gated Recurrent Units 
(GRU) 

• A simplification of Long-term 
Short-Term Memory (LSTM)

t-1

t

Network structures can be complex, e.g. the input at time t can be the output of time t-1.



RGL Realistic Graphics Lab, CVL Computer Vision Lab CS-328

Generative adversarial networks (GANs)

68[Karras et al.]
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Generative adversarial networks (GANs)

68[Karras et al.]
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Neural style transfer

69

Networks can disentangle style and content, recombinations lead to artistic pieces.

=

+

[Gatys et al.]



The style transfer works on many different styles.

Neural style transfer
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Understanding neural networks

71

By optimising the input image instead of the network weights, the learned patterns are revealed.



Deep Dreams
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AlphaGo

73

Training NNs requires well defined environments, such as the strict rules of a GO game.
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Dangerous or of merit?
• Social impact 

• Replaces repetitive jobs 

• Creates new jobs 

• Dangers 

• Fake news 

• Bias of data 

• General artificial intelligence (GAI)

74

- Stephen Hawking, Elon Musk, and dozens of artificial intelligence experts

Open Letter on Artificial Intelligence
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Virtual dubbing

75

[www.synthesia.io]

http://www.synthesia.io
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Homework 5

76

Building a neural network to classify fashion items from their pictures.




