

EPFL CS-328: Numerical Methods for Visual Computing

2018

Neural Networks for Visual Computing

Dr. Helge Rhodin

Reading material for today's topics

Neural Networks and Deep Learning Chapter 1-2 (online book) NeuralNetworksAndDeepLearning.com

Michael Nielsen

Neural networks (NNS) are a widely used — a tool to learn patterns from large databases.

Natural language processing

Neural networks (NNS) are a widely used — a tool to learn patterns from large databases.

Computer vision, image segmentation

Neural networks (NNS) are a widely used — a tool to learn patterns from large databases.

Biology, DNA analysis

Neural networks (NNS) are a widely used — a tool to learn patterns from large databases.

Finance and risk management

Convolutional NNs are particularly suited to extract semantic information from images.

Object and person detection [Redmon 2016]

Convolutional NNs are particularly suited to extract semantic information from images.

Object and person detection [Redmon 2016]

Convolutional NNs are particularly suited to extract semantic information from images.

Object and person detection [Redmon 2016]

Convolutional NNs are particularly suited to extract semantic information from images.

Object and person detection [Redmon 2016]

3D Human pose estimation [Mehta 2017]

Convolutional NNs are particularly suited to extract semantic information from images.

Object and person detection [Redmon 2016]

3D Human pose estimation [Mehta 2017]

Computer Graphics, rendering [Nalbach 2017]

Convolutional NNs are particularly suited to extract semantic information from images.

Object and person detection [Redmon 2016]

Computer Graphics, rendering [Nalbach 2017]

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

Animation, character control

The name, but also the network structure, is inspired by our understanding of real brains.

Macroscopic scale (human brain)

Microscopic slice (neocortex)

3D reconstruction (dendrite and surrounding)

Artificial neural network

Artificial neural network — a graph

NNs are composed of simple primitives, neurons with multiple inputs and a single output.

Artificial neural network — a graph

NNs are composed of simple primitives, neurons with multiple inputs and a single output.

Artificial neural network — a graph

NNs are composed of simple primitives, neurons with multiple inputs and a single output.

- \mathbf{x}_i input
- h activation function
- \mathbf{w}_i weights
 - b bias

neuron: affine map + activation function, neuron w/o activation function = linear map

neuron: affine map + activation function, neuron w/o activation function = linear map

neuron: affine map + activation function, neuron w/o activation function = linear map

neuron: affine map + activation function, neuron w/o activation function = linear map

Linear without activation function! $\mathbf{a}_{1}^{(2)} = \mathbf{w}_{1,1}^{(2)}(\mathbf{w}_{1,1}^{(1)}\mathbf{x}_{1} + \mathbf{w}_{1,2}^{(1)}\mathbf{x}_{2} + \mathbf{w}_{1,3}^{(1)}\mathbf{x}_{3} + b_{1}^{(1)}) + \dots) + b_{1}^{(2)}$ $= c_{1}\mathbf{x}_{1} + c_{2}\mathbf{x}_{2} + c_{3}\mathbf{x}_{3} + c_{4}$

NNs are general they can be used as a black-box function that maps input to output.

NNs are general they can be used as a black-box function that maps input to output.

Examples

NNs are general they can be used as a black-box function that maps input to output.

NNs are general they can be used as a black-box function that maps input to output.

Four neurons can form a box-function, multiple boxes can approximate continuous functions.

Four neurons can form a box-function, multiple boxes can approximate continuous functions.

Four neurons can form a box-function, multiple boxes can approximate continuous functions.

Mathematical prove in [Hornik et al., 1989; Cybenko, 1989]

Four neurons can form a box-function, multiple boxes can approximate continuous functions.

Mathematical prove in [Hornik et al., 1989; Cybenko, 1989]

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

CS-328 26

Artificial neural network — structure

It is common and efficient to group neurons in layers and to use matrix-vector notation.

Artificial neural network — structure

It is common and efficient to group neurons in layers and to use matrix-vector notation.

Artificial neural network — structure

It is common and efficient to group neurons in layers and to use matrix-vector notation.

Artificial neural network — structure

It is common and efficient to group neurons in layers and to use matrix-vector notation.

An affine map is a linear map plus an offset = a linear map with an augmented vector.

Linear

$$f(\mathbf{x}) = \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i}$$
$$= \mathbf{w} \cdot \mathbf{x}$$

An affine map is a linear map plus an offset = a linear map with an augmented vector.

Linear

Affine

$$f(\mathbf{x}) = \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i}$$
$$= \mathbf{w} \cdot \mathbf{x}$$

$$f(\mathbf{x}) = \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i} + b$$
$$= \mathbf{w} \cdot \mathbf{x} + b$$
$$= \mathbf{\tilde{w}} \cdot \mathbf{\tilde{x}}$$

Affine

An affine map is a linear map plus an offset = a linear map with an augmented vector.

Linear

 $f(\mathbf{x}) = \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i}$ $= \mathbf{w} \cdot \mathbf{x}$

 \mathbf{W}

x

An affine map is a linear map plus an offset = a linear map with an augmented vector.

Linear

 $f(\mathbf{x}) = \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i}$ $= \mathbf{w} \cdot \mathbf{x}$

$$i = \mathbf{w} \cdot \mathbf{x} + b$$

 $= \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$

with
$$\tilde{\mathbf{w}} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n, \mathbf{b})$$

and $\tilde{\mathbf{x}} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \mathbf{1})$

Multidimensional

 $f(\mathbf{x}) = \mathbf{W}\mathbf{x}$

An affine map is a linear map plus an offset = a linear map with an augmented vector.

Linear

$f(\mathbf{x})$	$=\sum_{i}$	$\sum_{i} \mathbf{w}_i \mathbf{x}_i$
	$= \mathbf{w}$	$\mathbf{x} \cdot \mathbf{x}$

Affine

with $\tilde{\mathbf{w}} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n, \mathbf{b})$ and $\tilde{\mathbf{x}} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \mathbf{1})$

Multidimensional

 $f(\mathbf{x}) = \mathbf{W}\mathbf{x}$

$$f(\mathbf{x}) = \tilde{\mathbf{W}} \cdot \tilde{\mathbf{x}}$$

with
$$\tilde{\mathbf{W}} = \begin{pmatrix} \mathbf{w}_{1,1} & \mathbf{w}_{1,2} & \dots & \mathbf{w}_{1,n} & b_1 \\ \mathbf{w}_{2,1} & \mathbf{w}_{2,2} & \dots & \mathbf{w}_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \end{pmatrix}$$

Layered NNs are simply a chain of matrix multiplications and activation functions.

Matrix representation

Deep Learning

Chaining many (more than 1) hidden layers yields a deep neural network.

Shallow Learning

Deep Learning

Chaining many (more than 1) hidden layers yields a deep neural network.

Deep Learning

Chaining many (more than 1) hidden layers yields a deep neural network.

Functional representation

nn = linear(
$$\cdots h(linear(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{b}^{(1)})) \cdots, \mathbf{W}^{(d)}, \mathbf{b}^{(d)})$$

Matrix representation

$$nn = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \cdots h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \mathbf{w}^{\mathbf{w}} + \begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \cdots + \begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \mathbf{w}^{\mathbf{w}} + \begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \mathbf{w}^{\mathbf{w}} + \begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} = h\left(\begin{bmatrix} \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf{w}^{\mathbf{w}} \end{bmatrix} \\ \mathbf$$

Neural network playground (classification)

http://playground.tensorflow.org

Deeeeeep Learning

Very deep networks of hundreds of layers can be formed but require special architectures.

Residual network, more than 100 layers

Stacked hourglass network, task-dependent architectures

FaceApp

Very difficult tasks can be modeled. Such as changing the age or gender of a photo.

CS-328 35

Image to image translation

[Everybody dance now. Chan et al. 2018]

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

CS-328 36

Image to image translation

[Everybody dance now. Chan et al. 2018]

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

CS-328 36

My research on human motion capture

[Rhodin et al. 2018]

My research on human motion capture

[Rhodin et al. 2018]

Learning from examples

The vast amount of NN parameters can't be defined by hand. It is learned from data.

Big data and deep learning

Training neural networks require huge amounts of data — coined big data.

Image net (14 million image-class pairs)

Human3.6M (3.6 million image-3D pose pairs)

Big data and deep learning

Training neural networks require huge amounts of data — coined big data.

Image net (14 million image-class pairs)

a dataset by Catalin Jonescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu

Human3.6M (3.6 million image-3D pose pairs)

MPII human pose (40 thousand image-2D pose pairs)

Madam President , I should like to draw your attention to a case It is the case of Alexander Ni@@ ki@@ tin .

Frau Präsidentin ! Ich möchte Sie auf einen Fall aufmerksam mache Das ist der Fall von Alexander Ni@@ ki@@ tin

Europarl translation dataset (60 million words per language)

MNIST database of handwritten digits

It contains 70 000 digit examples and is one of the most well-known and used test beds.

5725581 880192576020401536426662 5/508 ¥ 893431329419382 (092300513 181819451)459302132594327 ዩ 94

Sampling?

In high dimensions, the course of dimensionality prevents regular sampling. Splitting each dimension in half causes exponentially many cells. It is impossible to create large enough datasets that samples all these dimensions.

• Sampling, course of dimensionality

RGL Realistic Graphics Lab, CVL Computer Vision Lab

CS-328 41

Sampling?

In high dimensions, the course of dimensionality prevents regular sampling. Splitting each dimension in half causes exponentially many cells. It is impossible to create large enough datasets that samples all these dimensions.

• Sampling, course of dimensionality

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

CS-328 41

- Non-convex problem
 - Newton's method, BFGS, or gradient decent solver?

dimension in half causes exponentially many cells. It is impossible to create large enough

Sampling, course of dimensionality

datasets that samples all these dimensions.

Sampling? In high dimensions, the course of dimensionality prevents regular sampling. Splitting each

Neural network — a parametric function

NN: A parametric function, but with more parameters & higher complexity than seen before.

Neural network — a parametric function

NN: A parametric function, but with more parameters & higher complexity than seen before.

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

CS-328

42

Neural network — a parametric function

NN: A parametric function, but with more parameters & higher complexity than seen before.

Optimize the parameters such that the predicted values are as close as possible to the labels.

$$\arg\min_{\theta} E(D, \theta) \qquad \theta = \{\mathbf{W}^{(i)}, \mathbf{W}^{(2)}, \cdots, \mathbf{W}^{(d)}, \mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(d)}\}\$$

Optimize the parameters such that the predicted values are as close as possible to the labels.

$$\arg\min_{\theta} E(D, \theta) \qquad \theta = \{\mathbf{W}^{(i)}, \mathbf{W}^{(2)}, \cdots, \mathbf{W}^{(d)}, \mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(d)}\}\$$

Akin to optimization problems in previous lectures

Linear least squares
$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

Non-linear least squares $\min_{\mathbf{x}} \|\mathbf{f}(\mathbf{x}) - \mathbf{b}\|^2$

Optimize the parameters such that the predicted values are as close as possible to the labels.

$$\arg\min_{\boldsymbol{\theta}} E(D, \boldsymbol{\theta}) \qquad \quad \boldsymbol{\theta} = \{\mathbf{W}^{(i)}, \mathbf{W}^{(2)}, \cdots$$

44

Optimize the parameters such that the predicted values are as close as possible to the labels.

$$\arg\min_{\theta} E(D, \theta) \quad \theta = \{\mathbf{W}^{(i)}, \mathbf{W}^{(2)}, \cdots \}$$

44
An optimization problem

Optimize the parameters such that the predicted values are as close as possible to the labels.

B 44

The difference between prediction and label — a compromise of tractability and realism.

 $\arg\min_{\theta} E(D,\theta)$

The difference between prediction and label — a compromise of tractability and realism.

General form $\arg\min_{\theta} E(D, \theta)$

The difference between prediction and label — a compromise of tractability and realism.

General form $\arg\min_{\theta} E(D,\theta)$

Separable sum

$$E(D,\theta) = \sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} l(\operatorname{nn}(\mathbf{x}^{(i)}, \theta), y^{(i)})$$

The difference between prediction and label — a compromise of tractability and realism.

General form $\arg\min_{\theta} E(D, \theta)$

Separable sum

$$E(D,\theta) = \sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} l(\operatorname{nn}(\mathbf{x}^{(i)}, \theta), y^{(i)})$$

Loss functions

Quadratic loss

$$l_2(y,l) = (y-l)^2$$

Absolute loss

$$l_1(y,l) = |y-l|$$

The difference between prediction and label — a compromise of tractability and realism.

General form $\arg\min_{\theta} E(D, \theta)$

Separable sum

$$E(D,\theta) = \sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} l(\operatorname{nn}(\mathbf{x}^{(i)}, \theta), y^{(i)})$$

MNIST digit example

$$E(D, \theta) = \sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} (\operatorname{nn}(\mathbf{x}^{(i)}, \theta) - y^{(i)})^2$$

= (nn(**2**, \theta) - 7)²
+ (nn(**5**, \theta) - 8)²...

Loss functions

Classification

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

Regression

CS-328 46

Classification

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

Regression

CS-328 46

- Regression
 - works for continuous values

$$nn(\mathbf{x}) \to y \in \mathbb{R}$$
$$l_2(y,l) = (y-l)^2$$

- Regression
 - works for continuous values

$$nn(\mathbf{x}) \to y \in \mathbb{R}$$
$$l_2(y,l) = (y-l)^2$$

- Classification
 - discrete classes
 - probabilistic interpretation (probability of class)

 $nn(\mathbf{x}) \to \mathbf{y} \in [0, 1]$ $l_2(\mathbf{y}, \mathbf{l}) = \|\mathbf{y} - \mathbf{l}\|^2$

- Regression
 - works for continuous values

$$nn(\mathbf{x}) \to y \in \mathbb{R}$$
$$l_2(y,l) = (y-l)^2$$

- Classification
 - discrete classes
 - probabilistic interpretation (probability of class)

 $\operatorname{nn}(\mathbf{x}) \to \mathbf{y} \in [0, 1]$ $l_2(\mathbf{y}, \mathbf{l}) = \|\mathbf{y} - \mathbf{l}\|^2$

Neural network playground (regression)

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.

1) Representation (i/o domain)

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.

1) Representation (i/o domain)

2) Dataset D

Training a NN

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.

1) Representation (i/o domain)		2) Dataset <i>D</i>
$\mathbf{Input image} \\ \in \mathbb{R}^{28 \times 28}$	$8 \\ \textbf{Label} \\ \in \mathbb{R} \\$	67299744472574941926742356371155760 56732/6023460498008307498733498428 47/60326729822918742494613738034188 0429404773788885469735878527164770 7082937518672230600362009512697103 454018939313294293782(0923005131572 087743322933999913133737069764415247 1571812641878194571459302132594327 3631799727383821425052393653666300363636316 3587492670529629693237972636500144 478554297375086765702802390764949 7873969365038509971115771537899245 [MNIST]
3) Objective $\arg \min_{W} E(D, \theta)$		
$E(D,\theta) = \sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} (\operatorname{nn}(\mathbf{x}^{(i)}, \theta) - y^{(i)})^2$		

Training a NN

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.

Training a NN

.. requires 1) a representation, 2) dataset, 3) objective function, 4) NN model and 5) solver.

Iterative solver

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. At each iteration a new subset is chosen to decent closer to the minimum of the full energy.

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. At each iteration a new subset is chosen to decent closer to the minimum of the full energy.

Start with a random initialization

 $\mathbf{W}_{i,j} \sim U(-c,c)$, with U(-c,c) the uniform distribution over [-c,c].

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. At each iteration a new subset is chosen to decent closer to the minimum of the full energy.

Start with a random initialization

 $\mathbf{W}_{i,j} \sim U(-c,c)$, with U(-c,c) the uniform distribution over [-c,c].

• Select a training subset (minibatch, 1-100 examples)

 $\mathbb{B} = \{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(m_B)}, \mathbf{y}^{(m_B)}) \}$

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. At each iteration a new subset is chosen to decent closer to the minimum of the full energy.

Start with a random initialization

 $\mathbf{W}_{i,j} \sim U(-c,c)$, with U(-c,c) the uniform distribution over [-c,c].

• Select a training subset (minibatch, 1-100 examples)

 $\mathbb{B} = \{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(m_B)}, \mathbf{y}^{(m_B)}) \}$

• Compute gradient with respect to parameters $\nabla_{\theta} E(\mathbb{B}, \theta)$

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. At each iteration a new subset is chosen to decent closer to the minimum of the full energy.

Start with a random initialization

 $\mathbf{W}_{i,j} \sim U(-c,c)$, with U(-c,c) the uniform distribution over [-c,c].

Select a training subset (minibatch, 1-100 examples)

 $\mathbb{B} = \{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(m_B)}, \mathbf{y}^{(m_B)}) \}$

- Compute gradient with respect to parameters $\nabla_{\theta} E(\mathbb{B}, \theta)$
- Update weights with learning rate α $\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla_{\theta} E(\mathbb{B}, \theta)$

 $\theta^{(t+1)}$

 $\boldsymbol{\mu}(t)$

1.5

Iteratively optimizing over subsets of the dataset is efficient and works surprisingly well. At each iteration a new subset is chosen to decent closer to the minimum of the full energy.

Start with a random initialization

 $\mathbf{W}_{i,j} \sim U(-c,c)$, with U(-c,c) the uniform distribution over [-c,c].

Select a training subset (minibatch, 1-100 examples)

 $\mathbb{B} = \{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(m_B)}, \mathbf{y}^{(m_B)}) \}$

- Compute gradient with respect to parameters $\nabla_{\theta} E(\mathbb{B}, \theta)$
- Update weights with learning rate α $\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla_{\theta} E(\mathbb{B}, \theta)$
- Iterate on a new minibatch

Simplistic stochastic gradient descent

In the most simple case we choose a single sample per iteration and use the squared loss.

Full energy

$$E(D, \theta) = \sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} (\operatorname{nn}(\mathbf{x}^{(i)}, \theta) - y^{(i)})^2$$

= (nn(**2**, \theta) - 7)²
+ (nn(**5**, \theta) - 8)²...

Simplistic stochastic gradient descent

In the most simple case we choose a single sample per iteration and use the squared loss.

Full energy

$$E(D, \theta) = \sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} (\operatorname{nn}(\mathbf{x}^{(i)}, \theta) - y^{(i)})^2$$

= $(\operatorname{nn}(\mathbf{Z}, \theta) - 7)^2$
+ $(\operatorname{nn}(\mathbf{Z}, \theta) - 8)^2 \dots$

 Approximation at iteration i $E(D, \theta) \approx E((\mathbf{x}^{(i)}, y^{(i)}), \theta)$

$$E((\mathbf{x}^{(i)}, y^{(i)}), \theta) = (nn(\mathbf{x}^{(i)}, \theta) - y^{(i)})^2$$
$$= (nn(\mathbf{2}, \theta) - 7)^2$$

Differentiation

The NN consists of simple matrix operations — apply chain rule with matrix-vector notation.

NN function

nn = linear(
$$h(linear(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{b}^{(1)}), \mathbf{W}^{(2)}, \mathbf{b}^{(2)})$$

$$nn = \begin{bmatrix} \mathbf{w}^{\text{(2)}} & h \left(\begin{bmatrix} \mathbf{w}^{\text{(1)}} & \mathbf{x} \end{bmatrix} + \begin{bmatrix} \mathbf{y}^{\text{(1)}} \\ \mathbf{y}^{\text{(1)}} \end{bmatrix} + \begin{bmatrix} \mathbf{y}^{\text{(2)}} \\ \mathbf{y}^{\text{(2)}} \end{bmatrix} + \begin{bmatrix} \mathbf{y}^{\text$$

Toy example, a scalar NN

$$nn(x, w^{(1)}, w^{(2)}) = w^{(2)}h(w^{(1)}x)$$

$$\frac{\partial \operatorname{nn}}{\partial w^{(1)}}(x, w^{(1)}, w^{(2)}) = w^{(2)}h'(w^{(1)}x)x$$

Differentiation

The NN consists of simple matrix operations — apply chain rule with matrix-vector notation.

NN function

nn = linear(
$$h(linear(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{b}^{(1)}), \mathbf{W}^{(2)}, \mathbf{b}^{(2)})$$

$$\mathbf{nn} = \left[\mathbf{w}^{\scriptscriptstyle (2)}\right] h\left(\left[\mathbf{w}^{\scriptscriptstyle (1)}\right]^{\mathbf{x}} + \left[\mathbf{w}^{\scriptscriptstyle (1)}\right]^{\mathbf{x}} + \left[\mathbf{w}^{\scriptscriptstyle (1)}\right]^{\mathbf{x}}\right] + \left[\mathbf{w}^{\scriptscriptstyle (2)}\right]^{\mathbf{x}}$$

NN Jacobian matrix

Two of the three involved Jacobian matrix types have sparse structure, we exploit that later.

$$\mathbf{J}_{\mathbf{x}}^{f} = \frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial f_{1}}{\partial \mathbf{x}_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial f_{m}}{\partial \mathbf{x}_{n}} \end{bmatrix}$$

Two of the three involved Jacobian matrix types have sparse structure, we exploit that later.

function to differentiate...

Two of the three involved Jacobian matrix types have sparse structure, we exploit that later.

function to differentiate...

...with respect to x

Two of the three involved Jacobian matrix types have sparse structure, we exploit that later.

function to differentiate...

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

CS-328 55

Two of the three involved Jacobi matrix types have sparse structure, we exploit that later.

Two of the three involved Jacobi matrix types have sparse structure, we exploit that later.

Two of the three involved Jacobi matrix types have sparse structure, we exploit that later.

Automatic differentiation — forward mode

In forward mode, Jacobian matrices are multiplied from back to front, i.e., in the same way as x passes through the network in the forward pass.

In forward mode, Jacobian matrices are multiplied from back to front, i.e., in the same way as x passes through the network in the forward pass.

In forward mode, Jacobian matrices are multiplied from back to front, i.e., in the same way as x passes through the network in the forward pass.

In forward mode, Jacobian matrices are multiplied from back to front, i.e., in the same way as x passes through the network in the forward pass.

In forward mode, Jacobian matrices are multiplied from back to front, i.e., in the same way as x passes through the network in the forward pass.

école polytechniqu fédérale de lausann **CS-328** 57

Automatic differentiation —reverse mode

In reverse mode automatic differentiation Jacobi matrices are multiplied from front to back.

Automatic differentiation —reverse mode

In reverse mode automatic differentiation Jacobi matrices are multiplied from front to back.

Automatic differentiation — reverse mode

In reverse mode automatic differentiation Jacobi matrices are multiplied from front to back.

Automatic differentiation — reverse mode

In reverse mode automatic differentiation Jacobi matrices are multiplied from front to back.

Automatic differentiation —reverse mode

In reverse mode automatic differentiation Jacobi matrices are multiplied from front to back.

Forward vs. reverse mode

Reverse accumulation is more efficient for NNs since the objective function is a scalar.

Forward accumulation

Reverse accumulation

Forward accumulation is more efficient for functions that have more outputs than inputs. Reverse accumulation is more efficient for functions that have more inputs than outputs.

Forward vs. reverse mode

Reverse accumulation is more efficient for NNs since the objective function is a scalar.

Forward accumulation is more efficient for functions that have more outputs than inputs. Reverse accumulation is more efficient for functions that have more inputs than outputs.

Backpropagation — a special case

Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

Backpropagation through activation function

Backpropagation — a special case

Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

Backpropagation through activation function

Backpropagation through linear layer

Backpropagation of a two hidden layer NN

Backpropagation is a form of reverse automatic differentiation, where the Jacobi matrix is not explicitly computed. The gradient is propagated by <u>simpler equivalent operations</u>.

Jacobian formulation

Compact backpropagation

$$\begin{bmatrix} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Successful training of NNs requires well chosen yet simple building blocks.

Successful training of NNs requires well chosen yet simple building blocks.

1. Problem definition

input and output representation

Successful training of NNs requires well chosen yet simple building blocks.

1. Problem definition

- input and output representation
- 2. Dataset
 - pairs of desired input and output

Successful training of NNs requires well chosen yet simple building blocks.

1. Problem definition

input and output representation

2. Dataset

- pairs of desired input and output
- 3. Objective and loss function
 - sum over loss on dataset samples

 $\sum L(\operatorname{nn}(\mathbf{x}^{(i)},\theta) - y^{(i)})$ $(\mathbf{x}^{(i)}, y^{(i)}) \in D$

Successful training of NNs requires well chosen yet simple building blocks.

1. Problem definition

input and output representation

2. Dataset

- pairs of desired input and output
- 3. Objective and loss function
 - sum over loss on dataset samples

4. NN model

stack of linear and non-linear layers

$$\sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in D} L(\operatorname{nn}(\mathbf{x}^{(i)}, \theta) - y^{(i)})$$

Successful training of NNs requires well chosen yet simple building blocks.

1. Problem definition

- input and output representation
- 2. Dataset
 - pairs of desired input and output
- 3. Objective and loss function
 - sum over loss on dataset samples
- 4. NN model
 - stack of linear and non-linear layers
- 5. Optimization procedure (solver)
 - iterative gradient descent approximation

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

 $L(\operatorname{nn}(\mathbf{x}^{(i)}, \theta) - y^{(i)})$ $(\mathbf{x}^{(i)}, y^{(i)}) \in D$

62

RGL Realistic Graphics Lab

Outlook Advanced NNs

Convolution, Filters

Filtering of images with local kernels has a long history, for instance for edge detection.

Local kernel

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Convolution, Filters

Filtering of images with local kernels has a long history, for instance for edge detection.

Local kernel

[cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12]

CS-328 64

Convolutional Neural Networks

Convolutional NNs apply convolutions with trainable weights — weight sharing.

Local operations, weights shared

Data dependent filter

NNs capture the training examples. A network has different features on a different dataset.

High-level

Recurrent neural networks

Network structures can be complex, e.g. the input at time t can be the output of time t-1.

Stacking multiple NNs

Recurrent neural networks

Network structures can be complex, e.g. the input at time t can be the output of time t-1.

Stacking multiple NNs

Gated Recurrent Units (GRU)

 A simplification of Long-term Short-Term Memory (LSTM)

Generative adversarial networks (GANs)

Generative adversarial networks (GANs)

Neural style transfer

Networks can disentangle style and content, recombinations lead to artistic pieces.

Neural style transfer

The style transfer works on many different styles.

Understanding neural networks

By optimising the input image instead of the network weights, the learned patterns are revealed.

ÉCOLE POLYTECHNIQU Fédérale de Lausann

Towers & Pagodas **RGL** Realistic Graphics Lab, **CVL** Computer Vision Lab Birds & Insects

CS-328 71

Deep Dreams

AlphaGo

Training NNs requires well defined environments, such as the strict rules of a GO game.

Dangerous or of merit?

- Social impact
 - Replaces repetitive jobs
 - Creates new jobs
- Dangers
 - Fake news
 - Bias of data
 - General artificial intelligence (GAI)

Open Letter on Artificial Intelligence

- Stephen Hawking, Elon Musk, and dozens of artificial intelligence experts

Virtual dubbing

[www.synthesia.io]

Virtual dubbing

[www.synthesia.io]

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

Homework 5

Building a neural network to classify fashion items from their pictures.

RGL Realistic Graphics Lab, **CVL** Computer Vision Lab

