Visual AI

CPSC 532R/533R – 2019/2020 Term 2

Lecture 2. Deep learning basics and best practices

Helge Rhodin
Overview

• Course project introduction

• Compute resources

• Machine learning components in PyTorch
 • Interactive

• Best practices
 • Optimization
 • Loss functions
 • Training and evaluation
Organization

Instructor: Helge Rhodin
rhodin@cs.ubc.ca

Office hours: Wednesday 11 am – noon
Room ICCS X653

Teaching assistant: Yuchi Zhang
yuchi45@cs.ubc.ca

Office hours: Tuesday 1 pm – 2 pm
Room ICCS X341

Course Website

Curriculum: https://www.cs.ubc.ca/~rhodin/20_CPSC_532R_533R/

Forum: https://piazza.com/ubc.ca/winterterm22019/cs532533
Assignment I

“Playing with PyTorch”

• Network architecture
• Dataloaders
• Evaluation
• Visualization
• Optional add-ons

• Posted on Piazza
• Submit solution on Canvas

• You can choose your own problem (the task is to implement certain changes)
 • Many good PyTorch tutorials on the web!
 • self-study according to your background knowledge
Jupyter notebooks in Jupyter Lab

Browser-based editor

- easy to use
- cell-based notebooks (.ipynb)
- Good integration of plotting and interactive tools
- remote access possible
 (start Jupyter Lab on the server, access url on client)
Course projects

Conditions
• groups of two students
• a CV or CG topic of your choice

Project proposal
• 3-minute pitch
• written proposal (one page, 11pt font)
 • research idea
 • possible algorithmic contributions
 • outline of the planned evaluation

Project scope
• Literature review
• Development and coding
• Evaluation

Project report
• 8 pages in CVPR double column format
• Sections: motivation, related work, method description, and evaluation

Project presentation
• 10 min talk per group
Possible project directions I

Improve visual quality
- e.g., account for perspective effects

Character animation
- handle mesh and skeleton sequences

Movie editing
- “movie reshaping”
Possible project directions II

Killer whale identification
Andrew W Trites
Professor and Director
Institute for the Oceans and Fisheries UBC

Prevent foot sliding

mm-accurate 3D pose estimation

Dr. Jörg Spörri
Sport medicine head
University Hospital Balgrist

IMU-based?
Possible project directions III

- Fast motion capture
 - Exploit fast-moving background

- Computer graphics (simulation)
 + Computer vision (real world)

- Your own idea!
Compute resources

Personal
- Your laptop / desktop
 - No GPU?

UBC
- lin01.students.cs.ubc.ca to lin25.students.cs.ubc.ca
 - GTX 1060, 3GB memory
 - Will be setup with pytorch for Assignment 2

Cloud computing
- google colab
 - Tesla K80 GPU
 (free so long you have limited workload)
Tensors in pytorch

• Tensor: a multi-dimensional array
 • scaler, vector, matrix, … tensor
• Term hijacked by ML community (in the math/physics community a tensor is a function that can be represented by a multi-dimensional array, but not every array is a math tensor)
• Pytorch uses the NCHW convention:
 dim 0: N, the number of images in a batch
 dim 1: C, the number of channels of an image / feature map
 dim 2: H, the height of the image / feature map
 dim 3: W, the width of the image / feature map
• Different #dimensions possible, dependent on the task

• Order of dimensions matters (cache locality, parallelization)
 • TensorFlow has C in the last dimension, Nervada Neon N

For the sake of performance...

```python
from PIL import Image
pil_image = torch.FloatTensor(np.array(Image.open("img.jpg")))/256

tensor_image = pil_image.permute(2, 0, 1)

pil_image = tensor_image.permute(1, 2, 0)
plt.imshow(tensor_image.permute(1, 2, 0))

batch = torch.stack([[tensor_image, tensor_image, tensor_image]])
```
Datasets, preprocessing, and efficient loading

• Well-known datasets readily available
 • MNIST, KMNIST, EMNIST, QMNIST, Fashion-MNIST
 • COCO, ImageNet, CIFAR, Cityscapes, Kinetics-400
 • Many more: pytorch.org/docs/stable/torchvision/datasets.html

• Loading custom datasets
 • FakeData, ImageFolder, DatasetFolder

• Efficient data loaders
 • parallel threads
 • pinned memory

```
train_set = datasets.FashionMNIST(
    root = './data/FashionMNIST',
    train = True,
    download = True,
    transform = transforms.Compose([transforms.ToTensor(),])
)

loader = torch.utils.data.DataLoader(
    train_set, batch_size = 8)
```
Neural network building blocks (basics)

A summary. More details are provided in supplemental slides.

Fully-connected layer

- Linear transformation + activation function
 (ReLU, sigmoid, tanh, exp)
- Each layer is composed of multiple neurons
 (same computational rule, different weights)
- Multiple fully-connected layers form a multi layer perceptron (MLP)

Convolution

- **Local** linear transformation + activation function
- Each layer is composed of multiple neurons, some of them sharing weights
- Multiple layers form a convolutional neural network (CNN)
Neural network definition in PyTorch

- Standard architectures

```python
network = torchvision.models.resnet18(num_classes=10).cuda()
```

- Custom designs

```python
class Network(nn.Module):
    def __init__(self):
        super(Network, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )
        self.MLP = nn.Linear(in_features=12*4*4, out_features=10)

    def forward(self, batch):
        t = self.conv(batch)
        t = t.reshape(-1, 12*4*4)
        return self.MLP(t)
```
Deep learning – its curve fitting

Parametric curves
- Polynomial
 \[f(x) = \theta_0 + \theta_1 x + \theta_2 x^2 \]
- Spline
 \[f(x) = \begin{cases}
 f_1(x), & \text{if } x_1 < x \leq x_2 \\
 f_2(x), & \text{if } x_2 < x \leq x_3 \\
 \vdots & \vdots \\
 f_n(x), & \text{if } x_n < x \leq x_{n+1}
\end{cases} \]
- Neural network
 \[f(x) = h(\text{linear}(h(\text{linear}(x, W^{(1)})), W^{(2)})) \]

Goal: Find \(\theta \) that minimizes the objective function on the dataset \(D \)

\[\arg \min_{\theta} E(D, \theta) \]
Objective function

General form

$$\arg \min_\theta E(D, \theta)$$

Separable form

$$E(D, \theta) = \sum_{(x^{(i)}, y^{(i)}) \in D} l(f(x^{(i)}, \theta), y^{(i)})$$

MNIST example

$$E(D, \theta) = \sum_{(x^{(i)}, y^{(i)}) \in D} (f(x^{(i)}, \theta) - y^{(i)})^2$$

$$= (f(7, \theta) - 7)^2 + (f(8, \theta) - 8)^2 \ldots$$

Note, in PyTorch, a loss is also called a criterion

- **Quadratic loss**
 $$l_2(y, l) = (y - l)^2$$

- **Absolute loss**
 $$l_1(y, l) = |y - l|$$
Objective function in pytorch

Regression: squared loss, l1 loss, huber loss…
• nn.functional. MSELoss(pred, gt)

Classification: cross-entropy loss, hinge loss, …
• nn.functional.cross_entropy(pred_probabilities, gt_probabilities)

• class MyHingeLoss(torch.nn.Module):
 def __init__(self):
 super(MyHingeLoss, self).__init__()
 def forward(self, output, target):
 hinge_loss = 1 - torch.mul(output, target)
 hinge_loss[hinge_loss < 0] = 0
 return hinge_loss

https://medium.com/bbm406f16/week-4-classification-or-regression-f2bf5072cc43
Classification vs. regression

Classification

Regression
Classification and regression

- Regression
 (for continuous values)
 \[\text{nn}(x) \rightarrow y \in \mathbb{R} \]
 \[l_2(y, l) = (y - l)^2 \]

- Classification
 - discrete classes
 \[\text{nn}(x) \rightarrow y \in [0, 1] \]
 - probabilistic interpretation (probability of class)
 \[l_2(y, l) = ||y - l||^2 \]
Cross-entropy loss / Cross-entropy criterion

Cross entropy definition:

\[H(p, q) = - \mathbb{E}_p[\log q] = - \sum_{c=1}^{K} p(c) \log q(c) \]

Cross-entropy loss for label \(y \)

\[l_{\text{cross entropy}}(x, y) = - \sum_{j=1}^{K} y[j] \log(f[j](x)) \]

j’th value of vector, j’th class

Negative Log Likelihood (NLL) formulation for a one-hot vector, target class \(c \)

\[l_{\text{NLL}}(x, c) = - \log(f[c](x)) \]

There is a trivial solution, simply let \(f \) go to infinity for all classes!
Cross correlation with a soft-max layer

Negative log likelihood with preceding soft-max

\[
l_{\text{log-likelihood}}(x, y) = -\log(\text{soft-max}(f(x), y))
\]

\[
= -f_{[y]}(x) + \log \left(\sum_{j=1}^{K} e^{f_{[j]}(x)} \right)
\]

log-sum-exp trick

\[
\text{log-sum-exp}(z) = \log \left(\sum_{j=1}^{K} e^{z_j} \right)
\]

\[
= \bar{z} + \log \left(\sum_{j=1}^{K} e^{z_j - \bar{z}} \right)
\]

with \(\bar{z} = \max(z) \)

Soft-max

\[
\text{soft-max}(z, i) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}
\]

Exp normalize trick

\[
\text{soft-max}(z, i) = \frac{e^{z_i} - \bar{z}}{\sum_{j=1}^{K} e^{z_j} - \bar{z}}
\]

shift invariance to increase numerical stability!
Cross-entropy loss in PyTorch

```python
def cross_entropy(input, ...):
    return nll_loss(log_softmax(input ...
```

- Includes the normalization by log-softmax
 - numerically stable
 - fast
 - don’t normalize twice with your own soft-max layer!
Regression revisited

Error functions
$E(x)$

Distributions
$p(x) = \exp(-E(x))$

x^2
Mean squared error (MSE)

$|x|$
Mean absolute error (MAE)

$\exp(-x^2)$
Gaussian distribution

$\exp(-|x|)$
Laplace distribution

Simple case

Complex case and its quadratic/Gaussian approximation

$\exp(-|x|)$
3 min Break

Register on Piazza or play playground.tensorflow.org
Optimization loop in Pytorch

• Iterative local optimization (opt) over minibatches \((x, y)\) returned by the dataloader (loader) using automatic differentiation of the objective and neural network (loss.backward())

• iterator = iter(loader)
device = "cuda"

```python
for i in range(len(loader)):
    x, y = next(iterator)
preds = net(x)
loss = nn.functional.cross_entropy(preds, y)
opt = optim.SGD(net.parameters(), lr=0.001)

optimizer.zero_grad()
loss.backward()
opt.step()
```

Don’t forget zero gradients, pytorch accumulates gradients by default
4. Evaluation

Training loss (per iteration) Validation loss (per epoch) Test accuracy (once and for all)

Golden rule of machine learning: Don’t touch the test set when building your model (including high-level design choices)!

My silver rule: Don’t use only the training set. Separate out a validation set to systematically determine hyper parameters (stopping time, network architecture, …). How else? Human intelligence?
Hidden questions

1. Hidden rule of credit function learning. What about evaluating each time we update a paper?

2. What’s offline intelligence (OI)? How is offline intelligence?

3. What offline constraints are not supported by Apache, TensorFlow?
Open MSc / PhD position

Interactive FishTank VR experience

• STAIR project with Sidney Fels (ECE)

• Interested? Send me a note, rhodin@cs.ubc.ca