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Assignment 3
« Rendering

« Learning shape spaces
* Interpolating in shape spaces

* Due today

Assignment 3: Neural Rendering and Shape Processing

CPSC 532R/533R Visual Al
by Helge Rhodin and Yuchi Zhang

This assignment is on neural rendering and shape processing—computer graphics. We
provide you with a dataset of 2D icons and corresponding vector graphics as shown in
Figure 1. It stems from a line of work on translating low-resolution icons to visually
appealing vector forms and was kindly provided by Sheffer et al. [1] for the purpose of
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Figure 1: Icon vector graphics and their bitmap representation.

The overall goal of this assignment is to find transformation between icons. We provide
the TmagerIcon dataset as an HDF5 file. As usual, the Assignment3_TaskI.ipynb
notebook provides dataloading, training and validation splits, as well as display and
training functionality. Compatibility of the developed neural networks with color im-
ages is ensured by storing the contained 32 x 32 icon bitmaps as 3 x W x H tensors.
Vector graphics are represented as polygons with N = 96 vertices and are stored as
2 x N tensors, with neighboring points stored sequentially. The polygon representa-
tion with a fixed number of vertices was attained by subsampling the originally curved
vector graphics.



Recap: GAN training

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do
e Sample minibatch of mn noise samples {z(1), ..., (™)} from noise prior Dg(2).
e Sample minibatch of m examples {z*),..., ("™} from data generating distribution
pdata(m)'

e Update the discriminator by ascending its stochastic gradient:

m

Vo, 3" s (&%) +105 (1~ 0 (0 (9)))]

end for
e Sample minibatch of m noise samples {z(), ..., 2™} from noise prior p(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 (10 (6 (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Green: outer loop on generator (gradient descent)

Orange: inner loop on discriminator (gradient ascent)
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Chaotic GAN loss behavior
(e.g., generator loss going up not down)
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[Goodfellow et al., Generative Adversarial Networks. 2014]



UBC
Recap: Wasserstein GAN @#

Diverse measures exist to compare probability distributions (here generated and real image distribution)

e The Total Variation (TV) distance e The Earth-Mover (EM) distance or Wasserstein-1
— _ W(P,,P,)= inf E, | llz— :
5(P,,P,) sup P, (A) — P,(A)| . (B By) = ol Eaa [z —wyll]

e The Kullback-Leibler (KL) divergence

KL(P,|P,) = flog (?_((3) P(z)du(z) Compare in this direction
g

e The Jensen-Shannon (JS) divergence ot in this direction

JS(Pr,Py) = KL(Py||Pm) + KL(Py|[Pra) EM distance principle
where P, = (P, +P,)/2

JS is what the classical GAN optimizes

[Arjovsky et al., Wasserstein GAN. 2017]



Recap: Comparison: VAE and GAN

VAE
Objective

min ~Eneg, (hpo (log pe(x|h)) + Dxr(gy(h[x)|p(h))

Sampling a ‘natural’ image
« Draw a random sample from a Gaussian

h ~ N(0,1)
» Apply the decoder on h

Computing the probability of a given image x
* Apply the encoder on x
h = ep(x)
« Evaluate the prior on h

N (h|0,1)

« thanks to explicit density model

@-E

GAN

mCiT‘n rrlfju)c[li,wpr log D(z)] + E.np. [log(1 — D(G(2)))]]

 Draw a random sample from a Gaussian
z ~N(0,1)

« Apply the generator on z

* Not applicable!
* it models an implicit density
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Recap: Style GAN internals

« Compute style description given noise (form of non-Gaussian noise)

(%]
. S
« Apply style and add noise at all layers (of ProgGAN generator) 3
O
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(a) Traditional (b) Style-based generator



Recap: Paired vs. unpaired image translation
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Recap: Cycle GAN principle N
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Construct an identity function by chaining two translation networks

a e
/—\ - - ‘ A/—\ -
Dx Dy 7 N Y N A X v
A G A I i

\_/ : . i .\g ..... loss
i cycle-consistency .

X Y X\ Y X Y cycle-consistency

F loss

« Jointly learn to

« map from X to Y and back to X i .
P Canonical solutions?

« map fromY to X and back to Y

]



Attention mechanisms, preliminaries



Image reconstruction from NN activations "@"?
input hidden  weights/ output
Neural network training features features parameters feature

e given architecture, objective and dataset
« optimize the weights to explain the data

VLV =W B
- \," \ -/’; X
Image reconstruction W g g g /7
* given target features/activations at a layer ‘10’ o ad
(e.g., elephant class = true) Rap ELg Ny
imize the i ield th f \Z s
« optimize the input to yield the target feature \D‘ E};{f/nz
- starting from noise or bl g

Multilayer perceptron (fully connected network)

« starting from an example image _
live at playground.tensorflow.org

« constrain solution to be close to the
example image and target feature

10



DeepDream (Google)

optimize
with prior

[Erhan et al., Visualizing Higher-Layel
Features of a Deep Network. 2009]

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"

CPSC 532R/533R - Visual Al - Helge Rhodin 11



More dreams

Ostrich Lemon Keyboard Dumbbell Kit fox Bell peppe Beacon Volcano

Viy \ Yy _o%

(a) Real

, norm

(2014)

blur

Yosinski et al Simonyan et al
(2015)
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(2015)

(d) Patch
dataset
Wei et al

(e) Total
variation
(2016)

Nguyen et al Mahendran et al
(2016)

e (f) Center
bias
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Recap: Style transfer

Idea: ‘turn NN training on its head’
« apply gradient descent

» with respect to the ‘input’ image

(instead of NN weights)

« keep the neural network weights fixed
« find neural network features that

Convolutional Neural Network

4 3 1
1. capture style (averaged spatially) ! o
« correlation between features of a layer

2. capture content
« |2 difference between features of a layer

« set the objective function as the distance of ‘input’
» to style target (painting), in terms of style features
« to content target (photo), in terms of content features

[Gatys et al., A Neural Algorithm of Artistic Style 2015] 13



Style transfer results

14



Adversarial examples

How to fool a classifier
« Goal:

* animage that is lose to the original

« yields the wrong output,

» on the right ‘ostrich, Struthio camelus’

e Solution:

« gradient descent on the colors of the input

image

* New branch of research:

* how to protect from adversarial examples?

CPSC 532R/533R - Visual Al - Helge Rhodin

original noise adversarial
(10x amplified)  example

[Szegedy et al. Intriguing properties of neural networks, 2013]
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Explaining predictions

Some form of tracing back

the NN computations

Measuring the contribution of each
input pixel to the final outcome

A heatmap that measures importance

classify image

£

Black Box

Al System

heatmap

Al system's decision is
based on these pixels

explain prediction

Why explainability ?

__________________________________

' Verify predictions
' | Identify flaws and biases
Learn about the problem

——— | Rooster

prediction f(x)

Ensure compliance to Ieglslatlon '

__________________________________

16



Interpretability of neural networks

Analyze the gradient of the objective with respect to the
input pixels [Baehrens et al. 2010]

* alocal linear approximation of the model’s behavior
* uite sensitive to noise

Applies to various different domains
* images, text, motion (videos)

Extensions:
» integrated gradients [Sundararajan et al. 2016]
« SmoothGrad [Smilkov et al. 2017]
» layer-wise relevance propagation (LRP)
[Bach et al. 2015]

(A) Image classification
Explaining predictions: "Volcano", “Coffe Cup"
SA LRP

(B) Text document classification
Explaining prediction: “sci.med"

SA

" - S

e
space

Quantitave comparison of SA and LRP Quantitave comparison of SA and LRP

1.0x—_ Original prediction score 10
| (no perturbations)

Original accuracy
(no deletions)

Normalized
prediction score
o
>

0 10 20 30 40 50 o 10 20 30 40 50
Number of perturbations Number of word deletions

(C) Human action recognition in videos
Explaining prediction: "sit-up"

s

K
M

LRP relevan\ces\ /

per frame
80 100

0 2
Video frame
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Attention mechanisms



Attention maps

« Spatially adaptive pooling of features
« weighted average of feature map
* weighted by attention window
« arecursive network can look at multiple
image parts
* inspired by human attention

* Provides an interpretable representation
» spatially localized

14x14 Feature Map

A

bird

1. Input 2. Convolutional 3. RNN with attention 4. Word by

Image  Feature Extraction over the image

flying
over
a
body
of
water

word
generation
>

[Xu et al, Show, Attend and Tell: Neural Image
Caption Generation with Visual Attention]
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Constrained attention maps

Idea: use a pre-defined window function
« Gaussian window

* smooth

* infinite support

« exponential falloff

» simple to compute

» Other possible functions?
* bump functions
* smooth
« finite, compact support
« exponential falloff
* simple to compute

* box function?
[Show, Attend and Tell: Neural Image Caption Generation with Visual Attention] 20



Hard attention windows

Cropping a subset of pixels

g = I[y:y+h, x:x+w]
efficient (the subsequent network only looks at a smaller part)
non-differentiable

Rol pooling

compute a crop of fixed resolution

part the crop window into a fixed number of bins

* e.g., 7X7 bins

distribute pixels to bins

* round for those on the boundary between bins
(nearest bin)

average or max pool within each bin

21



Spatial transformer networks (STN)

Definition: A neural network layer that
« subsamples the original image
* e.g., cropping with sub-pixel accuracy
» parameterized by the grid of target pixels
« using bilinear interpolation for each grid point

The grid is usually defined by a parametric function
« isitself an other network layer

rigid transforms (translation, rotation scaling)
* most common

thin-plate spline
 anon-linear deformation

as the integral of velocities

T1(G)

v h N g

T,

% U

Sampling according to arbitrary grid

[Jaderberg et al., Spatial Transformer Networks, 2015]
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STN <
summary + 4 W
+ + + w
The STN consists of o N
1. grid generation s :
+ 44
e parametric ’
- . + + +
« differentiable + + / *
2. grid sampling o d o+ 4+ (X)) (X2,y2)
. blllr?ear mtgrpolaﬂon grid (dagrayrk) on
- differentiable image grid (red)
 still efficient
(compared to non-differentiable cropping and soft windows) (X1,y1) (X2,y1)
 moderate smoothness guarantees .D=G O+
(piecewise linear) o — L DIII

Bilinear
interpolation

23



STN results

Advantages

zoom into image (normalize scale)
can rotate (normalize orientation)
undo other deformations
-> higher accuracy

Model
Cimpoi 15 [5] 66.7
Zhang 14 [40] 74.9
Branson 14 [3] =
Lin ’15 [23] 80.9
Simon 15 [30] 81.0

CNN (ours) 224px || 82.3
2xST-CNN 224px || 83.1
2xST-CNN 448px || 83.9
4xST-CNN 448px || 84.1

24



Focal spatial transformer = smooth window + hard window ?@*

A combination of smooth and hard windowing
« scale normalization by hard window ——

bounding box

* smoothness by soft window
« only a small computational overhead Decoded

image

« multiplication

Not quite sure why and when it helps b;zgggna;gox

« under investigation (by Willis)

. . . . ded
* in this work, the spatial transformer is used Dﬁﬁggﬁ

twice at encoding and decoding time U 3K s
* note, STNs can go from low to high and high
to low resolution

[Rhodin et al. Neural Scene Decomposition, CVPR’19] o5
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You only look once (YOLO): Real-Time Object Detection ?'@?

Goal: A joint model for object detection and classification
« a clever network architecture

» pure feed-forward, fast by design

* high accuracy

« varying bounding box size and aspect ratio
« an efficient implementation

« ‘dark-net’ framework

* inspired by GooglLeNet

» custom C/CUDA implementation

« all layers hand coded

‘k '!_U'
"'-!A n —
Final detections

» all derivatives hand coded! S xS grid on input

Class probability map
[Redmon et al. YOLO: Real-Time Object Detection 2016] 27



Yolo Details

Final detections

Fully convolutional
(without classification branch)

i

Class probability map

— CAR
— TRUCK
= VAN

' [ — sicvee
FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

28



Unrelated but funny: UBC
Who Let The Dogs Out? Modeling Dog Behavior From Visual Data W

By the YOLO author, Joseph Redmon

« Learning visual features and behavior by
observing an egocentric dog camera

w _.ii action?

Y A

t+3

representation
learning

walkable surfaces

29



RolAlign pooling

Goal: attain a fixed-size localized feature map
« compute grid points for target bins

« four locations in each Rol bin

« bilinear interpolation for each sample

« average or max polling within each bin

It is a variant of STNs
 differentiable with respect to position

30



Mask R-CNN

A joint model for

* object detection

* instance segmentation

« extending Region-based CNN (R-CNN)

Advantages
« fast

« accurate
« simple

[He et al, Mask R-CNN]

31



Mask R-CNN details

A multi-stage process

1.

2.
3.
4

backbone network to extract feature maps
RolAlign pooling per object candidate
separate classification branch

instance segmentation

(one channel per class)

RolAlign
2.

\ 4

32
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Perspective spatial transformer

€

Goal: self-supervised training of reconstruction

Given: set of multi-view images at training time
Training: a neural network that predicts a 3D shape NE 4
- consistent with all views Input 2D ‘ S@W
« using silhouette constraints Image IV Volume V /
Requires: ™ h - ﬁ
8(3)
« 2D to 3D correspondences ‘ \
« a perspective 3D spatial transformer
Transformations
{T(l),T(Z),...T(n)} S@2)
Target 2D

mask S

33



Perspective spatial transformer, details
Input 2D
Concept:
« predict a 3D occupancy grid given the input view
« construct a N 3D grids (one for each reference view)
« pyramidal form, with
» position and orientation of reference cameras
* models the perspective effect

« sample the 3D volume d,

« as for 2D spatial transformers, but

by trilinear interpolation
« take the maximum along the depth direction

< models projection T RS

~
~

/
C A
LN

* minimize the distance of this projection to the volume

reference image silhouette (see prev. slide)

*
i

Image I Volume V

0

€

1S §

!
!

!

s
-
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Recap: Linear transformations

Used in computer graphics and computer vision
A chain of linear maps is a linear map

* rotation

« scaling

« shear and mirror

35



Recap: Affine transformations & augmented matrix and vector

Can express rigid

transformations

Translation
Scale
Rotation
Shear and
mirror

Linear

f(x)= Z W, X;

=W X

=

|

Multidimensional

f(x) = Wx

i

UB
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€

Affine

[] +
f(x)=2:w,£x,,;+b

=w-x+5b }

=w - % [T [
e X
with w = (Wl, W, ..., Wy, D)
and X = (X1,X2,...,X,, 1) — )
(x) =W - %
f(x) x
Wi Wiz ... Wi, I L
with W = (WZJ W22 ... Wap }’2) W b 1

36



Recap: Projective transformation & Homogeneous coordinates ?'@?

Equivalence in homogeneous coordinates
« Compared to the Euclidean space, points are not unique:

[z, ] [\ ] i 1/ Tm ]

L2 ToA ZL’Q/LCm
Trm—1 L1 A Ton—1/Tm Pinhole camera model
| xm _ | xm)\ i | 1 |

» Able to model perspective transformations (projection) as a
linear transformation T

0 0 O
)~ (o 7 0] (1)L (2)
1 0 0 1 0 “13 J2 T3 \ "2

Projection in Homogeneous coordinates Projection in Euclidean coordinates

37
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Summary W
« 11 Lectures (Weeks 1 — 6) « 3XxAssignments

* Introduction « Playing with pytorch (5% of points)

« Deep learning basics and best practices * Pose estimation (10% of points)

« Network architectures for image processing + Shape generation (10% of points)

Representing images and sparse 2D keypoints : :
P _ gimag P _ P »  1x Project (40 % of points)
Representing dense and 3D keypoints , , :
_ * Project pitch (3 min, week 6)

Representing geometry and shape _ , _

_ _ o * Project presentation (10 min, week 14)
Representation learning | (deterministic) _ _

_ _ o * Project report (8 pages, April 14)
Representation learning Il (probabilistic)

Sequential decision making 1x Paper presentation (Weeks 8 — 13
Unpaired image translation «  Presentation, once per student (25% of points)
Attention models (20 min + 15 min discussion, week 8-13)

* Read and review one out of the two papers

/ presented per session (10% of points)

except on the day of your presentation, please submit your slides instead (PDF)
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Course project proposal

Project proposal

3-minute pitch

answer three questions
what, why, how?

2-3 slides should be enough
keep it high level

submit slides on canvas

written proposal (one page, 11pt font)

research idea
possible algorithmic contributions
outline of the planned evaluation

Representation learning | (deterministic) lecture slides

- principal component analysis (PCA)

PCA face model

Jan 23 Deep Learning
- auto-encoder (AE)
Homework 2 dus. Hemewerc3-release Book - Chapter 14
w4
Representation learning || (probabilistic) lecture slides
Jan 30 - variational autoencoder (VAE) Deep Learning
- generative adversarial network (GAN) Bock - Chapter 20
Homework 3 release Assignment3 zip (posted Feb. 1)
Sequential decision making
Feb 4 - Monte Carlo methods %}2 Lgﬁg”?gr 17
- reinforcement learning = pler 17
Wa Unpaired image translation
Feb 6 - cycle consistency Cycle Gan
- style transfer Style transfer
Attention models Rol pooling, Spatial
Fab 11 - spatial transformers, Rol pooling, attention maps Transformer
- camera models and multi-view Multi-view
W6 Homework 3 due (new deadline) Geometry
Project Pitches (3 min pitch)
Feb 13 Project proposal due
W7 Midterm Break (no class)
Conditional content generation
Park et al., Semantic Image Synthesis with Spatially-Adaptive Normalization
Feb 25 paper
Liet al, Putting Humans in a Scene: Learning Affordance in 3D Indoor
W8 Environments paper
Motion transfer
Feb 27 Chan et al, Everybody Dance Now paper

Gao et al | Automatic Unpaired Shape Deformation Transfer paper

39



Course project schedule

#group Time

. a) 930 » Course Project Signup 3
14 projects
b) 9:35:30 » Course Project Signup 4
« 16 persons teamed up
. C) 9:41 Course Project Signup 5
* 5single teams
. d) 9:46:30 » Course Project Signup 15
e 0.5 minute setup
. ; e) 952 » Course Project Signup 16
* 3 minute pitch
- f) 95730 » Differentiable Shadow Rendering
* 2 minutes comments
H g) 1003 l Visual Quality of Ui I
* makes 77 minutes Co
h) 100830 »  Killer Whale Identification
. |) 1014 » Knots Detection Based on Timber Board ... & st
« 3 minutes slack
J) 101930 » Methods from Neuroevolution toimprov... 2 EGEUNLU
. . . k) 1025 » Pose-Guided Visual Commonsense Reaso.. £ Zicong Fan
«  Submit PDF slides till
|) 103030 » Rethinking Visual Classifiers using the M..
Thursday, 7 am
m) 1036 » spatial embeddings to improve the gener.
« on Canvas )
n) 104130 »  Virtual Keyboard

0) 10:47 DO ne.



