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Assignment 3

• Rendering

• Learning shape spaces

• Interpolating in shape spaces

• Due today
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Recap: GAN training

[Goodfellow et al., Generative Adversarial Networks. 2014]

Chaotic GAN loss behavior 

(e.g., generator loss going up not down)

Green: outer loop on generator (gradient descent)

Orange: inner loop on discriminator (gradient ascent)
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Recap: Wasserstein GAN

Diverse measures exist to compare probability distributions (here generated and real image distribution)

[Arjovsky et al., Wasserstein GAN. 2017]

EM distance principle

JS is what the classical GAN optimizes
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Objective

Sampling a ‘natural’ image

Computing the probability of a given image x

Recap: Comparison: VAE and GAN

VAE

• Draw a random sample from a Gaussian

• Apply the decoder on h

• Apply the encoder on x

• Evaluate the prior on h

• thanks to explicit density model

GAN

• Draw a random sample from a Gaussian

• Apply the generator on z

• Not applicable!

• it models an implicit density  
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Recap: Style GAN internals

• Compute style description given noise (form of non-Gaussian noise)

• Apply style and add noise at all layers (of ProgGAN generator)
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Recap: Paired vs. unpaired image translation
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Recap: Cycle GAN principle

Construct an identity function by chaining two translation networks

• Jointly learn to

• map from X to Y and back to X

• map from Y to X and back to Y 
Canonical solutions?



Attention mechanisms, preliminaries
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Image reconstruction from NN activations

Neural network training

• given architecture, objective and dataset

• optimize the weights to explain the data

Image reconstruction

• given target features/activations at a layer 

(e.g., elephant class = true)

• optimize the input to yield the target feature

• starting from noise or

• starting from an example image

• constrain solution to be close to the 

example image and target feature

live at playground.tensorflow.org

Multilayer perceptron (fully connected network)

input

features

hidden

features

weights/

parameters

output

feature
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DeepDream (Google)

[Erhan et al., Visualizing Higher-Layer 

Features of a Deep Network. 2009]
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More dreams
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Recap: Style transfer

Idea: ‘turn NN training on its head’

• apply gradient descent

• with respect to the ‘input’ image 

(instead of NN weights)

• keep the neural network weights fixed

• find neural network features that

1. capture style (averaged spatially)

• correlation between features of a layer

2. capture content

• l2 difference between features of a layer

• set the objective function as the distance of ‘input’

• to style target (painting), in terms of style features

• to content target (photo), in terms of content features  

[Gatys et al., A Neural Algorithm of Artistic Style 2015]

Style influence grows with depth
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Style transfer results
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Adversarial examples

How to fool a classifier

• Goal:

• an image that is lose to the original

• yields the wrong output,

• on the right ‘ostrich, Struthio camelus’

• Solution:

• gradient descent on the colors of the input

image

• New branch of research:

• how to protect from adversarial examples?

[Szegedy et al. Intriguing properties of neural networks, 2013]

original noise

(10x amplified)
adversarial

example
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Explaining predictions

• Some form of tracing back 

the NN computations

• Measuring the contribution of each 

input pixel to the final outcome

• A heatmap that measures importance
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Interpretability of neural networks

Analyze the gradient of the objective with respect to the 

input pixels [Baehrens et al. 2010]

• a local linear approximation of the model’s behavior 

• quite sensitive to noise

Applies to various different domains

• images, text, motion (videos)

Extensions:

• integrated gradients [Sundararajan et al. 2016]

• SmoothGrad [Smilkov et al. 2017]

• layer-wise relevance propagation (LRP) 

[Bach et al. 2015]



Attention mechanisms
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Attention maps

• Spatially adaptive pooling of features

• weighted average of feature map

• weighted by attention window

• a recursive network can look at multiple 

image parts

• inspired by human attention

• Provides an interpretable representation

• spatially localized

[Xu et al, Show, Attend and Tell: Neural Image 

Caption Generation with Visual Attention]
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Constrained attention maps

Idea: use a pre-defined window function

• Gaussian window

• smooth

• infinite support

• exponential falloff

• simple to compute

• Other possible functions?

• bump functions

• smooth

• finite, compact support 

• exponential falloff

• simple to compute

• box function?
[Show, Attend and Tell: Neural Image Caption Generation with Visual Attention]
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Hard attention windows

Cropping a subset of pixels

• g = I[y:y+h, x:x+w]

• efficient (the subsequent network only looks at a smaller part)

• non-differentiable

RoI pooling

• compute a crop of fixed resolution

• part the crop window into a fixed number of bins

• e.g., 7x7 bins

• distribute pixels to bins

• round for those on the boundary between bins

(nearest bin)

• average or max pool within each bin

http://akosiorek.github.io/ml/2017/10/14/visual-attention.html
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Spatial transformer networks (STN)

Definition: A neural network layer that

• subsamples the original image

• e.g., cropping with sub-pixel accuracy

• parameterized by the grid of target pixels

• using bilinear interpolation for each grid point

The grid is usually defined by a parametric function

• is itself an other network layer

• rigid transforms (translation, rotation scaling)

• most common

• thin-plate spline

• a non-linear deformation

• as the integral of velocities

• …
[Jaderberg et al., Spatial Transformer Networks, 2015]

Sampling according to arbitrary grid
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STN summary

The STN consists of 

1. grid generation

• parametric

• differentiable

2. grid sampling

• bilinear interpolation

• differentiable

• still efficient

(compared to non-differentiable cropping and soft windows)

• moderate smoothness guarantees

(piecewise linear)

Bilinear

interpolation

grid (dagrayrk) on 

image grid (red)
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STN results

Advantages

• zoom into image (normalize scale)

• can rotate (normalize orientation)

• undo other deformations

• -> higher accuracy
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Focal spatial transformer = smooth window +  hard window

A combination of smooth and hard windowing

• scale normalization by hard window

• smoothness by soft window

• only a small computational overhead

• multiplication

Not quite sure why and when it helps

• under investigation (by Willis)

• in this work, the spatial transformer is used

twice at encoding and decoding time

• note, STNs can go from low to high and high

to low resolution

[Rhodin et al. Neural Scene Decomposition, CVPR’19]



Applications
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You only look once (YOLO): Real-Time Object Detection

Goal: A joint model for object detection and classification

• a clever network architecture

• pure feed-forward, fast by design

• high accuracy

• varying bounding box size and aspect ratio

• an efficient implementation

• ‘dark-net’ framework

• inspired by GoogLeNet

• custom C/CUDA implementation

• all layers hand coded

• all derivatives hand coded!

[Redmon et al. YOLO: Real-Time Object Detection 2016]
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Yolo Details

Fully convolutional

(without classification branch)
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Unrelated but funny:
Who Let The Dogs Out? Modeling Dog Behavior From Visual Data

By the YOLO author, Joseph Redmon

• Learning visual features and behavior by 

observing an egocentric dog camera
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RoIAlign pooling

Goal: attain a fixed-size localized feature map

• compute grid points for target bins 

• four locations in each RoI bin

• bilinear interpolation for each sample

• average or max polling within each bin

It is a variant of STNs

• differentiable with respect to position
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Mask R-CNN

A joint model for

• object detection

• instance segmentation

• extending Region-based CNN (R-CNN)

Advantages

• fast

• accurate

• simple

[He et al, Mask R-CNN] 
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Mask R-CNN details

A multi-stage process

1. backbone network to extract feature maps

2. RoIAlign pooling per object candidate

3. separate classification branch

4. instance segmentation

(one channel per class)

1.

2.

3.

4.
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Perspective spatial transformer

Goal: self-supervised training of reconstruction

Given: set of multi-view images at training time

Training: a neural network that predicts a 3D shape

• consistent with all views

• using silhouette constraints

Requires:

• 2D to 3D correspondences

• a perspective 3D spatial transformer
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Perspective spatial transformer, details

Concept:

• predict a 3D occupancy grid given the input view

• construct a N 3D grids (one for each reference view)

• pyramidal form, with 

• position and orientation of reference cameras

• models the perspective effect

• sample the 3D volume 

• as for 2D spatial transformers, but 

by trilinear interpolation

• take the maximum along the depth direction

• models projection

• minimize the distance of this projection to the

reference image silhouette (see prev. slide)
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Recap: Linear transformations

• Used in computer graphics and computer vision

• A chain of linear maps is a linear map

• rotation

• scaling

• shear and mirror

CameraA

right

up
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Recap: Affine transformations & augmented matrix and vector

• Can express rigid 

transformations

• Translation

• Scale

• Rotation

• Shear and 

mirror

Multidimensional

Linear Affine
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Recap: Projective transformation & Homogeneous coordinates

Equivalence in homogeneous coordinates

• Compared to the Euclidean space, points are not unique:

• Able to model perspective transformations (projection) as a 

linear transformation

[https://en.wikipedia.org/wiki

/Pinhole_camera_model]

Pinhole camera model

Projection in Euclidean coordinatesProjection in Homogeneous coordinates
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Summary 

• 11 Lectures (Weeks 1 – 6)

• Introduction

• Deep learning basics and best practices

• Network architectures for image processing

• Representing images and sparse 2D keypoints

• Representing dense and 3D keypoints

• Representing geometry and shape

• Representation learning I (deterministic)

• Representation learning II (probabilistic)

• Sequential decision making

• Unpaired image translation

• Attention models

• 1x Project (40 % of points)

• Project pitch (3 min, week 6)

• Project presentation (10 min, week 14)

• Project report (8 pages, April 14)

• 1x Paper presentation (Weeks 8 – 13)

• Presentation, once per student (25% of points)

(20 min + 15 min discussion, week 8-13)

• Read and review one out of the two papers 

presented per session (10% of points)

• 3x Assignments

• Playing with pytorch (5% of points)

• Pose estimation (10% of points)

• Shape generation (10% of points)

except on the day of your presentation, please submit your slides instead (PDF)
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Course project proposal

Project proposal

• 3-minute pitch

• answer three questions

• what, why, how?

• 2-3 slides should be enough

• keep it high level

• submit slides on canvas

• written proposal (one page, 11pt font)

• research idea

• possible algorithmic contributions

• outline of the planned evaluation
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Course project schedule

• 14 projects

• 16 persons teamed up

• 5 single teams

• 0.5 minute setup

• 3 minute pitch

• 2 minutes comments

• makes 77 minutes

• 3 minutes slack

• Submit PDF slides till 

Thursday, 7 am

• on Canvas

#group       Time 

a) 9:30

b) 9:35:30

c) 9:41

d) 9:46:30

e) 9:52

f) 9:57:30

g) 10:03

h) 10:08:30

i) 10:14

j) 10:19:30

k) 10:25

l) 10:30:30

m) 10:36

n) 10:41:30

o) 10:47 Done.


