Visual AI

CPSC 532R/533R – 2019/2020 Term 2

Lecture 10. GANs and Unpaired Image Translation

Helge Rhodin
Assignment 3

- Rendering
- Learning shape spaces
- Interpolating in shape spaces

- Work independently, don't cheat!
 - disciplinary measures will be reported on your transcripts
 - your future applications may be rejected because of this

Assignment 3: Neural Rendering and Shape Processing

This assignment is on neural rendering and shape processing—computer graphics. We provide you with a dataset of 2D icons and corresponding vector graphics as shown in Figure 1. It stems from a line of work on translating low-resolution icons to visually appealing vector forms and was kindly provided by Sheffer et al. [1] for the purpose of this assignment.

Figure 1: Icon vector graphics and their bitmap representation.

The overall goal of this assignment is to find transformation between icons. We provide the ImagIcon dataset as an HDF5 file. As usual, the Assignment3_Task1.ipynb notebook provides data loading, training and validation splits, as well as display and training functionality. Compatibility of the developed neural networks with color images is ensured by storing the contained 32 x 32 icon bitmaps as 3 x W x H tensors. Vector graphics are represented as polygons with N = 96 vertices and are stored as 2 x N tensors, with neighboring points stored sequentially. The polygon representation with a fixed number of vertices was attained by subsampling the originally curved vector graphics.
Polygon vs. mesh vs. image

Polygon
- two neighbors per vertex
- suited for 1D convolution

Mesh (e.g., triangles)
- different #neighbors per vertex
- requires graph convolution

Image (regular grid)
- eight neighbors per vertex
- suited for 2D convolution

The order of vertices is not important for defining shapes

Translating the image left/right has no effect on convolution
Recap: Reinforcement learning basics

Definitions:

- \(s_t \), the current state of the agent/environment
- \(R(s_t) \), the reward/objective at time \(t \)
 - might be zero for almost all \(t \)
- \(R = \sum_{t=0}^{T} R(s_t) \), the return as sum over all rewards
- \(a \), the action, such as moving right or left
- \(a_t = \pi(s_t) \), the policy of which action \(a_t \) to perform when in state \(s_t \)
- \(s_{t+1} = env(s_t, a_t) \), the environment reacting to the agent’s action

Goal: finding a good policy \(\pi \) such that \(R \) is maximized when executing action \(a_t = \pi(s_t) \)

Update loop:

- decide on a new action \(a_t = \pi(s_t) \)
- update the environment state \(s_{t+1} = env(s_t, a_t) \)
- pay out reward \(R(s_t) \)
Recap: Binary decisions
Computing expectations

Continuous:

Definition

\[E_{x \sim p} f(x) = \int_{\Omega} f(x)p(x) \, dx \]

Discrete set of C classes:

Definition

\[E_{x \sim p} f(x) = \sum_{i=1}^{C} f(x_i)p(x_i) \]

Estimators

Empirical estimate

\[E_{x \sim p} \approx \frac{C}{N} \sum_{i=1}^{N} f(x_i) \text{ with } x_i \sim p \]

Uniform Monte Carlo sampling

\[E_{x \sim p} \approx \frac{C}{N} \sum_{i=1}^{N} f(x_i)p(x_i) \]

with N samples \(x_i \) drawn uniformly at random

Importance sampling

\[E_{x \sim p} \approx \frac{C}{N} \sum_{i=1}^{N} \frac{p(x_i)}{q(x_i)} f(x_i) \text{ with } x_i \sim q \]
Recap: Importance sampling
Derivative of discrete random variables II

1. Start from uniform MC sampling of f
 \textit{(note, not yet of the gradient)}
2. Importance sample with distribution q
3. Compute gradient
 \textit{(before this was the first step)}
4. Assume $q=p$ and express as logarithm
 - the same as log trick!
 - but now it makes sense
 - importance sampling with the current policy
 - we don’t change the samples, hence, no gradient flow through q
 - Advantages: We can sample from $q \neq p$, i.e. to encourage exploitation or reduce variance.

\[
E[f] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i) p_{\theta}(x_i) \quad \text{with } x_i \sim \text{Uniform}
\]
\[
E[f] \approx \frac{1}{N} \sum_{i=1}^{N} p_{\theta}(x_i) f(x_i) \quad \text{with } x_i \sim q
\]
\[
\frac{\partial E[f(X)]}{\partial \theta} \approx \sum_{i=1}^{N} \frac{\partial p_{\theta}(x_i)}{\partial \theta} \frac{f(x_i)}{q}
\]
\[
\frac{\partial E[f(X)]}{\partial \theta} \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i) \frac{\partial \log (p_{\theta}(x_i))}{\partial \theta}
\]
Generative Adversarial Networks (GAN)
GAN concept

Goal: Train a generator, G, that produces naturally looking images

Idea: Train a discriminator, D, that distinguishes between real and fake images. Use this generator to train G

Recap: GANs

A min max game (related to game theory)

$$\min_G \max_D V(D, G) = \min_G \max_D [E_{x \sim p_x} [\log D(x)] + E_{z \sim p_z} [\log (1 - D(G(z)))]]$$

- **D** should be high for real examples (from perspective of **D**, not influenced by **G**)
- **D** should be **low** for fake examples (from perspective of **D**)
- **D** should be **high** for fake examples (from perspective of **G**)

Effects:

- learning a loss function
- like a VAE, we sample from a Gaussian distribution (some form of a prior assumption)
GAN training

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments.

```
for number of training iterations do
  for $k$ steps do
    • Sample minibatch of $m$ noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
    • Sample minibatch of $m$ examples $\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}\}$ from data generating distribution $p_{\text{data}}(\mathbf{x})$.
    • Update the discriminator by ascending its stochastic gradient:
      $$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[ \log D \left( \mathbf{x}^{(i)} \right) + \log \left( 1 - D \left( G \left( z^{(i)} \right) \right) \right) \right].$$
  end for
  • Sample minibatch of $m$ noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
  • Update the generator by descending its stochastic gradient:
    $$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left( 1 - D \left( G \left( z^{(i)} \right) \right) \right).$$
end for
```

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Blue: outer loop on generator (gradient descent)

Green: inner loop on discriminator (gradient ascent)

[Goodfellow et al., Generative Adversarial Networks. 2014]
Wasserstein GAN

Diverse measures exist to compare probability distributions (here generated and real image distribution)

- The Total Variation (TV) distance
 \[\delta(\mathbb{P}_r, \mathbb{P}_g) = \sup_{A \in \Sigma} |\mathbb{P}_r(A) - \mathbb{P}_g(A)|. \]

- The Kullback-Leibler (KL) divergence
 \[KL(\mathbb{P}_r \| \mathbb{P}_g) = \int \log \left(\frac{P_r(x)}{P_g(x)} \right) P_r(x) d\mu(x), \]

- The Jensen-Shannon (JS) divergence
 \[JS(\mathbb{P}_r, \mathbb{P}_g) = KL(\mathbb{P}_r \| \mathbb{P}_m) + KL(\mathbb{P}_g \| \mathbb{P}_m), \]
 where \(\mathbb{P}_m = (\mathbb{P}_r + \mathbb{P}_g)/2 \)

- The Earth-Mover (EM) distance or Wasserstein-1
 \[W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\| x - y \|], \]

[Arjovsky et al., Wasserstein GAN. 2017]
GAN vs. WGAN

Wasserstein distance is even simpler!

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, \(k \), is a hyperparameter. We used \(k = 1 \), the least expensive option, in our experiments.

For number of training iterations do
 For \(k \) steps do
 • Sample minibatch of \(m \) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\} \) from noise prior \(p_g(z) \).
 • Sample minibatch of \(m \) examples \(\{x^{(1)}, \ldots, x^{(m)}\} \) from data generating distribution \(p_{data}(x) \).
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_D} \frac{1}{m} \sum_{i=1}^{m} \log D \left(\frac{z^{(i)}}{G \left(z^{(i)} \right)} \right) + \log \left(1 - D \left(G \left(z^{(i)} \right) \right) \right).
 \]
 End for
 • Sample minibatch of \(m \) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\} \) from noise prior \(p_g(z) \).
 • Update the generator by descending its stochastic gradient:
 \[
 \nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(z^{(i)} \right) \right) \right).
 \]
End for
The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

GAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values \(\alpha = 0.00005 \), \(c = 0.01 \), \(m = 64 \), \(n_{\text{critic}} = 5 \).

Require: \(\alpha \), the learning rate. \(c \), the clipping parameter. \(m \), the batch size.
\(n_{\text{critic}} \), the number of iterations of the critic per generator iteration.

Require: \(w_0 \), initial critic parameters. \(\theta_0 \), initial generator’s parameters.
1: while \(\theta \) has not converged do
 2: for \(t = 0, \ldots, n_{\text{critic}} \) do
 3: Sample \(\{z^{(i)}\}_{i=1}^{m} \sim \mathcal{P}_r \) a batch from the real data.
 4: Sample \(\{z^{(i)}\}_{i=1}^{m} \sim p(z) \) a batch of prior samples.
 5: \(g_w \leftarrow \nabla_w \frac{1}{m} \sum_{i=1}^{m} f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^{m} f_w(g_w(z^{(i)})) \)
 6: \(w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w) \)
 7: \(w \leftarrow \text{clip}(w, -c, c) \)
 8: end for
 9: Sample \(\{z^{(i)}\}_{i=1}^{m} \sim p(z) \) a batch of prior samples.
 10: \(g_\theta \leftarrow -\nabla_\theta \frac{1}{m} \sum_{i=1}^{m} f_w(g_\theta(z^{(i)})) \)
 11: \(\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, g_\theta) \)
 12: end while

WGAN
GAN derivation (self-study)

The GAN objective has the form

\[
\min_G \max_D [E_{x \sim p_x} [\log D(x)] + E_{z \sim p_z} [\log (1 - D(G(z)))]]
\]

\[
= \min_G \max_D \int_x p_x(x) \log D(x) + \int_z p_z(z) \log (1 - D(G(z)))
\]

\[
= \min_G \max_D \int_x p_x(x) \log D(x) + \int_x p_g(x) \log (1 - D(x))
\]

\[
= \min_G \max_D a \log(y) + b \log(1 - y)
\]

The optimal (extremum) is \(y^* = \frac{a}{a + b} \),

\[
y = a \log(y) + b \log(1 - y)
\]

\[
y' = \frac{a}{y} - \frac{b}{1 - y}
\]

\[
\frac{a}{y^*} = \frac{b}{1 - y^*}
\]

Find optimal \(y^* \) by setting \(y' = 0 \).

\[
1 - y^* = \frac{b}{a}
\]

\[
\frac{1}{y^*} = \frac{a + b}{a}
\]

\[
y^* = \frac{a}{a + b}
\]
GAN derivation (self-study)

From the optimum \(y^* = \frac{a}{a + b} \) of the general form, it follows that the maximum is reached for the discriminator \(D^* \)

\[
p_r(x) \log D(x) + p_g(x) \log(1 - D(x)) \implies D^*(x) = \frac{p_r(x)}{p_r(x) + p_g(x)}
\]

We assumed that the generator, \(G \), is fixed and we have a way to evaluate \(p_g \) (generated image distr.)

- in practice, we can not estimate \(p_g \) (opposed to a VAE)
 - we can only sample from \(p_g \) by sampling from \(p_z \) and applying \(G \)
 - but for the mathematical derivation we can make this assumption
GAN derivation (self-study)

Using the optimal value of D, we reach a form that is equal to the JS-divergence.

$$\min_G V(D^*, G) = \int_x \left(p_r(x) \log D^*(x) + p_g(x) \log(1 - D^*(x)) \right) dx$$

$$= \int_x \left(p_r(x) \log \frac{p_r(x)}{p_r(x) + p_g(x)} + p_g(x) \log \frac{p_g(x)}{p_r(x) + p_g(x)} \right) dx$$

$$D_{JS}(p_r \| p_g) = \frac{1}{2} D_{KL}(p_r \| \frac{p_r + p_g}{2}) + \frac{1}{2} D_{KL}(p_g \| \frac{p_r + p_g}{2})$$

$$= \frac{1}{2} \left(\int_x p_r(x) \log \frac{2p_r(x)}{p_r(x) + p_g(x)} dx \right) + \frac{1}{2} \left(\int_x p_g(x) \log \frac{2p_g(x)}{p_r(x) + p_g(x)} dx \right)$$

$$= \frac{1}{2} \left(\log 4 + \min_G V(D^*, G) \right)$$

Jensen–Shannon divergence

$$D_{JS}(P \parallel Q) = \frac{1}{2} D_{KL}(P \parallel M) + \frac{1}{2} D_{KL}(Q \parallel M)$$

with

$$M = \frac{1}{2} (P + Q)$$

[https://medium.com/@jonathan_hui/proof-gan-optimal-point-658116a236fb]
Comparison: VAE and GAN

Objective

\[
\min_{\theta, \phi} -E_{h \sim q_\phi(h|x)} \left(\log p_\theta(x|h) \right) + D_{KL}(q_\phi(h|x) || p(h))
\]

VAE

Sampling a ‘natural’ image

- Draw a random sample from a Gaussian
 \(h \sim \mathcal{N}(0, 1) \)
- Apply the decoder on \(h \)

Computing the probability of a given image \(x \)

- Apply the encoder on \(x \)
 \(h = e_\theta(x) \)
- Evaluate the prior on \(h \)
 \(\mathcal{N}(h|0, 1) \)
- thanks to explicit density model

GAN

\[
\min_G \max_D [E_{x \sim p_x} [\log D(x)] + E_{z \sim p_z} [\log (1 - D(G(z)))]]
\]

- Draw a random sample from a Gaussian
 \(z \sim \mathcal{N}(0, 1) \)
- Apply the generator on \(z \)
- Not applicable!
 - it models an implicit density
DCGAN

Convolutional generator architecture
PatchGAN

Patch-wise classification into real or fake (instead of globally)

[Li and Wandt, Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks]
Image translation
Image translation

First week of paper reading..

[Isola et al., Image-to-Image Translation with Conditional Adversarial Networks]
Further image to image translation examples

[Everybody dance now]

Source domain A (simulation with annotation)

a) Unpaired image and pose transfer

b) Training a pose detector

[Deformation-aware Unpaired Image Translation for Pose Estimation on Laboratory Animals]
Even more image to image translation examples
Conditional Generative Adversarial Nets

GAN, but with additional input (here edge map) on top of the noise
• the noise will trigger properties that are hidden in the condition, here color
• both the generator and discriminator receive the condition as input
Paired vs. unpaired

Paired

\[x_i, y_i \]

Unpaired

\[X, Y \]
Cycle GAN

Unpaired image translation

- a set of images for the source (e.g., many paintings)
- a set of images for the target (e.g., real photographs)
- no image-to-image spatial correspondence
- no image-to-image color correspondence

How can we learn a mapping?

- by limiting the capacity of the translator
 - few parameters
 - local operations (convolution)
- ensuring that the generated target images are realistic
 - similar in distribution
Cycle GAN principle

Construct an identity function by chaining two translation networks

• Jointly learn to
 • map from X to Y and back to X
 • map from Y to X and back to Y

Canonical solutions?
Training examples (face to ramen)

- example images of both classes in one batch
- map between domains
 - one generator per class
- apply discriminator on all generated images
 - one discriminator per class
Cycle GAN issues

Warning:

- difficult to train
- requires similar objects in source and target
 - e.g., zebra and horse
- works best on textures, not so well on shape changes
 - good on zebra and horse
 - bad to translate from mouse to elephant
Impressive examples (StyleGAN)
Style transfer

Idea: ‘turn NN training on its head’

• apply gradient descent
 • with respect to the ‘input’ image (instead of NN weights)
 • keep the neural network weights fixed

• find neural network features that
 1. capture style (averaged spatially)
 • correlation between features of a layer
 2. capture content
 • l_2 difference between features of a layer

• set the objective function as the distance of ‘input’
 • to style target (painting), in terms of style features
 • to content target (photo), in terms of content features

[Styel influence grows with depth]

[Styel Reconstruction]

[Gatys et al., A Neural Algorithm of Artistic Style 2015]
Progressive GAN (ProgGAN)

Concept:
• build a classical GAN setup
 • generator G
 • discriminator D
• start low res (4x4)
• train for a bit, then add new layers
• optimize all layers
 • new and old

Benefits:
• quick convergence
• scales to high resolution
 • 1024 x 1024

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spatial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D, thus increasing the spatial resolution of the generated images. All existing layers remain trainable throughout the process. Here \(\frac{N \times N}{N \times N} \) refers to convolutional layers operating on \(N \times N \) spatial resolution. This allows stable synthesis in high resolutions and also speeds up training considerably. On the right we show six example images generated using progressive growing at 1024 \(\times \) 1024.
Progressive GAN example

Training time: 0 days
4x4 resolution

- Generator
- Discriminator
- $z = \text{random code}$
- $x = \text{real image}$
- $x' = \text{generated image}$
Adaptive Instance Normalization (AdaIN)

Instance Normalization:
- like batch norm, but normalizing across the spatial dimensions (instead of elements in the batch)

\[\text{IN}(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \beta \]

Conditional Instance Normalization
- make the offset and scaling (gamma and beta) dependent on a style \(s \)
 - e.g., extracted with pre-trained network

\[\text{CIN}(x; s) = \gamma^s \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \beta^s \]

Adaptive Instance Normalization
- normalize the mean and std of the target with the one of the source

\[\text{AdaIN}(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y) \]

[Huang and Belongie. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization]
Style GAN internals

- Compute style description given noise (form of non-Gaussian noise)
- Apply style and add noise at all layers (of ProgGAN generator)
Additional details

Effects of style

• Coarse
 • resolution of up to 82
 • affects pose, general hair style, face shape, etc

• Middle
 • resolution of 162 to 322
 • affects finer facial features, hair style, eyes open/closed, etc.

• Fine
 • resolution of 642 to 1024
 • affects color scheme (eye, hair and skin) and micro features

• Can only generate images and mix generated images/latent codes
 • can not reconstruct (would require encoder)
 • no fine-grained control of individual features
Style GAN results

Source A: gender, age, hair length, glasses, pose

Source B: everything else

Result of combining A and B