Visual Al

CPSC 532R/533R - 2019/2020 Term 2

Lecture 10. GANs and Unpaired Image Translation

Helge Rhodin

Assignment 3

« Rendering
« Learning shape spaces
* Interpolating in shape spaces

« Work independently, don’t cheat!
» disciplinary measures will be reported
on your transcripts
» your future applications may be
rejected because of this

Assignment 3: Neural Rendering and Shape Processing

CPSC 532R/533R Visual Al
by Helge Rhodin and Yuchi Zhang

This assignment is on neural rendering and shape processing—computer graphics. We
provide you with a dataset of 2D icons and corresponding vector graphics as shown in
Figure 1. It stems from a line of work on translating low-resolution icons to visually
appealing vector forms and was kindly provided by Sheffer et al. [1] for the purpose of

i TN
FaOEIES

Y
Y

Figure 1: Icon vector graphics and their bitmap representation.

The overall goal of this assignment is to find transformation between icons. We provide
the TmagerIcon dataset as an HDF5 file. As usual, the Assignment3_TaskI.ipynb
notebook provides dataloading, training and validation splits, as well as display and
training functionality. Compatibility of the developed neural networks with color im-
ages is ensured by storing the contained 32 x 32 icon bitmaps as 3 x W x H tensors.
Vector graphics are represented as polygons with N = 96 vertices and are stored as
2 x N tensors, with neighboring points stored sequentially. The polygon representa-
tion with a fixed number of vertices was attained by subsampling the originally curved
vector graphics.

UB

0

Polygon vs. mesh vs. image

€

b2
p3
P1
2
Ps

Polygon Mesh (e.g., triangles) Image (regular grid)

« two neighbors per vertex < different #neighbors per vertex <« eight neighbors per vertex
« suited for 1D convolution < requires graph convolution » suited for 2D convolution

Translating the image left/right

The order of vertices is not important for defining shapes :
has no effect on convolution

UB

0

Recap: Reinforcement learning basics

Definitions: h
| Agent

€

* s, the current state of the agent/environment =
. . . . state reward action
R(s;), the reward/objective at time t se | |R(sp) a,
* might be zero for almost all t Sei1 _
r - [Environment |[e——
* R =):-0R(s:), the return as sum over all rewards \

* a, the action, such as moving right or left
* a; = m(s;), the policy of which action a; to perform when in state s;
* St41 = env(sg, ag), the environment reacting to the agent’s action

Goal: finding a good policy t such that R is maximized when executing action a; = m(s;)
Update loop:

« decide on a new action a; = m(s;)

« update the environment state s;,; = env(s;, a;)

* pay out reward R(s;)

Recap: Binary decisions

C

BC

€

Computing expectations

Continuous:

Definition

By f (2 ff

Estimators

Empirical estimate

Epnp = —Zf (x;) with z; ~p

Discrete set of C classes:

UB

0

€

Definition

Fumy f(2) = 3 (@)l

Uniform Monte Carlo sampling

a:wp Z f LE@ 33?,

with N samples X; drawn uniformly
at random

Importance sampling

C o~ plwi)
N = al:)

Epmp & f(x;) with z; ~ ¢

Recap: Importance sampling ‘f-@‘-‘

UBC

Derivative of discrete random variables Il W
N
1
Elf] = &= i i ith ; ~ Uni
1. Start from uniform MC sampling of f /] N ; Jei)po(wi) with @; ~ Uniform
i N
(note, not yet of the gfadle-nt)- | E[f] ~ 1 Z pg(%)f(m) it s
2. Importance sample with distribution g N P q(z;) t i~ 4
N Opg(x;
3. Compute gradient ~ Z p%%) “ 00 (g,
(before this was the first step)
= i N
4. Assume g=p and express as logarithm OE[f(X)] . 1 dlog (pe(z;))
« the same as log trick! 90 N Z (i) 90

* but now it makes sense
« importance sampling with the current policy
« we don’t change the samples, hence, no gradient flow through q
« Advantages: We can sample from q != p, i.e. to encourage exploitation or reduce variance.
Easier to implement and understand. A large literature on how to improve importance sampling!

Generative Adversarial Networks
(GAN)

GAN concept

Goal: Train a generator, G, that produces naturally looking images

Idea: Train a discriminator, D, that distinguishes between real and
fake images. Use this generator to train G

Real

Samples
— Learn how to tell apart
Latent fake data from true data
Space =
] Learn data ‘ \
. . . IsD .
Fl distribution D { Cofrect? .
Discriminato .)

Samples

PR— i
Yy
1 I G ;
G t Generated :
enerator Fake
—a]

UB

0

Recap: GANs

€

A min max game (related to game theory)

min max V(D, G) = min max[E; .y, [log D(z)] + E-~p. [log(1 — D(G(2)))]]

D should be high for real D should be low for fake D should be high for fake
examples examples examples
(from perspective of D, (from perspective of D) (from perspective of G)

not influenced by G)

« Effects:
« learning a loss function
» like a VAE, we sample from a Gaussian
distribution (some form of a prior assumption)

11

GAN training

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do
e Sample minibatch of m noise samples {z(), ..., (™} from noise prior Dg(2).
e Sample minibatch of m examples {z(!),..., ("™} from data generating distribution
pdata(m)'

e Update the discriminator by ascending its stochastic gradient:

m

Vo, 3" s (&%) +105 (1~ 0 (0 (9)))]

end for
e Sample minibatch of m noise samples {z(), ..., 2™} from noise prior p(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 (10 (6 (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Blue: outer loop on generator (gradient descent)

Green: inner loop on discriminator (gradient ascent)

C
o
0

— crit_real
204 — crit_fake
— gen

10 A

—10

—20 1

T T T T T
200 400 600 800 1000

Chaotic GAN loss behavior
(e.g., generator loss going up not down)

o 4

[Goodfellow et al., Generative Adversarial Networks. 2014]

12

Wasserstein GAN

e The Total Variation (TV) distance

5(Pr. By) = sup [P,(4) ~ By(4)

e The Kullback-Leibler (KL) divergence

Kumpg:]m(%%)am@wu

e The Jensen-Shannon (JS) divergence

JS(Pr,Py) = KL(Py||Pm) + KL(P,||Pr) ,

where P, =

(P, +1Pg)/2

UBC

ey

ﬂiulbih

Diverse measures exist to compare probability distributions (here generated and real image distribution)

e The Earth-Mover (EM) distance or Wasserstein-1

W(P,,P,) = inf

E - ’
~el(P,.,P,) (xry)N’r[|‘T y||]

Compare in this direction

ot in this direction

EM distance principle

[Arjovsky et al., Wasserstein GAN. 2017]

13

GAN vs. WGAN

Wasserstein distance is even simpler!

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do
e Sample minibatch of m noise samples {z(%), ..., 2(™)} from noise prior p, ().
o Sample minibatch of m examples {z(!),..., (™} from data generating distribution

pdal.a(z)'
e Update the discriminator by ascending its stochastic gradient:

1 3 g
S (i) - (i)

Vg“m 2; [logD (a:) +log (1 D (G (z)))] :

end for

o Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior py(z).
o Update the generator by descending its stochastic gradient:

vgg%gﬁ— (e (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

GAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, ncritic = 9.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic; the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 60, initial generator’s parameters.

1: while 6 has not converged do

2 for t =0,..., Neritic do

3 Sample {z(V}7 | ~ P, a batch from the real data.
4: Sample {2(Y}™, ~ p(2) a batch of prior samples.
5: Gw Vu [% Dty fule®W) — % mj:] fw(gg(z(')))]
6: w+—w++oa-R rop(w, gw)

7 w + clip(w, —¢, ¢)

8 end for

9 Sample {z(M}™, ~ p(z) a batch of prior samples.

10: go ¢+ —Vom >in fu(ge(z?))
11: 6 + 6 — a - RMSProp(0, g¢)
12: end while

WGAN

14

GAN derivation (self-study)

The GAN objective has the form

m(_i;n mSX[ngpr log D(x)] + E.~p. [log(1 — D(G(2)))]]

= m(%nmgx/xpr(x) log D(x) +/zpz(3) log(1 - D(G(z)))

= m(%n mgx/xpr(x) log D(x) + /wpg(:n) log(1 — D(x))

— mi 1 log(1 —
min max a og(y) + blog(1l —y)

The optimal (extremum) is y* = —2

a+b
y = alog(y) + blog(l —y)
, _a b
y =T
y 1=y
LN Find optimal y* by setting y’ = 0
y» 1-y '
l=of %
* a
1 _a+b
yoa
o a
y=

a+b

Expected value
B £(0) = [a(o)f(0) do

Fixed Generator

Assuming known
generator image
distribution p,,

UB

0

€

15

UB

0

GAN derivation (self-study)

€

From the optimum y* = of the general form, it follows that the maximum is reached for the

. a -+
discriminator D*

Pr(X)

pr(x) log D(x) + p,(x) log(1 — D(x)) = BIRI= pr(x) + pg(x)

We assumed that the generator, G, is fixed and we have a way to evaluate p, (generated image distr.)
* in practice, we can not estimate p, (opposed to a VAE)

« we can only sample from p, by sampling from p, and applying G
« but for the mathematical derivation we can make this assumption

16

GAN derivation (self-study)

Using the optimal value of D, we reach a form that is equal to the JS-divergence

min V(D*, G) = /
G

DJS(pr "pg)

N = N = = D=

P

[

/

Dir(p,l

pr(x)log D*(x) + py(x) log(1 — D*(x)))dx

e

pr(x)

1 S of . S R
PR CE TS + 0B

+ po(x) log

prx) + pg(x)

Pg(X))dx

(
(
(
(

Pr

Pg 1
o o=
2) 2DKL(pg||

Pr +Dg

2

)

2pg(x)
1 S -
/x B O

2p,(x)) 1

log —————— + =

/xp,(X) 8 o) + Dg(X) § 2
P

log2+/p,(x) log
X

log2+/pg(x) log
X

Pr(X) + pp(x)

Pg(x)

Pr(x) + pg(x)

az)

+

log 4 + min V(D", G))

)

Jensen—-Shannon divergence
Dss(P | Q) = 3 Dicr (P || M) + 5 Dice (@ || M)
with

M:%(P—I—Q)

[https://medium.com/@jonathan_hui/proof-gan-optimal-point-658116a236fb]

17

https://medium.com/@jonathan_hui/proof-gan-optimal-point-658116a236fb

Comparison: VAE and GAN

VAE
Objective

min ~Eneg, (hpo (log pe(x|h)) + Dxr(gy(h[x)|p(h))

Sampling a ‘natural’ image
« Draw a random sample from a Gaussian

h ~ N(0,1)
» Apply the decoder on h

Computing the probability of a given image x
* Apply the encoder on x
h = ep(x)
« Evaluate the prior on h

N (h|0,1)

« thanks to explicit density model

@-E

GAN

mCiT‘n rrlfju)c[li,wpr log D(z)] + E.np. [log(1 — D(G(2)))]]

« Draw a random sample from a Gaussian
z ~N(0,1)

» Apply the generator on z

* Not applicable!
* it models an implicit density

18

DCGAN

Convolutional generator architecture

1024
A

4
100z ‘ .

Code Project and
reshape

CPSC 532R/533R - Visual Al - Helge Rhodin

Deconv 1

Deconv 3

19

PatchGAN "@*

Patch-wise classification into real or fake (instead of globally)

Discriminator network
128x128x6 64x64x64 A feature map Qf
fake/real probabilities
32x32x128
16x16x256
15%15%512
14x14x1
) J . > Output

.

[Li and Wandt, Precomputed Real-Time Texture Synthesis with
Markovian Generative Adversarial Networks

20

Image translation

Image translation #-@-#

First week of paper reading..

Labels to Street Scene Labels to Facade BW to Color

input] out input output
Day to Night Edges to Photo

input output input output

[Isola et al., Image-to-Image Translation with Conditional Adversarial Networks] ,

Further image to image translation examples

Source to Target Result

Detected
. Pose
f
Source domain A a) Unpaired ~ Synthetic image b) Training a
[Everybody dance now] (simulation with annotation) image and pose pose detector

———_ _&‘-

transfer

=N —

o——

- 7-.

«'Synthetic annotation

— d =

N\

[Deformation-aware Unpaired Image Translation for Pose Estimation on Laboratory Animals]

23

Even more image to image translation examples

Input Image

‘,X 717~,., bas
‘\}1 (

& U Coordinates

Parf Index

“J(4
‘!Lg‘u
\ @9 ¥Y°

v WA

V Coordinates

[Dense pose]

Conditional Generative Adversarial Nets

GAN, but with additional input (here edge map) on top of the noise
« the noise will trigger properties that are hidden in the condition, here color
* both the generator and discriminator receive the condition as input

UB

0

€

25

Paired vs. unpaired

L 3 I) q —

Unpaired

26

Cycle GAN 'f'@*

Monet _ Photos Zebras T Horses

Unpaired image translation
« aset of images for the source
(e.g., many paintings)

« aset of images for the target
(e.g., real photographs)

* no image-to-image spatial correspondence

photo —>Monet ; horse —» zebra

* no image-to-image color correspondence Summer £ Winter

How can we learn a mapping?
* by limiting the capacity of the translator
« few parameters
» local operations (convolution)
« ensuring that the generated target images are realistic

winter —> summer

* similar in distribution
27

UB

Cycle GAN principle =~

0

€

Construct an identity function by chaining two translation networks

c Dx
7 - N : - 7 -
DX DY Y S~ £Z ~ X Yy
1) G A F F

"_ﬁ.\S o loss

. cycle-consistency |, ..s
‘ s

X Y X\ Y X Y cycle-consistency

F loss

« Jointly learn to

* map from X to Y and back to X i .
P Canonical solutions?

« map fromY to X and back to Y

28

Training examples (face to ramen)

« example images of both
classes in one batch
* map between domains
« one generator per class
» apply discriminator on all
generated images
« one discriminator per class

_»ya _>X’

(fake)

(fake)

y—»x’—»y’

(fake) (fake)

29

Cycle GAN issues

Warning:

« difficult to train

* requires similar objects in source and target
* e.g., zebra and horse

» works best on textures, not so well on shape changes
* good on zebra and horse
« bad to translate from mouse to elephant

30

Impressive examples (StyleGAN)

UB

0

€

31

C
o
0

Style influence grows with depth

Style transfer

Idea: ‘turn NN training on its head’

« apply gradient descent

» with respect to the ‘input’ image

(instead of NN weights)

« keep the neural network weights fixed

Content
Representations

« find neural network features that

1. capture style (averaged spatially)
« correlation between features of a layer
2. capture content
« |2 difference between features of a layer
« set the objective function as the distance of ‘input’
» to style target (painting), in terms of style features
« to content target (photo), in terms of content features

[Gatys et al., A Neural Algorithm of Artistic Style 2015] 32

Progressive GAN (ProgGAN)

Concept:
* build a classical GAN setup
* generator G
* discriminator D
« startlow res (4x4)
« train for a bit, then add new layers
« optimize all layers
« new and old

Benefits:

* quick convergence

» scales to high resolution
« 1024 x 1024

G Latent Latent Latent
)) 4
[N N
| T —_—
: ——
— |
H H []
i : !]
' ! : 3
| | 1024x1024 |
o : } i
e B B
| iReals : iReals . iReals
D P . | 1024x1024 |
P i i]
[]
[]
P [—
- ! [———
| :
b ———
[axa_] [axa_]

v

Training progresses

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on N x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

33

Progressive GAN example

®x &N

4x4

CPSC 532R/533R - Visual Al - Helge Rhodin

Training time: 0 days
4x4 resolution

Zz =random code
Generator

N x = real image
Discriminator

x' = generated image

34

Adaptive Instance Normalization (AdalN)

Instance Normalization:
» like batch norm, but normalizing across the spatial
dimensions (instead of elements in the batch)

Conditional Instance Normalization

« make the offset and scaling (gamma and beta)
dependent on a style s
* e.g., extracted with pre-trained network

Adaptive Instance Normalization
« normalize the mean and std of the target with the
one of the source

AdaIN(z,y) = o(y) (

x — p(x)
o(x)

) + pu(y)

UB

0

€

[Huang and Belongie. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization]

35

Style GAN internals

« Compute style description given noise (form of non-Gaussian noise)
« Apply style and add noise at all layers (of ProgGAN generator)

Latent z € Z

Fully-connected

PixelNorm

(a) Traditional

Latent z € Z

Normalize

Mapping

Ty

T T

-
@]

-
]

Synthesis network g

Const 4x4x512

(b) Style-based generator

Noise

C
@
0

|

Noise on all layers
No noise

Noise in fine layers

Noise in coarse layers

w
o

Additional details

Effects of style
 Coarse
* resolution of up to 82
« affects pose, general hair style, face shape, etc
+ Middle
* resolution of 162 to 322
» affects finer facial features, hair style, eyes open/closed, etc.
* Fine
* resolution of 642 to 1024
« affects color scheme (eye, hair and skin) and micro features

« Can only generate images and mix generated images/latent codes
« can not reconstruct (would require encoder)
* no fine-grained control of individual features

C
o
0

37

Style GAN results

Source A: gender, age, hair length, glasses, pose

K

Source B: -
everything Result of combining A and B

else

